Chemisches Zentralblatt

Total Page:16

File Type:pdf, Size:1020Kb

Chemisches Zentralblatt 2221 Chemisches Zentralblatt. 1930 Band II. Nr. 15. 8. Oktober. A. Allgemeine nnd physikalische Chemie. H. Lee Ward, Bas Lehren der Pliasenregel in Kursen fu r elementare physikalische Chemie. (Journ. chem. Education 7. 2100—14. Sept. 1930. St. Louis, Missouri, Washington Univ.) WRESCHNER. F. S. Mórtimer, Das Prinzip des Ldslichkeitsprodulctes im Unterricht. Darst. elementarer Anschauungsmethoden. (Journ. chem. Education 7. 2119—23. Sept. 1930. Bloomington, Illinois, Wesleyan Univ.) WRESCHNER. Willis A. Boughton, Ein Vorlesungsversuch uber Oberflachenspannung. Im Gegen- satz zu Hg benetzen komplexe fl. Amalgame reine Glasoberflachen u. bilden daran haftende Filme, die sofort zerstórt werden, wenn sie mit Saurelsgg. oder Sauredampfen in Beriihrung kommen. Zur Demonstration dieser Erscheinung wird ein Amalgam aus 10 g Lotmetall, 10 g W oO D schem Metali, 5 g Zn u. 180—250 g Hg empfohlen. (Journ. chem. Education 7. 2099. Sept. 1930. Cambridge, Massachusetts, H a r v a r d College.) WRESCHNER. C. C. Kiplinger, Ein improvisiertes Polarimeter. Anleitung zum Aufbau eine3 billigen Polarisationsapp. zu Demonstrationszwecken. Ais Polarisator dienen Glas- plattensatze, ais Analysator wird ein kleiner scliwarzer Spiegel verwendet. (Journ. chem. Education 7. 2174—76. Sept. 1930. West Liberty, West Virginia, Staatl. Lehrer College.) WRESCHNER. M. Marcus Kiley, Eine kurze und wirkungsvolle Demonstration der Stickstoff- bindung. Mit Hilfe eines Induktionsapp. wird ein elektr. Funken in einer dreihalsigen Glasflasche erzeugt. Die elektr. Leitungen werden durch zwei Halse der Flasche ge- fiihrt, der mittlere Flaschenhals dient zum Absaugen der Luft in ein mit W . gefiilltes Reagensglas. Die Bldg. von HN03 kann im W . schon nach wenigen Minuten nach- gewiesen werden. (Journ. chem. Education 7. 2167—68. Sept. 1930. Springfield, Massachusetts, Techn. High School.) W r e s c h n e r . Dorr M. Simer und Mary G. Brock, Eine Demonstration elektrischer Stickstoff- bindung fur die Hochschul-Chemie. Ein kleines Induktorium wird mit einer 6 Volt- Batterie u. einem Automobilziinder verbunden, der durch einen Gummistopfen im Halse einer grofien Glasflasche befestigt ist. Durch die iiberspringenden Funken bildet sich braunes NOa zuerst in der Nahe des Ziinders u. erfiillt dann die ganze Flasche. Beim Schiitteln mit W. verschwindet die braune Farbę u. HN03 kann nachgewiesen werden. (Journ. chem. Education 7. 2169. Sept. 1930. Decatur, Illinois, Senior High School.) WRESCHNER. L. F. Audrieth, Eine Einteilung der Yerhindungen von Wasserstoff und Stickstoff. Es werden homologe Reihen der N-H-Verbb. aufgestellt: N nHn u. N nIIn_„. N be- sitzt merkliche Selbstbindungsfahigkeit, aber nicht in dem Ma Be wie C. Im Gegensatz zu den KW-stoffen sind die N-H-Verbb. unstabil, auch ihre organ. Substitutionsprodd. zersetzen sich schnell. Nach den bisherigen Vers.-Ergebnissen scheinen Ketten mit mehr ais 8 N nicht Torzukommen. Die einzelnen Glieder der homologen N-H-Reihen sind untereinander sehr verschieden u. viel starker reaktionsfahig ais die KW-stoffe. (.Journ. ćhem. Education 7. 2055—62. Sept. 1930. Urbana, Illinois, Uniy.) W RESCn. C- Pauline Burt, Die Bezeichnung von Valenz und Ionen durch Ehktronenzeichen. An Stelle der + u. —, die die Ladung eines Ions bezeichnen, soli nach Vorschlag des \ f. die Zahl der Elektronen angegeben werden, die das betreffende Atom yerloren oder aufgenommen hat; also z. B. HC1 — >■ H + Cl. (Journ. chem. Education 7. 2124 26. fżept. 1930. Ńorthampton, Massachusetts, Smith College.) W r e s c h n e r . W. Herz, Li, : - r-hung und Molekelraum bei krystalłisierten Salzen. (Vgl. C. 1930. II- 1991.) Bei einer At ..u! binilrer, regular krystallisierender Salze (Haloide) wurden die durch Summation der Ionenvoll. erhaltenen Voll. Vi mit den aus den Brechungs- X II. 2. 142 2222 A . A l l g e m e in e d n d peysikalische C h e m ie . 1930. II. ąuotientcn berechneten Mol.-Raumen Fn verglichcn. Die F„-Werte sind stets kleiner ais die F,-,’was mit don friiheren Erfahrungen iiber Raumerfullungszahlen ubereinstimmt. Bei den iihnlichen Salzen, die hier behandelfc wurden, sind die Quotienten V J Vn nicht sehr yoneinander yerschieden. (Ztschr. anorgan. allg. Chemie 191. 320—21. 19/8. 1930. Breslau, Univ.) " WRESCHNER. Gerhart Jander und August Winkel. Untersuchungen iiber die Verwendbarkeit des Diffusionskoeffizienten zur Bestimmung des Molekulargewichts von lonen mit be- soiul er er Ber ii cksi chligung der Verhćillnisse iii den wiisserigen Losungen amphoterer Oxyd- hydrale. In Fortfiihrung friiherer Unterss. (C. 1930. II. 1354) diskutieren Vff. die Ver- wendbarkeit des Diffusionskoeffizienten D zur Best. des Mol.-Gewichtes von lonen. Zunaehst wird der EinfluB von Verdiinnung, Temp. u. Zahigkeit des Losungsm. unter- sucht. Das Diffusionsyermogen der einwertigen Kationen K u . Tl u. des zweiwertigen Ba-Ions ist von verd. Lsgg. bis zu 0,1-n. Lsg. prakt. konstant; bei LiCl ist die Diffusion infolge Komplexbldg. u. Dissoziation stark von der Verdunnung abhangig. Der Temp.- Koeffizient betragt bei den starken Elektrolyten + 2,6% pro Grad Temp.-Erhókung. Weiter wird der EinfluB der Ladung auf D eines Ions untersucht; es zeigt sieh, daB der EinfluB der Ladung sehr groB ist, u. daB die Begel von H e v e s y (Physikal. Ztschr. 14 [1902]. 49) nur in besonderen Fallen die Verhaltnisse richtig wiedergibt. — Zur Berechnung der Mol.-Gew. ahnlieher Stoffe yerwenden Vff. in Anlehnung an R i e c k e (Ztschr. physikal.Chem. 6 [1890]. 564) die Beziehung, D1 1/M x = D* Y (31 = Mol.- Gew.) in der Annahme, daB die mittlere freie Weglange bei ahtilichen Stoffen gleich ist. D y M ist fur ahnliche Stoffe tatsachlich befriedigend gleich groB, wie fiir einige Alkohole, Elektrolyte u. organ. Sauren nachgewiesen wird. Eingehender werden die Verhaltnisse bei einigen sehwachen anorgan. Elektrolyten, die zur Aggregation neigen, erórtert. Bei den Alkalimolybdaten ergibt sieh in Obereinstimmung mit den Ergebnissen anderer Methoden (C. 1930. I. 2377) aus der Best. des Diffusionskoeffizienten, daB bei allmahlicher Ansauerung der wss. Lsg. im Gebiet von pn = 14 bis 6,2 die einfaeli molekularen Anionen der n. Molybdate (M2Mo04,aq.) bestandig sind, zwisehen 6,2 u. 4,6 bestehen dann Anionen einer Trimolybdiinsaure, zwisehen 4,5 u. 1,6 solche einer Hexamolybdansaure u. schlieBlich zwisehen 1,6 u. 0,9 die einer Dodekamolybdan- saure. Vor dem isoelektr. Punkt kommen noch Anionen einer 24-fach aggregierten Molybdiinsaure vor. Bei Molybdansaure (u. aueh bei Wolframsaure) ist bei einem bestimmten pn immer nur eine Anionenart existenzfahig; bei Anderung des pn iiber einen bestimmten Betrag wandelt sieh die jeweils yorliegende Anionenart prakt. quanti- tatiy in die niichst hoher oder niedriger molekulare Anionenart um. Anders liegen die Verhaltnisse bei Fe(C10,1)3 in wss. Lsg. Hier sind keine deutlich abgegrenzten Gebiete des pn zu erkennen, in denen nur eine ganz bestimmte Art von Polybasen existenz- fahig ist. Im sauren Gebiet liegt einfach molekular verteiltes Fe(C104)3 vor, mit gróBerem Ph setzt sofort Aggregation der durch die Hydrolyse gebildeten bas. ]?rodd. ein; je groBer der pn wird, um so bas. werden die Hydrolysenprodd., um so hoher auch die Aggregation. Bei ph etwa = 4 fallt schlieBlich Goethit FeO(OH) aus; die letzte inder Lsg. bcstiindige isopolybas. Fe-Verb. hat ein mittleres Mol.-Gew. yon 5000—6000. Es esistiert eine kontinuierliclie Reihe immer hoher molekularer Verbb. von dem ein­ fach molekularen Fe(C104)3 zu der letzten sehr hocli molekularen Polybase des Fe:i+. Wahrscheinlich erfolgt der Aggregationsmechanismus bei den niedrigmolekularen Verbb. in anderer Weise wie bei den hochmolekularen. (Ztschr. physikal. Chem. Abt. A. 149. 97—122. Jirni 1930. Gottingen, Allgem. Chem. Univ.-Labor., Anorgan. Abt.) L o r . J. Tirmnermans, Die Erstarrung von Losungen ais UntersuchungsmeOtode der reinen Chemie. III. Die Erstarrungsk-urre von Mischungen optisch aktiver Subsianzen der Camphergruppe. (VgL. C. 1927. II. 1427.) Vf. untersuchte den Verlauf der Er- storrungskurven von Gemischen opt.-akt. Substanzen der Terpen- u. Camphergruppe. Bei der Mischung zweier opt. Antipoden derselben Substanz entstelit eine racem. oder pseudoracem. Kombination, die durch einen ausgezeichneten Punkt der Erstarrungs- kurye angezeigt wird. Bei der Mischung zweier yerschiedener opt.-akt. Substanzen entsteht im allgemeinen eine Reihe von Mischkrystallen oder ein Eutektieum; der Verlauf der Erstarrungskurve eines solehen Gemisches zweier Stoffe A u. B ist un- abhangig davon, ob B in der d-, l- oder r-Form zugesetzt wird. (Buli. Soc. chim. Belg. 39. 239—51. Juni 1930. Briissel, Univ.) W r e s c h n e r . Rowland Marcus Woodman, Eine einfache H-ypothe.se iiber dem, Verteilungsgrad in temdren fliissigen Systemen. (Vgl. C. 1930. II. 1817.) Der Yerteilungsgrad der 1930. II. A. Allgemeine und physikalische Chemik. 2223 Systeme: W.-Essigsaure-Benzin, W.-Essigsaure-Tohtol, W.-A.-A., W.-Essigsaure-Chlf., W.-Pyridin-Benzin bei 18 bzw. 25° wird bestimmt u. in Parallele gesetzt zu der Ver- teilung eines festen Stoffes zwischen zwei nicht miteinander mischbaren Fil. Emo mathemat. Korrektion fur dic vergroBerte Mischbarkeit der anfangs nicht miteinander mischbaren Fil. bei Zusatz von in beiden 1. Fil. sind angegeben. (Chera. News 140. 17—22. 10/1.1930.) A s c h e r m a n n . A. Pinkus, Die chemische Aktivitat der Substanzen in sialu nascendi. Zusammen- fassende histor. Darst. der experimentellen Erfahrungen u. Theorien iiber die be- sondere Aktivitat frisch gebildeter Substanzen. Nach der vom Vf. vertretenen Theorie bilden sich im Laufe der chem. Umwandlung zuerst Mol.- oder Atomionen, die durch Elektronenaustausch der reagierenden Moll. entstehen. (Buli. Soe. ehim. Belg. 39. 271—86. Juni 1930. Briissel, Univ.) W r e s c Hn e r . J. Booy, tlber explosive Oasreaktionen. I. Theoret. Unterss. im AnschluB an die Arbeiten von J o r is s e n (vgl. C. 1922. I. 1063) iiber den Grenzdruck bei der Aut- oxydation von P. (Ree. Trav. chim. Pays-Bas 49. 866—75. 15/7. 1930. Leiden, Univ.) W r e s c h n e r . W. Jost, Uber den Platzicechselmechanismus in festen Kórpern. Die Diffusion von Go Id in Silber. Zur Entscheidung der Frage, ob der Platzwechsel in festen Kórpern ein Gittereffekt ist oder ob er von Grenzflachen bzw.
Recommended publications
  • WO 2011/086458 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... _ 21 July 2011 (21.07.2011) WO 2011/086458 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61L 27/20 (2006.01) A61L 27/54 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/IB20 11/000052 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 13 January 201 1 (13.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 12/687,048 13 January 2010 (13.01 .2010) US (84) Designated States (unless otherwise indicated, for every 12/714,377 26 February 2010 (26.02.2010) US kind of regional protection available): ARIPO (BW, GH, 12/956,542 30 November 2010 (30.1 1.2010) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): AL- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, LERGAN INDUSTRIE, SAS [FR/FR]; Route de EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Promery, Zone Artisanale de Pre-Mairy, F-74370 Pringy LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (FR).
    [Show full text]
  • A Biochemical Survey of Some Mendelian Factors for Flower Colour
    A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators.
    [Show full text]
  • Table S1. Phytochemicals Identified from Different Pomegranate Tissues
    1 Table S1. Phytochemicals identified from different pomegranate tissues. The chemical structures, 2 molecular formulas, and molecular weights of the phytochemicals are shown. The analytical methods, 3 tissues of identification, and representative references are also indicated. CAS, chemical abstracts 4 service; DAD, diode array detection; ESR, electron spin resonance; FD, fluorescence detection; FID, 5 flame ionization detection; ID, identification method; IR, infrared spectroscopy; MP, melting point; 6 MS, mass spectrometry; MW, molecular weight; NMR, nuclear magnetic resonance; TLC, thin layer 7 chromatography. 8 Molecules 2017, 22, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules Molecules 2017, 22, x FOR PEER REVIEW 2 of 20 Name Structure Formula MW ID Tissue References Ellagitannins, gallotannins and derivatives Brevifolin C12H8O6 248.1900 NMR Leaf [1] Brevifolin carboxylic acid C13H8O8 292.1990 NMR Leaf, flower, [1-3] heartwood Brevifolin carboxylic acid 10- C13H7KO11S 410.3463 NMR Leaf [4] monopotassium sulphate Castalagin C41H26O26 934.6330 NMR Stem bark [5] Casuariin C34H24O22 784.5440 NMR Stem bark [5] Casuarinin C41H28O26 936.6490 NMR Peel, stem bark [5, 6] R1 = Galloyl (β-configuration), R2 = R3 = H Corilagin C27H22O18 634.4550 NMR Peel, leaf [6, 7] R1 = Galloyl (α-configuration), R2 = R3 = H Isocorilagin C27H22O18 634.4550 NMR Flower [8] R2 = Galloyl, R1 = R3 = H Hippomanin A C27H22O18 634.4550 IR Flower [2] R1 = R2 = H, R3 = Galloyl Gemin D C27H22O18 634.4550 IR Flower [2] Diellagic acid rhamnosyl(1→4) C40H30O24 894.6560
    [Show full text]
  • Reference Substances 2018/2019
    Reference Substances 2018 / 2019 Reference Substances Reference 2018/2019 Contents | 3 Contents Page Welcome 4 Our Services 5 Reference Substances 6 Index I: Alphabetical List of Reference Substances and Synonyms 156 Index II: Plant-specific Marker Compounds 176 Index III: CAS Registry Numbers 214 Index IV: Substance Classification 224 Our Reference Substance Team 234 Order Information 237 Order Form 238 Prices insert 4 | Welcome Welcome to our new 2018 / 2019 catalogue! PhytoLab proudly presents the new you will also be able to view exemplary Index I contains an alphabetical list of all 2018 / 2019 catalogue of phyproof® certificates of analysis and download substances and their synonyms. It pro- Reference Substances. The seventh edition material safety data sheets (MSDS). vides information which name of a refer- of our catalogue now contains well over ence substance is used in this catalogue 1300 phytochemicals. As part of our We very much hope that our product and guides you directly to the correct mission to be your leading supplier of portfolio meets your expectations. The list page. herbal reference substances PhytoLab of substances will be expanded even has characterized them as primary further in the future, based upon current If you are a planning to analyse a specific reference substances and will supply regulatory requirements and new scientific plant please look for the botanical them together with the comprehensive developments. The most recent information name in Index II. It will inform you about certificates of analysis you are familiar will always be available on our web site. common marker compounds for this herb. with.
    [Show full text]
  • Reference Substances
    Reference Substances 2020/2021 Contents | 3 Contents Page Welcome 4 Our Services 5 Reference Substances 6 Index I: Alphabetical List of Reference Substances and Synonyms 168 Index II: CAS Registry Numbers 190 Index III: Substance Classification 200 Our Reference Substance Team 212 Distributors & Area Representatives 213 Ordering Information 216 Order Form 226 4 | Welcome Welcome to our new 2020 / 2021 catalogue! PhytoLab proudly presents the new for all reference substances are available Index I contains an alphabetical list of 2020/2021 catalogue of phyproof® for download. all substances and their synonyms. It Reference Substances. The eighth edition provides information which name of a of our catalogue now contains well over We very much hope that our product reference substance is used in this 1400 natural products. As part of our portfolio meets your expectations. The catalogue and guides you directly to mission to be your leading supplier of list of substances will be expanded even the correct page. herbal reference substances PhytoLab further in the future, based upon current has characterized them as primary regulatory requirements and new Index II contains a list of the CAS registry reference substances and will supply scientific developments. The most recent numbers for each reference substance. them together with the comprehensive information will always be available on certificates of analysis you are familiar our web site. However, if our product list Finally, in Index III we have sorted all with. does not include the substance you are reference substances by structure based looking for please do not hesitate to get on the class of natural compounds that Our phyproof® Reference Substances will in touch with us.
    [Show full text]
  • PEF) Processing on the Physical, Chemical and Microbiological Properties of Red-Fleshed Sweet Cherries (Prunus Avium Var
    Effects of Pulsed Electric Field (PEF) processing on the physical, chemical and microbiological properties of Red-Fleshed Sweet Cherries (Prunus avium var. Stella) By Kristine Ann Gualberto Sotelo A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) May 2015 School of Applied Sciences Primary Supervisor: Dr. Nazimah Hamid Secondary Supervisors: Dr. Noemi Gutierrez-Maddox Dr. Chris Pook Abstract The effects of mild or moderate intensity pulsed electric field (PEF) processing on the chemical, flavor and microbiological properties of Stella sweet cherries were studied. The specific aims of this study were to determine (1) the effect of different PEF treatments on the physico-chemical properties of cherry samples, (2) the effects of different PEF treatments and storage conditions on the volatile profile of cherry samples, (3) the effects of different PEF treatments and storage conditions on the extraction or release of bioactive compounds including the anthocyanins and polyphenols on PEF-treated samples, and finally (4) the growth of probiotic bacteria specifically the lactic acid bacteria on PEF-treated cherry samples, The cherry samples were treated at a constant pulse frequency of 100 Hz and a constant pulse width of 20 μs with different electric field strengths between 0.3 and 2.5 kV/cm used. Cherry fruits used in this study that were subjected to PEF processing were analysed (1) immediately after PEF (S2) and (2) 24 hours of incubation at 4 °C (S3). PEF treated samples were significantly different to control sample in terms of juice yield, pH, titratable acidity (TA), total soluble solids (TSS) and moisture content (MC).
    [Show full text]
  • Lxxxv. Natural Anthocyanin Pigments. I
    LXXXV. NATURAL ANTHOCYANIN PIGMENTS. I. THE MAGENTA FLOWER PIGMENT OF ANTIRRHINUM MAJUS. BY ROSE SCOTT-MONCRIEFF. From the Biochemical Laboratory, Cambridge. (Received May lst, 1930.) FROM her study of the Mendelian factors for flower eolour in Antirrhinum majus, Wheldale [1907, 1914] showed that, on crossing white with yellow or ivory varieties, plants bearing red or magenta flowers are produced. This led her to suggest that the red and magenta anthocyanin pigments might be derived from the yellow and ivory flavones, and that the white varieties, from which these pigments are absent, might carry the factors which act on the flavones to form anthocyanin. With a view to testing this hypothesis, Wheldale [1913] commenced an investigation of the chemistry of these four pigments. With Bassett [1913, 1914, 1] she isolated the yellow and ivory flavone pigments and identified them as glucosides of luteolin and apigenin. The yellow flowers contained glucosides of both these pigments, while apigenin alone was present in the ivory variety. From the red and magenta flowers they isolated two amorphous pigments of high molecular weight and uncertain constitution, which were, apparently un- combined with any acid [Wheldale and Bassett, 1914, 2]. At this time Willstatter and Everest [1913] published an account of the isolation of the blue anthocyanin from Centaurea cyanus (cornflower). In this classical paper, they revealed the constitution and true nature of the antho- cyanins, showing that they could be isolated by means of their stable crystal- line oxonium salts. Unfortunately, this communication, which revolutionised the methods employed in the extraction and isolation of these pigments, was published too late to be of any use to Wheldale and Bassett, and the question of the relationship between these co-existing flavones and anthocyanins remained unanswered.
    [Show full text]
  • DISTRIBUTION of ANYHOCYANINS R. ROBINSON IACS.Pdf
    DISTRIBUTION OF ANTi ~ JCYANINS Bv ROBERT ROBINSON "" . \ , , ,l 061(540J\ R 566 'D ~.s· 9'2-98 1.} / ' .. ·,i F.-I j . Special Publication No. 14 · Dr, Bimala Churn Lriw Gold Medal Lecture for 1945 Indian Association for the Cultivation of Science THE DISTRIBUTION OF ANTHOCY ANINS BY SIR ROBERT ROBINSON, F.R.S., N.L. President of the Royal Society of England CALCUTTA 1950, -THE DISTRIBUTION OF ANTHOCYANINS When I was honoured by your invitation to deliver th.is lecture my thoughts turned to the an~ho~yani'jf' partly because. bright flowers make such an important contnbuuon t\· colourful lnd1a, but <\lso because my own work in the field owes so ~uch to Indian collaborators. Undoubtedly a botanist with a smattering of chemistry could shed more light on this topic than can a chemist with even less than a smattering of botany, but the chemical aspect is at "least fundamental and it must be developed before much progress can be wade. When a botanist of the older school wrote "anthocyan" he impLed a red or blue water-soluble colouring matter and he was not much concerned with either the homogeneity or the identity of the pigment. Indeed it must be admitted that no technique had been developed which could have been used to investigate these points even had it been desired to do so. The necessary information was acquired between 1914 and 1934 and we are now in a position to identify, within certain limits, the anthocyanins occurring in plant material. Quite small specimens, a few petals for example, suffice if we are satisfied with the limitations of the methods.
    [Show full text]
  • Copyrighted Material
    Pergamon 0031-9422(95)00530-7 Phytochemistry, Vol. 41, No. I, pp. 301-308, 1996 Copyright © 1995 Elsevier Science Lid Printed in Great Britain. All rights re~'vcd 0031-9422/96 SlS.O0 + 0.00 NEW ASPECTS OF ANTHOCYANIN COMPLEXATION. INTRAMOLECULAR COPIGMENTATION AS A MEANS FOR COLOUR LOSS? PAULO FIGUE1REDO,* MOURAD ELHABIRI,* KENJIRO TOKI,~"NORIO SAITO,~ OLIVIER DANGLES* and RAYMOND BROUILLARD*§ *Laboratoire de Chimie des Polyphrnols, Associ6au CNRS, Universit6 Louis Pasteur, Institut de Chimie, 1, rue Blaise Pascal, 67008 Strasbourg, France; tLaboratory of Floriculture, Minami-Kyushu University, Takanabe, Miyazaki, Japan; :~Chemical Laboratory, Meiji-Gakuin University, Totsuka-ku, Yokohama, Japan (Received 9 May 1995) Key Word Index--Eichhornia crassipes; Pontederiaceae; Evolvulus pilosus; Convolvulaceae; intra- molecular copigmentation; disaccharide hydrophilic effect; acylated anthocyanins. Abstract--Two series of structurally related anthocyanins, extracted from the blue flowers of Evolvulus pilosus cv. Blue Daze and from the blue-purple flowers of Eichhornia crassipes, exhibit remarkable colour stabilities in aqueous solution at mildly acidic pH values. All the pigments possess the same chromophore (delphinidin), but a different pattern of glycosylation and acylation. Moreover, one of the pigments has an apigenin 7-glucoside molecule (a flavone) attached to the glycosidic chain by two ester bonds with malonic acid, instead of an aromatic acid and is the only known anthocyanin with such a structure. All the molecules studied, except one which has only a 3-gentiobioside (a disaccharide) as substituent, denote an effect of reduction in the hydration constant when compared with the parent delphinidin 3-glucoside or 3,5-diglucoside molecules, which supportsmaterial the existence of intramolecular hydrophobic interactions between the chromophoric skeleton and the acyl or flavonoid groups.
    [Show full text]
  • Punica Granatum)
    molecules Review Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum) Sheng Wu 1,2 and Li Tian 1,2,3,* ID 1 Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; [email protected] 2 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China 3 Department of Plant Sciences, University of California, Davis, CA 95616, USA * Correspondence: [email protected]; Tel.: +1-530-752-0940 Received: 25 August 2017; Accepted: 21 September 2017; Published: 25 September 2017 Abstract: Having served as a symbolic fruit since ancient times, pomegranate (Punica granatum) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.
    [Show full text]
  • Copyrighted Material
    4788 J. Am. Chem. Soc. 1996, 118, 4788-4793 Anthocyanin Intramolecular Interactions. A New Mathematical Approach To Account for the Remarkable Colorant Properties of the Pigments Extracted from Matthiola incana Paulo Figueiredo,† Mourad Elhabiri,† Norio Saito,‡ and Raymond Brouillard*,† Contribution from the Laboratoire de Chimie des Polyphe´nols, associe´ au CNRS, UniVersite´ Louis Pasteur, Institut de Chimie, 1, rue Blaise Pascal, 67008 Strasbourg, France, and the Chemical Laboratory, Meiji-Gakuin UniVersity, Totsuka-ku, Yokohama, Japan ReceiVed October 19, 1995X Abstract: In the last few years, a series of investigations has brought to light a mechanism of stabilization of the colorant properties of certain anthocyanins. Intramolecular interactions take place between the chromophore moiety of the anthocyanin and one of its aromatic acid residues, which folds over the chromophore and thus confers protection against hydration and subsequent formation of colorless forms. In our continuing study of the physicochemical properties exhibited by acylated natural anthocyanins, we report here on a series of five structurally related pigments extracted from the violet flowers of Matthiola incana. These pigments all bear the same chromophore moiety, i.e., the cyanidin aglycon, but differ in the degree of glycosylation and acylation. Acidity constants for the deprotonation and hydration equilibria of the flavylium cation, together with rate constants for the hydration step alone were determined from UV-visible absorption measurements. The data support the existence of intramolecular, noncovalent interactions that strongly stabilize the colored forms of the pigments. However, none of the four more heavily substituted anthocyanins follows the above-mentioned mechanism that was previously successfully applied to the study of acylated anthocyanins.
    [Show full text]
  • Unveiling the Health Related Biological Activities of Sarcocornia Quinqueflora, Atriplex Nummularia and Apium Prostratum
    Unveiling the Health Related Biological Activities of Sarcocornia quinqueflora, Atriplex nummularia and Apium prostratum A thesis in fulfilment of the requirements for the degree of MASTER OF PHILOSOPHY By Phitchakorn Norchai School of Chemical Engineering Faculty of Engineering April 2019 Thesis/Dissertation Sheet Surname/Family Name : Norchai Given Name/s : Phitchakorn Abbreviation for degree as give in the University calendar : Master of Philosophy Faculty : Engineering School : Chemical Engineering Unveiling the Health Related Biological Activities of Thesis Title : Sarcocornia quinqueflora, Atriplex nummularia and Apium prostratum Abstract Australian native plants have a long history of being used for nutritional and medicinal purposes; however, the scientific foundation of such uses is not well established. In this thesis, three native Australian plants, namely samphire (Sarcocornia quinqueflora), saltbush (Atriplex nummularia) and sea parsley (Apium prostratum), were investigated for their phenolic compositions, antioxidant capacities and inhibitory activities on four enzymes: α-glucosidase, α-amylase, pancreatic lipase and hyaluronidase, for the first time. These enzymes are closely related to disorders such diabetes, overweight, obesity and inflammation. Furthermore, the phenolic compounds in sea parsley were identified and quantified by a combination of high- performance liquid chromatography (HPLC) and liquid chromatography-high resolution mass spectrometry (LC-HDMS) analyses. Phenolic compounds in the plants were extracted with methanol 80% (v/v) and purified with XAD-7 Amberlite® resin. The three plants contained relatively high levels of phenolic compounds and antioxidant capacities as well as enzyme- inhibition activities that are comparable with other Australian native plants. Of the three plants, sea parsley had the highest total phenolic content, exhibited the largest ABTS and DPPH free-radical scavenging capacities, and was the most potent inhibitor of α-glucosidase, α-amylase and pancreatic lipase.
    [Show full text]