CRTC1/MAML2 Gain-Of-Function Interactions with MYC Create A

Total Page:16

File Type:pdf, Size:1020Kb

CRTC1/MAML2 Gain-Of-Function Interactions with MYC Create A CRTC1/MAML2 gain-of-function interactions with MYC PNAS PLUS create a gene signature predictive of cancers with CREB–MYC involvement Antonio L. Amelioa,1, Mohammad Fallahib, Franz X. Schauba, Min Zhangc, Mariam B. Lawania, Adam S. Alpersteina, Mark R. Southernd, Brandon M. Younge, Lizi Wuf, Maria Zajac-Kayec,g, Frederic J. Kayec, John L. Clevelanda, and Michael D. Conkrighta,d,2 aDepartment of Cancer Biology, bIT Informatics, dTranslational Research Institute and Department of Molecular Therapeutics, and eGenomics Core, The Scripps Research Institute, Jupiter, FL 33458; and Departments of cMedicine, fMolecular Genetics and Microbiology, and gAnatomy and Cell Biology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 Edited* by Marc Montminy, The Salk Institute for Biological Studies, La Jolla, CA, and approved July 8, 2014 (received for review October 11, 2013) Chimeric oncoproteins created by chromosomal translocations are histology. As such, these are a class of epithelial cell malignancies among the most common genetic mutations associated with tu- that originate from mucous/serous glands present at different morigenesis. Malignant mucoepidermoid salivary gland tumors, as locations in the body (6, 8–15). well as a growing number of solid epithelial-derived tumors, can The genesis of these adult solid tumors was thought to be due arise from a recurrent t (11, 19)(q21;p13.1) translocation that gen- to the direct activation of both CREB and NOTCH/RBPJ, the erates an unusual chimeric cAMP response element binding protein transcription factor targets of the CRTC1 and MAML2 coac- (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind- tivators involved in the t (11, 19) translocation, respectively like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcrip- (6, 15). However, forced expression of both CRTC1 and MAML2 tional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator is not sufficient to provoke transformation, whereas ectopic MAML2. Accordingly, the C1/M2 oncoprotein induces aberrant ex- and/or inducible expression of C1/M2 transforms epithelial cells. pression of CREB and NOTCH target genes. Surprisingly, here we Furthermore, the domain within MAML2 required for inter- BIOCHEMISTRY report a gain-of-function activity of the C1/M2 oncoprotein that acting with NOTCH is absent in the C1/M2 fusion protein, and directs its interactions with myelocytomatosis oncogene (MYC) pro- those NOTCH genes originally identified as aberrantly regulated teins and the activation of MYC transcription targets, including C1/M2 targets were found to also possess CREB-responsive those involved in cell growth and metabolism, survival, and tumor- promoters (16, 17). However, a C1/M2 deletion mutant (C1/ igenesis. These results were validated in human mucoepidermoid Δ – tumor cells that harbor the t (11, 19)(q21;p13.1) translocation and M2 48 222) that is fully capable of interacting with and acti- express the C1/M2 oncoprotein. Notably, the C1/M2–MYC interac- vating CREB cannot drive transformation (17). Collectively, tion is necessary for C1/M2-driven cell transformation, and the these observations point to added levels of regulation outside of C1/M2 transcriptional signature predicts other human malignancies simply activating CREB or NOTCH, which is further supported having combined involvement of MYC and CREB.Thesefindings by clinical patient data, where the C1/M2 translocation alone is suggest that such gain-of-function properties may also be manifest in other oncoprotein fusions found in human cancer and that agents Significance targeting the C1/M2–MYC interface represent an attractive strategy for the development of effective and safe anticancer therapeutics in The prevailing dogma since the identification of the t (11, 19) tumors harboring the t (11, 19) translocation. translocation gene product as a fusion of the cAMP response element binding protein (CREB)-regulated transcriptional coac- ene regulatory circuits are generally controlled by transcrip- tivator 1 (CRTC1) and the NOTCH coactivator mastermind-like 2 Gtional mechanisms tied to signal transduction pathways, and (MAML2) in malignant salivary gland tumors has been that ab- they allow cells to rapidly respond to environmental cues to con- errant activation of CREB and/or NOTCH transcription programs trol cell survival, growth, metabolism, and biological function. drives oncogenesis. However, combined expression of the pa- These controls are lost in cancers through various means (1–3), rental coactivator molecules CRTC1 and MAML2 is not sufficient including chromosomal translocations that can augment the ex- to induce transformation, suggesting an added level of com- pression of oncogenes or that generate chimeric oncoproteins that plexity. Here we describe gain-of-function interactions between are necessary and sufficient to provoke malignancy (4). the CRTC1/MAML2 (C1/M2) coactivator fusion and myelocyto- Chromosomal translocations found in epithelial tumors fre- matosis oncogene (MYC) oncoproteins that are necessary for C1/ quently involve the fusion of signaling molecules and regulators M2-driven transformation. Our findings suggest that targeting of transcriptional activity (5). The t (11, 19)(q21;p13.1) trans- the C1/M2–MYC interface represents an attractive strategy for location gene product creates a unique oncoprotein fusion that is the development of effective and safe anticancer therapeutics in comprised of two transcriptional coactivators, the cAMP re- tumors harboring the t (11, 19) translocation. sponse element binding protein (CREB)-regulated transcrip- tional coactivator 1 (CRTC1) and the NOTCH/RBPJ coactivator Author contributions: A.L.A. and M.D.C. designed research; A.L.A., M.F., F.X.S., M.Z., M.B.L., – A.S.A., M.R.S., B.M.Y., L.W., M.Z.-K., and M.D.C. performed research; A.L.A., F.X.S., and M.D.C. mastermind-like 2 (MAML2) (6 11). The ensuing CRTC1/ contributed new reagents/analytic tools; A.L.A., M.F., L.W., M.Z.-K., F.J.K., J.L.C., and M.D.C. MAML2 (C1/M2) chimeric oncoprotein is comprised of the analyzed data; and A.L.A., F.J.K., J.L.C., and M.D.C. wrote the paper. N-terminal 42 residues of CRTC1 encompassing a coiled-coil The authors declare no conflict of interest. domain involved in CREB binding followed by the C-terminal *This Direct Submission article had a prearranged editor. 981 residues of MAML2, which includes a transcriptional acti- 1Present address: Lineberger Comprehensive Cancer Center, University of North Carolina vation domain. This C1/M2 coactivator fusion was originally at Chapel Hill, Chapel Hill, NC 27599-7455. identified in mucoepidermoid carcinomas (MECs) of the salivary 2To whom correspondence may be addressed. Email: [email protected]. gland and lungs, but has now also been detected in primary thy- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. roid, breast, cervix, and skin tumors that present with MEC-like 1073/pnas.1319176111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1319176111 PNAS Early Edition | 1of9 Downloaded by guest on October 1, 2021 characterized by a benign phenotype, and where the full tu- morigenic potential of mucoepidermoid C1/M2-positive cells requires additional cooperating signals for a full-blown malig- nancy (18). Collectively, these observations hint at additional functional activities present in the C1/M2 coactivator fusion that contribute to its oncogenic potential. To define these functions, we used a mammalian cell-based screen and discovered a C1/M2 gain-of- function, where C1/M2 binds to and coopts the function of MYC oncoproteins, and show that C1/M2-driven transformation requires MYC. Furthermore, a C1/M2 gene signature identifies human tumors having combined activation of MYC and CREB pathways. These findings suggest that gain-of-function activities may be a common feature of oncoprotein fusions and that such activities represent new avenues for therapeutic intervention. Results C1/M2 Interacts with the MYC Oncoprotein Network. To assess if the C1/M2 coactivator fusion interacts with transcriptional regu- lators in addition to CREB or NOTCH/RBPJ, we used a pre- viously developed and validated cell-based functional screen coined the “Coactivator Trap” composed of a library of nearly all human transcription factors fused to the GAL4 DNA binding domain (DBD) (SI Appendix, Fig. S1) (19). Surprisingly, the C1/M2 coactivator fusion selectively activated several proteins within the MYC:MAX network including MYCN, MXI (a.k.a. MAD2), and MAX (Fig. 1A). In contrast, neither parental CRTC1 nor MAML2 coactivator proteins displayed this activity. The catalytic subunit of PKA served as a control for the assay and displayed, as expected (20, 21), highly specific activation of GAL4–ATF1 and repression of GAL4–ATF4 reporter activ- ity. Furthermore, as expected, expression of CRTC1 activated Fig. 1. The C1/M2 chimeric oncoprotein selectively coactivates the MYC GAL4–ATF1 and repressed GAL4–ATF4 reporter activity, network. (A) Heat map of screen data displaying luciferase reporter activa- whereas MAML2 activated GAL4–MEF2, which are known tion (red) and repression (green). GAL4–DBD library proteins are along the y binding partners for these coactivators (22–24). Finally, trans- axis, with coexpressed C1/M2 and controls along the x axis. (B) HEK293T cells × were transiently cotransfected with CRTC1, MAML2, C1/M2, or empty ex- fection experiments with a 5 GAL4::UAS-luciferase reporter – × – pression vectors, and GAL4 DBD library proteins
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Non-Canonical Activation of CREB Mediates Neuroprotection in a C
    bioRxiv preprint doi: https://doi.org/10.1101/261420; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Non-Canonical Activation of CREB Mediates Neuroprotection in a C. elegans Model of Excitotoxic Necrosis K. Genevieve Feldmann1,2, Ayesha Chowdhury1,2, Jessi Becker3, N’Gina McAlpin3, Taqwa Ahmed4, Syed Haider3, Jian X. Richard Xia4, Karina Diaz4, Monal G. Mehta5, and Itzhak Mano1,2,4,CA 1 Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY) 2 The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center 3 Undergraduate Program in Biology, CCNY, CUNY 4 The Sophie Davis BS/MD program, CUNY School of Medicine 5 Robert Wood Johnson Medical School, Rutgers – The State University of New Jersey CA Corresponding Author: Itzhak Mano, Ph.D. Department of Molecular, Cellular and Biomedical Sciences Center for Discovery & Innovation, Cluster on Neural Development and Repair The CUNY School of Medicine at City College & The CUNY Graduate Center The City University of New York CDI building room 3-382 85 St. Nicholas Terrace, New York, NY 10031 E-mail: [email protected] Office Phone:(212) 6507965 Lab Phone:(212) 6505334 www.manolab.org Running Title: Non-canonical CREB activation in nematode excitotoxicity 1 bioRxiv preprint doi: https://doi.org/10.1101/261420; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • CREB3L2-Pparg Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis
    Research Article CREB3L2-PPARg Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis Weng-Onn Lui,3 Lingchun Zeng,1 Victoria Rehrmann,1 Seema Deshpande,5 Maria Tretiakova,1 Edwin L. Kaplan,2 Ingo Leibiger,3 Barbara Leibiger,3 Ulla Enberg,3 Anders Ho¨o¨g,4 Catharina Larsson,3 and Todd G. Kroll1 Departments of 1Pathology and 2Surgery, University of Chicago Medical Center, Chicago, Illinois; Departments of 3Molecular Medicine and Surgery and 4Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; and 5Department of Pathology, Emory University School of Medicine, Atlanta, Georgia Abstract cancer in patients; and (c) the implementation of effective molecular-targeted chemotherapies that have relatively few side The discovery of gene fusion mutations, particularly in effects. The discovery of fusion mutations is therefore important, leukemia, has consistently identified new cancer pathways particularly in carcinoma, the most common cancer group in and led to molecular diagnostic assays and molecular-targeted which few gene fusions have been identified (1). The recent chemotherapies for cancer patients. Here, we report our discoveries of ERG (2) and ALK (3) gene fusions in prostate and discovery of a novel CREB3L2-PPARg fusion mutation in lung carcinoma, respectively, increase the prospect that new thyroid carcinoma with t(3;7)(p25;q34), showing that a family diagnostic and therapeutic strategies based on gene fusions will of somatic PPARg fusion mutations exist in thyroid cancer. The be applicable to common epithelial cancers. CREB3L2-PPARg fusion encodes a CREB3L2-PPAR; fusion Families of gene fusions tend to characterize specific cancer protein that is composed of the transactivation domain of types.
    [Show full text]
  • The Coactivator CRTC1 Promotes Cell Proliferation and Transformation Via AP-1
    The coactivator CRTC1 promotes cell proliferation and transformation via AP-1 Gianluca Canettieria,1, Sonia Conia,2, Michele Della Guardiaa,2, Valentina Nocerinoa, Laura Antonuccia, Laura Di Magnoa, Robert Screatonc, Isabella Screpantia,b, Giuseppe Gianninia, and Alberto Gulinoa,b,d,1 aDepartment of Experimental Medicine and bPasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; cApoptosis Research Centre, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada; and dNeuromed Institute, Pozzilli, Italy Edited by Peter K. Vogt, Scripps Research Institute, La Jolla, CA, and approved December 5, 2008 (received for review September 3, 2008) Regulation of gene expression in response to mitogenic stimuli is a Besides TPA, AP-1 also is activated by growth factors, cytokines, critical aspect underlying many forms of human cancers. The AP-1 stress signals, and oncoproteins, and thus is involved in various complex mediates the transcriptional response to mitogens, and its cellular processes, including cell proliferation, differentiation, deregulation causes developmental defects and tumors. We report cell survival, apoptosis, and neoplastic transformation (14). that the coactivator CRTC1 cyclic AMP response element-binding Whereas the biological role of the AP-1 transcription factors protein (CREB)-regulated transcription coactivator 1 is a potent and is well established, the molecular mechanism through which indispensable modulator of AP-1 function. After exposure of cells to these factors promote target gene activation remains incom- the AP-1 agonist 12-O-tetradecanoylphorbol-13-acetate (TPA), CRTC1 pletely understood. In this report, we demonstrate that CRTC1 is recruited to AP-1 target gene promoters and associates with c-Jun is a potent, indispensable modulator of AP-1 activity that and c-Fos to activate transcription.
    [Show full text]
  • Role of CREB/CRTC1-Regulated Gene Transcription During Hippocampal-Dependent Memory in Alzheimer’S Disease Mouse Models
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Institut de Neurociències Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Unitat de Bioquímica, Facultat de Medicina Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Arnaldo J. Parra Damas TESIS DOCTORAL Bellaterra, 2015 Institut de Neurociències Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Papel de la transcripción génica regulada por CRTC1/CREB durante memoria dependiente de hipocampo en modelos murinos de la enfermedad de Alzheimer Memoria de tesis doctoral presentada por Arnaldo J. Parra Damas para optar al grado de Doctor en Neurociencias por la Universitat Autonòma de Barcelona. Trabajo realizado en la Unidad de Bioquímica y Biología Molecular de la Facultad de Medicina del Departamento de Bioquímica y Biología Molecular de la Universitat Autònoma de Barcelona, y en el Instituto de Neurociencias de la Universitat Autònoma de Barcelona, bajo la dirección del Doctor Carlos Saura Antolín.
    [Show full text]
  • Self-Organized Amniogenesis by Human Pluripotent Stem Cells in a Biomimetic Implantation-Like Niche
    LETTERS PUBLISHED ONLINE: 12 DECEMBER 2016 | DOI: 10.1038/NMAT4829 Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche Yue Shao1†, Kenichiro Taniguchi2†, Katherine Gurdziel3, Ryan F. Townshend2, Xufeng Xue1, Koh Meng Aw Yong1, Jianming Sang1, Jason R. Spence2, Deborah L. Gumucio2* and Jianping Fu1,2,4* Amniogenesis—the development of amnion—is a critical factors seen in the in vivo amniogenic niche: a three-dimensional developmental milestone for early human embryogenesis (3D) extracellular matrix (ECM) that is provided by the basement and successful pregnancy1,2. However, human amniogenesis membrane surrounding the epiblast during implantation11; and a is poorly understood due to limited accessibility to peri- soft tissue bed provided by the uterine wall and trophoblast to implantation embryos and a lack of in vitro models. Here support the developing amnion (Fig. 1a,b). Since amniogenesis ini- we report an ecient biomaterial system to generate human tiates from the expanding pluripotent epiblast, we utilized mTeSR1 amnion-like tissue in vitro through self-organized development medium and basement membrane matrix (Geltrex) to render the of human pluripotent stem cells (hPSCs) in a bioengineered culture permissive for pluripotency maintenance. niche mimicking the in vivo implantation environment. We In this culture system, H9 human embryonic stem cells (hESCs) show that biophysical niche factors act as a switch to toggle were plated as single cells at 30,000 cells cm−2 onto a thick, hPSC self-renewal versus amniogenesis under self-renewal- soft gel bed of Geltrex (with thickness ≥100 µm, bulk Young's permissive biochemical conditions. We identify a unique modulus ∼900 Pa, coated on a glass coverslip), in mTeSR1 medium molecular signature of hPSC-derived amnion-like cells and supplemented with the ROCK inhibitor Y27632 (Fig.
    [Show full text]
  • A Systems Genomics Approach to Uncover Patient-Specific Pathogenic Pathways and Proteins in a Complex Disease
    bioRxiv preprint doi: https://doi.org/10.1101/692269; this version posted July 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in a complex disease 1,2,3,4,§ 5,§ 1,4,6,§ 4,7 Johanne Brooks ,​ Dezso Modos ,​ Padhmanand Sudhakar ,​ David Fazekas ,​ Azedine ​ ​ ​ ​ 5 8 4 1,4 6,9 Zoufir ,​ Orsolya Kapuy ,​ Mate Szalay-Beko ,​ Matthew Madgwick ,​ Bram Verstockt ,​ Lindsay ​ ​ ​ ​ ​ 1,2 1,2,3 3 10 6,9 Hall Alastair​ Watson ,​ Mark Tremelling ,​ Miles Parkes ,​ Severine Vermeire ,​ Andreas ​ ​ ​ ​ ​ 5 1,2,* 1,4,* Bender ,​ Simon R. Carding ,​ Tamas Korcsmaros ​ ​ ​ 1 Gut Health and Microbes Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK 2 ​ Norwich Medical School, University of East Anglia, Norwich, UK 3 ​ Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK 4 ​ Earlham Institute, Norwich Research Park, Norwich, UK 5 Centre​ for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK 6 ​ KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium 7 ​ Department of Genetics, Eötvös Loránd University, Budapest, Hungary 8 Department​ of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary 9 University​ Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium 10 Inflammatory​ Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK. § ​ equal contribution * ​ joint corresponding authors bioRxiv preprint doi: https://doi.org/10.1101/692269; this version posted July 4, 2019.
    [Show full text]
  • Transcriptional Regulation of Tenascin Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE REVIEW provided by Bern Open Repository and Information System (BORIS) Cell Adhesion & Migration 9:1-2, 34--47; January–April 2015; © 2015 Taylor & Francis Group, LLC Transcriptional regulation of tenascin genes Francesca Chiovaro1,2, Ruth Chiquet-Ehrismann1,2,*, and Matthias Chiquet3 1Friedrich Miescher Institute for Biomedical Research; Basel, Switzerland; 2Faculty of Science; University of Basel; Basel, Switzerland; 3Department of Orthodontics and Dentofacial Orthopedics; School of Dental Medicine; University of Bern; Bern, Switzerland Keywords: cytokine, cancer, development, extracellular matrix, glucocorticoid, growth factor, gene regulation, gene promoter, homeobox gene, matricellular, mechanical stress, tenascin, transcription factor Abbreviations: AKT, v-akt murine thymoma viral oncogene homolog; ALK, anaplastic lymphoma kinase; ATF, activating transcrip- tion factor; AP-1, activator protein-1; BMP, bone morphogenetic protein; CBP, CREB binding protein; ChIP, chromatin immuno- precipitation; CREB, cAMP response element-binding protein; CREB-RP, CREB-related protein; CYP21A2, cytochrome P450 family 21 subfamily A polypeptide 2; EBS, Ets binding site; ECM, extracellular matrix; EGF, epidermal growth factor; ERK1/2, extracellular signal-regulated kinase 1/2; ETS, E26 transformation-specific; Evx1, even skipped homeobox 1; EWS-ETS, Ewing sar- coma-Ets fusion protein; FGF, fibroblast growth factor; HBS, homeodomain binding sequence; IL, interleukin; ILK,
    [Show full text]
  • Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development
    G C A T T A C G G C A T genes Article Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development Jeremy W. Prokop 1,2,3,*, Caleb P. Bupp 1,4 , Austin Frisch 1, Stephanie M. Bilinovich 1 , Daniel B. Campbell 1,3,5, Daniel Vogt 1,3,5, Chad R. Schultz 1, Katie L. Uhl 1, Elizabeth VanSickle 4, Surender Rajasekaran 1,6,7 and André S. Bachmann 1,* 1 Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; [email protected] (C.P.B.); [email protected] (A.F.); [email protected] (S.M.B.); [email protected] (D.B.C.); [email protected] (D.V.); [email protected] (C.R.S.); [email protected] (K.L.U.); [email protected] (S.R.) 2 Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA 3 Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA 4 Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA; [email protected] 5 Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA 6 Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA 7 Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA * Correspondence: [email protected] (J.W.P.); [email protected] (A.S.B.) Abstract: Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants Citation: Prokop, J.W.; Bupp, C.P.; to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anoma- Frisch, A.; Bilinovich, S.M.; Campbell, lies.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]