Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111734 Joining of aluminum-based particulate-reinforced metal-matrix com posites Kolli, Sudhakar, Ph.D. The Ohio State University, 1990 Copyright ©1991 by Kolli, Sudhakar. All rights reserved. U M“I 300 N. Zeeb Rd Ann Arbor, MI 48106 NOTE TO USERS THE ORIGINAL DOCUMENT RECEIVED BY U.M.I. CONTAINED PAGES WITH BLACK MARKS. PAGES WERE FILMED AS RECEIVED. THIS REPRODUCTION IS THE BEST AVAILABLE COPY. 1 JOINING OF ALUMINUM BASED PARTICULATE-REINFORCED METAL- MATRIX COMPOSITES DISSERTATION Presented in partial fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of the Ohio State University S u d h ak ar Kolli, B.E., M.Tech., M.S. ********** The Ohio State University 1990 Dissertation Committee Approved by D. W. Dickinson W. A. Baeslack HI D. G. Howden Advisor Department Of Welding Engineering To my dear parents Dr. Kolli Pitchaiah and Mrs. Sakuntala Devi for their wonderful love and affection and for their wise guidance and counseling which gave unlimited opportunities to me. 11 ACKNOWLEDGEMENTS I wish to express my sincere appi'eciation for my advisor Dr. D. W. Dickinson for his encouragement, understanding, guidance and counseling throughout the course of my dissertation work. I also want to thank my co - advisor. Dr. W. A. Baeslack HI, for his encouragement, very helpful technical discussions and advice. I wish to record my appreciation for Dr. D. G. Howden for his suggestions. Dr. John Lippold of the Edison Welding Institute, Columbus gets my special praise for his suggestions, advice and encouragement. I want to thank Drs. J. E. Gould and Robert Rivett of the Edison Welding Institute for their useful suggestions in the beginning of the project. Financial support from the Edison Welding Institute, Columbus is gratefully acknowledged. I also express my appreciation for my sister Jyotsna whose encouragement was veiy inspiring for my work. Finally, I wish to place on record my special thanks for my wife Vijaya and children Sireesha and Venkat who have endured my very long working hours and without whose help and support this effort would not have been possible. Ill YEA October 30,1949 Bom in Vuyyur, Andhra Pradesh, India 1970 B. E. ( Mechanical Engineering ) Andhra University, India 1972 M.Tech ( Mechanical Engineering ), Indian Institute of Technology, Kharagpur, India 1972-1980 Senior Scientific Officer, Department of Defence Research and Development, Hyderabad and Bangalore, India 1980-1982 Deputy Manager ( Production/Fabrication ), Bharat Heavy Electricals Limited, India 1982-1985 Lecturer, Department Of Production Engineering, Kwaratech, Doiin, Nigeria 1989 M. S. ( Welding Engineering ), The Ohio State University, Columbus, Ohio 1986-January 1990 Graduate Research Associate, Department of Welding Engineering, The Ohio State University, Columbus, Ohio IV Presentation " Joining of Metal Matrix Composites ", presented to the Industrial Advisory Board of the Edison V/elding Institute, Columbus, Ohio, October 1988. Fields of Study Major Field : Welding Engineering Studies in 1. Physical Metallurgy 2. Welding Processes Table of Contents EâgÊ Acknowledgements iii Vita iv List of tables viii List of Figures ix I Introduction 1 II Background 8 2.1.0 Processing of metal matrix composites 8 2.1.1 Reinforcement materials 8 2.1.2 Matrix materials 9 2.1.3 Solid state processing 10 2.1.4 Liquid metal infiltration 11 2.1.5 Other techniques 13 2.2.0 Physical metallurgy and mechanical properties 13 2.2.1 Physical metallurgy 14 2.2.2 Mechanical properties 20 2.3.0 Joining 24 2.3.1 Arc welding 26 2.3.2 Laser beam welding 27 2.3.3 Resistance welding 28 2.3.4 Soldering and brazing 29 2.3.5 Capacitor discharge welding 31 2.3.6 Inertia welding 32 2.3.7 Diffusion bonding 32 2.3.8 Transient liquid phase diffusion bonding 47 in Objectives 67 IV Materials and Experimental Procedures 69 4.1.0 Materials 69 vi 4.2.0 Composite materials 69 4.3.0 Interlayer materials 73 4.4.0 Experimental procedures 76 4.4.1 The Gleeble 1500 system 76 4.4.2 Fixture design 79 4.4.3 Specimen design 84 4.4.4 Base metal characterization ( thermo-mechanical simulation ) 88 4.4.5 Differential scanning calorimetry 94 4.4.6 Liquid phase diffusion bonding 94 4.4.7 Metallography procedures 97 4.4.8 Microstructui^ characterization 98 4.4.9 Evaluation of bond properties 99 V Results 100 5.1.0 Base metal heat treatment 100 5.2.0 Differential scanning calorimetry 102 5.3.0 Thermal simulation studies 110 5.3.1 Thermal simulation in furnace 110 5.3.2 Thermo - mechanical simulation with Gleeble 1500 113 ( Microhardness and optical microstructure evaluation ) 5.3.3 Thermo - mechanical simulation with the Gleeble 113 ( Analysis of strength and fracture behavior ) 5.4.0 Liquid phase diffusion bonding 126 5.4.1 Al-Si-Mg interlayer 126 5.4.2 Silver interlayer 135 5.4.3 Liquid phase bonding with the silver interlayer 135 5.4.4 Liquid phase diffusion bonding of the composite material 136 5.4.5 Macro & Microstructural characterization 139 5.4.6 Confirmation of the diffusional processes 160 5.4.7 Occurrence of the eutectic liquid phase 166 5.4.8 Mechanical properties 170 5.4.9 Fractography 181 5.5.0 Summary of bond data 187 5.6.0 Results from additional experimentation 196 VI Discussion 207 6.1.0 Base metal characterestics 207 Vll 6.2.0 Thermal and thermo - mechanical simulation 210 6.3.0 Summary of thermal and thermO - mechanical simulation 221 6.4.0 Liquid phase diffusion bonding 228 6.4.1 Time for isothermal solidification of the silver interlayer 228 6.4.2 Liquid phase diffusion bonding of the composite material widi the silver interlayer 231 6.5.0 Summary of the bonding trials 244 Vn Conclusions 251 List of references 254 Vlll List of Tables Table.No. Title Page 1 Typical mechanical properties of SiC particulate/ whisker 21 reinforced aluminum alloy composites. 2 Results of Gleeble thermo - mechanical simulation 114 ( Microhardness and optical microstructure analysis ). 3. Thermo-mechanical simulation results for the base metal on the 116 Gleeble ( Results of mechanical testing ) 4 Mechanical testing results of the bonded joints. 180 5 Summary of liquid phase diffusion bonds of 25 Vol % SiCp/ 197 6061A1MMC with the silver interlayer 6 Results of Additional liquid phase diffusion bonds of 25 Vol % 198 SiCp/ 6061 A1 MMC with a 0.001” silver interlayer IX ^SWfBgWrçs Fig. No. TlÜÊ Page 1. A continuous layer of polycrystalline oxide ( MgO ), 3nm thick, 17 along the SiC whisker - 6061 A1 matrix interface. 2. Variation of threshold deformation with temperature for aluminum 35 ( Ref. 68 ). 3. Typical Surface roughness and contaminants on a metallic surface 38 ( Ref. 71 ). 4. Illustration of the TLP bonding process ( Ref. 94 ). 50 5. Optical microstructure of 25 Vol% SiCp/6061 A1 MMC at low 71 magnification ( Note random distribution and sizes of the particulate material and lack of delineation of grain boundaries ). 6. Microstructure of a heat treated 25 Vol% SiCp/6061 A1 MMC, 72 (a) at 4000 x shows particulates in the extrusion direction and Ô)) at 30000 X shows a close view of two particulates. 7. 20 Vol% SiCp/6061 A1 MMC ( received as 0.100 " thick sheet ) 74 at a high magnification, Keller’s Etch ( Note particulate morphology and no noticeable debonding at the particulate-matrix interface ). 8. Al-Si-Mg temaiy equilibrium phase diagram, liquidus surface. 75 9. Ag-Al equilibrium phase diagram ( Note the binary eutectic at 77 567 0Cand28Wt% Al). 10. (a) An overview of the Gleeble 1500 system showing the 80 control cabinet and the control computer, (b) the moving and fixed jaws in the vacuum chamber. 11. A view of the vacuum chamber showing the arrangement 81 of the specimen in the stainless steel hot jaws. 12. An arrangement of the specimen held in the stainless steel 83 fixtures with the fixture themselves held in the stainless steel hot jaws. 13. (a ) Direct hotjaw specimen with metric threads (Design I) 85 and ( b ) hot jaw specimen with a reduced length of smaller diameter ( Design n ). 14. ( a ) Specimen Design in , used with the stainless steel 86 fixture ; and ( b ) specimen Design IV, used with the stainless steel fixture.
Recommended publications
  • Development of Filler Metals and Procedures for Vacuum Brazing Of
    Development of Filler Metals and Procedures for Vacuum Brazing of Aluminum Several brazing filler metal compositions have been developed which offer significant improvements over existing compositions. They braze in vacuum at temperatures lower than normal flow temperatures and have equal or better flowability BY W. J. WERNER, G. M. SLAUGHTER AND F. B. GURTNER Introduction ry cleanliness levels under production vantages. As a single entity, it was This report documents work per­ conditions. The maximum allowable immediately more desirable from a formed toward the development of lag between cleaning and brazing was cleaning, assembling and material found to be 12 hours. handling standpoint. Metallurgically, new brazing filler metals for vacuum- 2 fluxless brazing (1 X 10~6 torr) C. S. Beuyukian developed tech­ the 4045 brazing filler metal with its certain aluminum alloys of interest to niques for vacuum or inert gas fluxless lower silicon content allowed greater the Army. The base metals under brazing of aluminum cold plates for latitude in processing parameters than consideration were alloys 6061, 2219, use in Apollo command modules. In did alloy No. 718. 7075 and 2024. Brazing filler metal this work, brazing filler metal No. 718 Finally, the workers at Aeronca, and No. 23 brazing sheet were evalu­ Inc. completed a study on inert gas flow temperatures needed for these 3 alloys encompass the temperature ated. Alloy No. 718 is nominally 88% brazing of aluminum in early 1967. range 900 to 1200F. Specifically, the aluminum, 12% silicon; No. 23 braz­ Their work was concerned with de­ contract called for the development of ing sheet is comprised of 6951 base velopment of high strength brazed alloys with flow temperatures of 950, alloy clad on one side with 4045 aluminum honeycomb structures 1000, and 1050F.
    [Show full text]
  • Maec.19 70 (University of London) London
    COMPLEX & INCREMENTAL STRESS CREEP OF A HIGH STRENGTH ALUMINIUM ALLOY AT ELEVATED TEMPERATURES (ALLOY: HIDUMINIUM RR58 SPECIFICATION DTD 731) by SURINDAR BAHADUR MATHUR Thesis presented in the Department of Mechanical Engineering for the Award of the Doctor of Philosphy in Mechanical Engineering of the University of London. Mechanical Engineering Department Imperial College of Science and Technology mAec.19 70 (University of London) London. ABSTRACT A theory for creep rates under complex and incremental stresses is deduced from experimental data concerning complex creep at elevated temperatures for the test material HIDUMINIUM RR 58 - Specification DID 731. The most important results are for tubular specimens tested at 150°C and 250°C under incremental loads. The analysis of results relates to steady state creep only. Modified relationships in stress equivalence and strain equivalence are proposed to account for thermal softening, polygonization, recrystallization and the resulting exaggerated flow in the direction of the applied shear. (The original equations are based on the hypothesis of Von Mises). A further relationship is suggested between the immediate total energy of distortion and the subsequent creep work rate. Results of the static tests and the results of the tests for creep behaviour under complex loading are presented and compared with the results of static torsion and simple incremental torsion creep tests on the basis of the proposed equations. An appendix describes the complex creep testing machine, furnace, extensometers
    [Show full text]
  • Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates Paul Marchwica University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Marchwica, Paul, "Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates" (2012). Electronic Theses and Dissertations. 5572. https://scholar.uwindsor.ca/etd/5572 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Microstructual and Thermal Analysis of AlSi and MgAl Alloys Subjected to High Cooling Rates By Paul C. Marchwica A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 P.
    [Show full text]
  • Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
    Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated.
    [Show full text]
  • Thermocouple Wire Alumel KN
    Thermocouple wire Alumel®KN Alumel®KN - nickel-based alloy, alloyed with aluminum, silicon, manganese and cobalt. What is more, cobalt is present as impurity at nickel, and for ensuring the required value of Seebeck EMF his contents has to be within 0,6-1,0%. Alumel®KN is being used in pyrometry for production of compensating wires and also in the form of a negative thermoelectrode for production of thermocouples. Thermocouples with Alumel®KN is using for changing temperature up to 1000 °С. After Seebeck EMF stabilizing, it is possible to use thermocouple at temperature up to 1300°С. Classification MAIN DELIVERY CONDITIONS DIN 2.4122 Alumel®KN alloy is supplied in shape of strip or wire. Abbr. KN/KNX Alumel®KN wire, price of which depends on nickel and aluminum prices, is demanded in the industry at production of thermocouples and compensation Chemical composition, % wires. Ni+Co Fe C Mn Si P S Supplied together with alloy СгоmеІ®КР 91.5-95.15 ≤0.3 ≤0.1 1.8-2.7 0.85-1.5 ≤0.005 ≤0.010 Co Al Cu As Pb Mg Sb Wire 0.6-1.2 1.6-2.4 ≤0.25 ≤0.002 ≤0.002 ≤0.05 ≤0.002 Alumel®KN is supplied with diameters from 0,0254 to 8,0 mm. Wire Alumel®KN with sizes from 0,0254 mm to 0,51 mm can be supplied with insulated coating or PHYSICAL PROPERTIES 3 without it. Density, g/cm 8,67 Melting point, °С 1440 Strip TCLE, mm/m·°С (from 20° to 100°С) 18,0 Standard sizes of Alumel®KN strip are next: thickness Electrical resistance, μΩm 0,33 from 0.1 to 3.0 mm, width from 4 to 195 mm.
    [Show full text]
  • Elastic Plastic Fracture Toughness of Aluminium Alloy AA6061 Fly Ash Composites
    Research Article Adv. Mat. Lett. 2014, 5(9), 525-530 ADVANCED MATERIALS Letters www.amlett.com, www.vbripress.com/aml, DOI: 10.5185/amlett.2014.5571 Published online by the VBRI press in 2014 Elastic plastic fracture toughness of aluminium alloy AA6061 fly ash composites Ajit Bhandakkar1*, R. C. Prasad1, Shankar M. L. Sastry2 1Department of Metallurgical Engineering and Materials Science, IIT Bombay, India 2Mechanical, Aerospace and Structural Engineering, Washington University in St. Louis, USA *Corresponding author. Tel: (+91) 9422247576: E-mail: [email protected] Received: 07 January 2014, Revised: 23 June 2014 and Accepted: 28 June 2014 ABSTRACT Aluminium fly ash metal matrix composites (MMCs) find important applications in aerospace and automobiles where specific stiffness is important. Low cost fly ash and silicon carbide reinforcement are widely used in aluminium metal and matrix composite due to its low density, high young modulus and strength apart from good mechanical and chemical compatibility & thermal stability. However the MMCs often suffer from low ductility, toughness and fatigue crack growth resistance relative to the matrix alloy. Linear elastic fracture mechanics (LEFM) has been used to characterize the plane strain fracture toughness using various specimen geometries and notches but very few studies using EPFM are reported in literature. In the present paper the influences of weight fraction of particulate reinforcement on tensile, fracture toughness have been evaluated. The tensile strength of aluminium fly ash composites increases with the addition of fly ash reinforcement. However the fracture toughness (KIC) of the aluminium fly ash composite decreases that of base alloy. The fracture toughness KQ of AA6061 ALFA composites varied between 13-14 MPa as compared to 18 MPa for the re-melted base alloy.
    [Show full text]
  • Research of Combined Rolling-Extrusion Process for Production of Long Deformed Semi-Finished Products from Aluminium Alloys of Various Alloying Systems
    RESEARCH OF COMBINED ROLLING-EXTRUSION PROCESS FOR PRODUCTION OF LONG DEFORMED SEMI-FINISHED PRODUCTS FROM ALUMINIUM ALLOYS OF VARIOUS ALLOYING SYSTEMS TABLE OF CONTENTS 1. CURRENT STATUS AND DEVELOPMENT TRENDS OF TECHNOLOGIES AND EQUIPMENT FOR COMBINED PROCESSING OF ALUMINIUM ALLOYS 1.1. METHODS AND TECHNOLOGIES FOR CONTINUOUS PROCESSING OF ALUMINIUM ALLOYS 1.2 ANALYSIS OF RESEARCH RESULTS FOR IDENTIFICATION OF DEFORMATION AND POWER PARAMETERS IN COMBINATION OF ROLLING AND EXTRUSION 1.3 SELECTION OF MATERIALS FOR RESEARCH 1.4. CONCLUSIONS AND SETTING OF OBJECTIVES 2. SIMULATION AND ANALYTICAL STUDIES OF COMBINED ROLLING- EXTRUSION OF ALLUMINIUM ALLOYS 2.1. SIMULATION OF COMBINED ROLLING-EXTRUSION PROCESS 2.2. RESEARCH OF GEOMETRICAL SHAPE OF DEFORMATION ZONE AND FEASIBILITY OF ROLLING-EXTRUSION PROCESS 2.3. CHARACTERIZATION OF RHEOLOGICAL PROPERTIES OF EXPERIMENTAL ALUMINIUM ALLOYS 2.4. CALCULATION OF POWER PARAMETERS OF ROLLING-EXTRUSION 3. EXPERIMENTAL RESEARCH OF COMBINED ROLLING-EXTRUSION PROCESS 3.1 DESCRIPTION OF EQUIPMENT AND METHODS OF EXPERIMENTAL RESEARCH 3.2. RESULTS OF EXPERIMENTAL RESEARCH AND THEIR ANALYSIS 3.3. RESEARCH OF STRUCTURE AND PROPERTIES OF PRODUCTS MADE BY CRE (COMBINED ROLLING-EXTRUSION) METHOD OF EXPERIMENTAL ALLOYS 3.4. PRACTICAL APPLICATION OF RESEARCH RESULTS CONCLUSION REFERENCE LIST 2 INTRODUCTION High production volumes of long-length deformed semi-finished products of relatively small cross-section made of aluminum and its alloys (wire rods, bars and wire) have conditioned the creation of new technologies of combined processing with the use of continuous methods of casting and basic metal-forming operations which for production of the above-mentioned products are advisable to be applied as rolling and extrusion [1-4].
    [Show full text]
  • Nickel and Its Alloys
    National Bureau of Standards Library, E-01 Admin. Bldg. IHW 9 1 50CO NBS MONOGRAPH 106 Nickel and Its Alloys U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]
  • Properties of Solids
    PROPERTIES OF SOLIDS (Function values at 288 K. Note: there is little variation in the thermal capacity of metals, even when molten) Substance Note Melting Boiling Melting Boiling Density Thermal Sound Thermal Thermal Solar Emissivity temp. temp. enthalpy enthalpy (mass) expansion speed(**) capacity conductivity absorptance (hemispherical, (linear*) (normal) bolometric) α 6 c α ε Tf Tb hsl hlv ρ .10 c k 3 -1 K K kJ/kg kJ/kg kg/m K m/s J/(kg K) W/(m K) - - 1) Alumina 1 2300 3200 1070 3980 7 5600 840 33 0.1..0.25 0.3..0.5 2) Aluminium 2 933 2790 395 10 700 2710 24 5500 896 220 0.1..0.15 0.05 3) 2) Aluminium alloy A7075 3 750 2810 23.4 6300 960 134 0.1..0.15 0.05 Asbestos 4 1420 2400 1050 0.15 0.95 5) Asphalt 5 400 2000 200 920 0.7 0.9 0.9 Ash 6 640 800 0.07 7) Bakelite 7 430 1400 40 1000 1 0.9 0.94 Beryllium 8 1580 2740 900 33 000 1850 11 12800 1850 190 0.5..0.7 0.18 Brass 9 1200 8780 20 4600 400 150 0.03..0.25 Brick 10 1970 10 3600 800 0.7 0.6 0.9 Bronze 11 1300 8800 18 400 50..80 12) 12) Carbon fibre composite 12 400 1500 2 1100 20 0.85 0.85 Cement mortar 13 3000 20 670 0.3 0.6 0.9 Charcoal 14 240 840 0.05 0.95 0.95 Clay & pottery 15 1000 920 1.3 0.4 0.95 Coal 16 3910 1400 1000 0.17 0.95 0.80..0.95 Concrete 17 2100..3000 8..14 4300 653 1.5 0.6 0.8 Copper 18 1358 2830 205 4800 8910 17 3800 390 395 0.2..0.5 0.05 Cork 19 100 2000 0.05 0.7 20) 20) Diamond 20 4700 4100 3510 0.8 12000 500 2000 0.02 21) Elastomer (rubber) 21 400 1100 200..300 1600 2000 0.1 0.9 0.9 Glass (optical) 22 4000 6 500 1.4 Glass (pyrex) 23 2230 3 5600 840 1.1 0.9 Glass
    [Show full text]
  • Mushy Zone Properties and Castability of Aluminium Foundry Alloys
    NET-N0--7D1 ARNE KRISTIAN DAHLE MO 9 70518 2 MUSHY ZONE PROPERTIES AND CASTABILITY OF ALUMINIUM Arne Kristian Dahle aj£x- fVo— nsi Mushy Zone Properties and Castability of Aluminium Foundry Alloys INSIBiSUTlON OF 1HIB DOCUMENT IS UNL&ffnSD m Thesis submitted to the Norwegian University of Science and Technology (NTNU) in partial fulfilment of the requirements for the degree Doktor Ingenipr. DISCLAIMER Portions of this document may be Illegible in electronic image products. Images are produced from the best available original document " <§Jm Afifimg war, die QdCfpetese" C. Dexter ACKNOWLEDGEMENTS The work presented in this thesis was started in January 1993 and finished in January 1996.1 am very grateful to theNorwegian Research Council, Elkem Aluminium ANS and Hydro Aluminium for funding this work. My advisor, actually for the last four years, has been Professor Lars Amberg. I would like to thank him for his stimulating and energetic support and advice, for providing opportunities, and for listening to my, sometimes, disputable ideas during these years. Stationed at the Department of Metallurgy, at the former Norwegian Institute of Technology, I have gained much insight from discussions with some of my predecessors doing their doctor ’s degree on casting and solidification. I would especially like to mention: Dr. Axel Kolsgaard, Dr. Stian Sannes and Dr. Per Arne Tpndel. Casting and moulding is not a straightforward task, and I am grateful to Mr. Arne Nordmark, Mr. Freddy Syvertsen and Mr. Alf Sandberg for sharing their knowledge and for their practical support. Without them I would have made spirals without a sprue...
    [Show full text]
  • Weldability of Aluminum-Steel Joints Using Continuous Drive Friction Welding Process, Without the Presence of Intermetallic Compounds
    Article Weldability of Aluminum-Steel Joints Using Continuous Drive Friction Welding Process, Without the Presence of Intermetallic Compounds Oscar D. Hincapié1, Jhonathan A. Salazar1, José J. Restrepo1, Jonathan A. Graciano-Uribe2,a, and Edwar A. Torres1,b,* 1 Department of Mechanical Engineering, Universidad de Antioquia, Medellín, Colombia 2 Department of Mechatronics Engineering, Research Group - MATyER, Instituto Tecnológico Metropolitano, Medellín, Calle 73 No. 76-354, Medellín, Colombia E-mail: [email protected], [email protected] (Corresponding author) Abstract. Weldability of aluminum-steel joints has been studied mainly to avoid the formation of IMC. Nowadays, there are two ways to control the effect of FexAly in welding: 1) the elimination of IMCs or 2) the generation of a thin and homogeneous layer of these phases. In this way, the present work explores the first route, manufacturing joints aluminum-steel using solid state welding process. In order to evaluate the effect of the welding parameters, temperature measures were carried out during the process as well as the microstructural evaluation using optical microscopy and SEM. Finally, the welded joints were subject to tensile strength tests to evaluate their mechanical behavior and try to stablish the nature of the interfacial bonding between both metals. The microstructural characterization of the joints does not reveal the formation of IMCs; this is attributed to the low temperature reached during the process, lower than 545 °C. The welded joint failures in the TMAZ, in the low hardness zone, product of the over aging of the precipitates β”. The nature of the bonding in the interface is not clear yet, but it is considered that the atomic diffusion trough the interface and adhesive bonding favors the joint.
    [Show full text]
  • Temperature and Humidity Effects on the Corrosion of Aluminum-Base Reactor Fuel Cladding Materials During Dry Storage
    XA04CO098 TEMPERATURE AND HUMIDITY EFFECTS ON THE CORROSION OF ALUMINUM-BASE REACTOR FUEL CLADDING MATERIALS DURING DRY STORAGE H.B. Peacock, R.L. Sindelar and P.S. Lam ABSTRACT The effect of temperature and relative humidity on the high temperature (up to 200 'Q corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behavior of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. 1. INTRODUCTION Many research and test reactors including Savannah River Reactors are operated using aluminum clad fuel elements with either aluminum-uranium or aluminum-uranium silicide cores. After irradiation, the spent fuel must be stored or reprocessed to maintain safe environmental conditions. Countries are considering dry storage as an option for temporary storage and several are already storing some of their spent fuel using this method. In the US, dry storage is being proposed for aluminum based fuels, but before a facility is built, a technical basis needs to be established to define the acceptance criteria for 50+ years of safe storage. Degradation of the fuel due to corrosion of the aluminum is a major concern for dry storage where corrosive environments exist. Therefore, storage conditions must be specified for maximum cladding temperature, cover gas requirements, and drying procedures to avoid excessive degradation.
    [Show full text]