Introduction to Semico Nductor Manufacturing and FA Process IPC Technical Seminar Kenny Seon (IFKOR QM IPC) 13-Sep-2017 Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Semico Nductor Manufacturing and FA Process IPC Technical Seminar Kenny Seon (IFKOR QM IPC) 13-Sep-2017 Table of Contents Introduction to Semico nductor Manufacturing and FA Process IPC Technical Seminar Kenny Seon (IFKOR QM IPC) 13-Sep-2017 Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Course Objective • Provide basic understanding on Semiconductor. • Introduce semiconductor process flow from wafer fabrication to package assembly and final test, and what the semiconduc tor device failure analysis is and how it is conducted. Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor What is a Semiconductor? • A conductor is a material which “conducts” electricity easily (su ch as metals). • An insulator is a material which is a very poor conductor of ele ctricity (such as glass). • A semiconductor (silicon) is a material which acts like an insu lator, but can behave like a conductor when it is combined wit h other materials. “Semi + Conductor” or “半 + 導體” Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Silicon in the environment • Silicon is the seventh-most abundant element in the universe and the second-most abundant element on the planet, after oxygen. • Silicon makes up about 25 percent of the Earth's crust. • Silicon has good thermal conductivity. Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Semiconductors in the Periodic System Periodic Table of the Elements Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Silicon Crystalline Structure • A crystal is a solid composed of atoms in a SINGLE UNIFORM array/structure. • Each silicon atom is “connected” to its four nearest neighb oring silicon atoms. – – – – – – – – – Si – Si – Si – Si –– Si – Si – Si – Si – – – – – – – – – – Si – Si – Si – Si –– Si – Si – Si – Si – – – – – – – – – – Si – Si – Si – Si –– Si – Si – Si – Si – – – – – – – – – – Si – Si – Si – Si –– Si – Si – Si – Si – – – – – – – – – Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Covalent Bond(Sharing Electron) • Many atoms including silicon like to have EIGHT electrons in the ir outer “orbit”. • But, silicon only has FOUR outer electrons. • Solution: Bonding between two Si atoms by sharing 1 electron f rom each atom. Diamond cubic crystal structure Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Bond Pictures of N-type & P-Type Silicon N-Type P-Type Additional hole in donor acceptor electron valence band Si As / P Si B electron electron hole covalent bond covalent bond Arsenic (As) and Phosphor (P) have Boron (B) has 3 valence electrons 5 valence electrons 1 electron is missing, a hole can 1 additional electron can move move through the crystal through the crystal Conduction Conduction Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor From Sand to Silicon Wafer Sand Silicon Wafers Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Silicon Wafer Production Process 1. Polycrystalline Silicon 5. Slicing 9. Polishing 2. Crystal Growth 6. Edge Rounding 10. Cleaning 3. Single Crystal 7. Lapping 11. Inspection Silicon Ingot 4. Crystal Trimming 8. Etching(Chemical 12. Packing / Shipping and Grinding Polishing) Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Chronology of Silicon Wafer Size Increase Copyright © Infineon Technologies AG 2017. All rights reserved. Basic Semiconductor Wafer Size Comparison:200mm vs. 300mm Chips per Cost per wafer(%) wafer(%) Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Semiconductor Supply Chain Wafer Assembly & Fabrication Test Customers (Front End) (Back End) Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Semiconductor Manufacturing Processes Overview Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Front End Process (Wafer Fabrication) Front End(FE) Process Wafer Fabrication Process Wafer Semiconductor Pattern Preparation Circuit Design Preparation Stepper Photoresist Oxidation Exposure Coating Layering Ion Development Etching Implantation Chemical Wafer Test Metallization Vapor Deposition Copyright © Infineon Technologies AG 2017. All rights reserved. Front End(FE) Process Wafer Frabrication Processes FURNACE IMPLANT DD ETCH PVD / MCVD IN/OUT TEST Pure Silicon Wafer Structured Wafer CVD C M P W E T METROLOGY LITHO Copyright © Infineon Technologies AG 2017. All rights reserved. Front End(FE) Process Cross section view of full process Cross Section Single Chip(Die) PA SION Al PAD PA OX M IMD 5 5 Via 4 M IMD 4 4 Via 3M IMD 3 3 Via M 2 IMD 2 2 Via 1 IMD 1 M 1 P+ P+ N+ N+ N-Well P-Well Copyright © Infineon Technologies AG 2017. All rights reserved. Front End(FE) Process Front End Process Line Copyright © Infineon Technologies AG 2017. All rights reserved. Table of Contents 1 Course Objective 2 Basic Semiconductor 3 Semiconductor Supply Chain 4 Semiconductor Manufacturing Processes Overview 5 Frontend End(Wafer Fabrication) Process 6 Back End(Assembly & Test) Process 7 Semiconductor FA(Failure Analysis) Process Copyright © Infineon Technologies AG 2017. All rights reserved. Back End Process (Assembly & Test) Back End(BE) Process Semiconductor Packaging(Assembly & Test) • The process of encasing a die(chip) in materials such as plastic or metal. • Prevent physical damage and corrosion. • Support the electrical contacts which connect the device to a circuit board. • Dissipate heat produced in the device. Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Package Variations LEAD FRAME PACKAGE LAMINATE WAFER PACKAGE LEVEL P-DSO 430mils P-DSO 300mils P-LCC (Plastic Dual-in- PACKAGE (Plastic Dual-in- (Plastic Leaded PBGA WLB line Small Outline) line Small Outline) Chip Carrier (Plastic Ball (Wafer Level Grid Array) Ball Grid Array) SC70 (Small Outline Transistor) LFBGA P-DIP TSSOP (Low Profile Fine- WLP (Plastic Dual-In- (Thin Shrink Small Pitch Ball Grid Array) (Wafer Level line Package) Outline Package) Package) SOT-23 (Small Outline Transistor) MQFP (Metric Quad VQFN DPAK LF2BGA Flat Package) (Very thin Quad (Decawatt (Low Profile Fine- Flat No lead) Package) Pitch Flip Chip Ball Grid Array) Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Package Technologies Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Back-End(Assembly and Test) Process Wafer Wafer Wafer Die Die Attach Back Mounting Sawing Attach Cure Grinding Post Mold Lead Finish Wire Marking Cure Molding (Plating) Bonding (PMC) Final Visual Trim/Form/S Final Test Inspection Packing Shipping ingulation (FVI) Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Wafer Back Grinding • The typical wafer supplied from ‘wafer fab’ is 600 to 750μm thick. • Wafer thinned down to the required thickness, 50um to 75um, by abrasive grinding wheel. › 1st step : Use a large grit to coarsely grind the wafer and remove the bulk of the excess wafer thickness. › 2nd step : Use a finer grit to polish the wafer and to accurately grind the wafer to the required thickness. Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Wafer Mounting • Mount a wafer backside onto a sticky tape which is stretched onto a wafer frame for easy handling purpose during the wafer saw and die attach processes. Sticky Tape for Wafer Mount Wafer Mount Frame (Blue tape) Copyright © Infineon Technologies AG 2017. All rights reserved. Back End(BE) Process Wafer Sawing(Dicing Saw) • Process by which individual silicon chips (die) are separated from each other on the wafer. • Get the wafer cut per each lines
Recommended publications
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]
  • Recommendation to Handle Bare Dies
    Recommendation to handle bare dies Rev. 1.3 General description This application note gives recommendations on how to handle bare dies* in Chip On Board (COB), Chip On Glass (COG) and flip chip technologies. Bare dies should not be handled as chips in a package. This document highlights some specific effects which could harm the quality and yield of the production. *separated piece(s) of semiconductor wafer that constitute(s) a discrete semiconductor or whole integrated circuit. International Electrotechnical Commission, IEC 62258-1, ed. 1.0 (2005-08). A dedicated vacuum pick up tool is used to manually move the die. Figure 1: Vacuum pick up tool and wrist-strap for ESD protection Delivery Forms Bare dies are delivered in the following forms: Figure 2: Unsawn wafer Application Note – Ref : APN001HBD1.3 FBC-0002-01 1 Recommendation to handle bare dies Rev. 1.3 Figure 3: Unsawn wafer in open wafer box for multi-wafer or single wafer The wafer is sawn. So please refer to the E-mapping file from wafer test (format: SINF, eg4k …) for good dies information, especially when it is picked from metal Film Frame Carrier (FFC). Figure 4: Wafer on Film Frame Carrier (FFC) Figure 5: Die on tape reel Figure 6: Waffle pack for bare die Application Note – Ref : APN001HBD1.3 FBC-0002-01 2 Recommendation to handle bare dies Rev. 1.3 Die Handling Bare die must be handled always in a class 1000 (ISO 6) clean room environment: unpacking and inspection, die bonding, wire bonding, molding, sealing. Handling must be reduced to the absolute minimum, un-necessary inspections or repacking tasks have to be avoided (assembled devices do not need to be handled in a clean room environment since the product is already well packed) Use of complete packing units (waffle pack, FFC, tape and reel) is recommended and remaining quantities have to be repacked immediately after any process (e.g.
    [Show full text]
  • From Sand to Circuits
    From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second.
    [Show full text]
  • Channel Structures Formed in Copper Ingots Upon Melting and Evaporation by a High-Power Electron Beam
    Metals 2015, 5, 428-438; doi:10.3390/met5010428 OPEN ACCESS metals ISSN 2075-4701 www.mdpi.com/journal/metals/ Communication Channel Structures Formed in Copper Ingots upon Melting and Evaporation by a High-Power Electron Beam Sergey Bardakhanov 1,2,5, Andrey Nomoev 2,3,*, Makoto Schreiber 2, Alexander Radnaev 2, Rustam Salimov 4, Konstantin Zobov 1,5, Alexey Zavjalov 1,5 and Erzhena Khartaeva 2,3 1 Khristianovich Institute of Applied and Theoretical Mechanics, Siberian Branch of the Russian Academy of Sciences, Institutskaya str., 4/1, Novosibirsk 630090, Russia; E-Mails: [email protected] (S.B.); [email protected] (K.Z.); [email protected] (A.Z.) 2 Department of Physics and Engineering, Buryat State University, Smolina str., 24a, Ulan-Ude 670000, Russia; E-Mails: [email protected] (M.S.); [email protected] (A.R.); [email protected] (E.K.) 3 Institute of Physical Materials, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoy str., 6, Ulan-Ude 670047, Russia 4 Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva str., 11, Novosibirsk 630090, Russia; E-Mail: [email protected] 5 Department of Physics, Novosibirsk State University, Pirogova str., 20, Novosibirsk 630090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +8-902-564-24-62. Academic Editor: Hugo F. Lopez Received: 5 November 2014 / Accepted: 5 March 2015 / Published: 12 March 2015 Abstract: A new phenomenon is described in this paper: the formation of macroscopic channel structures on the bottom of copper ingots which were used as the target for the synthesis of copper nanoparticles by high-power electron beam evaporation and condensation.
    [Show full text]
  • Conventional Steel Making Vs Powder Metallurgy
    Conventional Steelmaking vs. Powder Metallurgy Steelmaking Conventional steelmaking begins by melting steel in a large electric arc furnace. The initial melting of the steel is usually followed by a secondary ladle refining process such as Argon Oxygen Decarburization (AOD) or Vacuum Oxygen Decarburization (VOD). After refining, the molten metal is cast into ingots. Ladle Refining Cast Ingots Conventional Steelmaking - Ingot Structure Cast steel is very homogeneous in the molten state but as it slowly solidifies in the ingot molds, the alloying elements segregate producing a non-uniform as-cast structure. In high speed steels and high alloy steels, carbides precipitate and form coarse networks that must be broken up by hot working of the ingots. The hot processing will improve the structure but the segregation effects are never fully eliminated. Cast Ingot And Internal Structure Powder Metallurgy Steelmaking using Hot Isostatic Pressing (HIP) Making tool steels using Hot Isostatic Pressing begins with an initial melt furnace similar to a conventional melting process but on a much smaller scale. Instead of pouring and casting the melt, the molten metal is poured through a small nozzle where high pressure gas atomizes the liquid stream. The droplets fall and rapidly solidify into powder which is collected in the atomization chamber. Each powder particle is essentially a micro ingot with minimal segregation and fine carbides. The fine carbide size is retained through the mill processing. After atomization the powder is collected, screened to specific mesh requirements, and blended. The powder is loaded into steel containers, evacuated of air, then sealed. The steel containers full of powder are then loaded into an autoclave and Hot Isostatically Pressed at pressures and temperatures approximately the same as used for forging.
    [Show full text]
  • Crystalline Silicon Photovoltaic Module Manufacturing
    Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory Suggested Citation Woodhouse, Michael. Brittany Smith, Ashwin Ramdas, and Robert Margolis. 2019. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy19osti/72134.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
    [Show full text]
  • Summarizing CPU and GPU Design Trends with Product Data
    Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts.
    [Show full text]
  • Copper Oxhide Ingot Marks
    COPPER OXHIDE INGOT MARKS: A DATABASE AND COMPARATIVE ANALYSIS A Thesis Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Archaeology by Alaina M. Kaiser May 2013 © 2013 Alaina M. Kaiser All Rights Reserved. ABSTRACT COPPER OXHIDE INGOT MARKS: A CATALOGUE AND COMPARATIVE ANALYSIS Alaina Kaiser, M.A. Cornell University, 2013 Many objects of international trade from the Late Bronze Age eastern Mediterranean are marked with symbols of undetermined meaning. Of these, copper oxhide ingots have been of particular interest to archaeologists for decades. As the meaning of these marks is currently unknown, my work attempts to analyze patterns of them that are distinguishable through a study of the marked ingots’ contextual and geographic distribution. My research resulted in a database composed of all retrievable information regarding the discovery, contextual information, and physical characteristics of all copper oxhide ingot remains and marks. The purpose of this database and distribution analysis is to contribute to the ongoing efforts to understand these artifacts so ubiquitous in Late Bronze Age settlements in the eastern Mediterranean. ii BIOGRAPHICAL SKETCH Alaina Kaiser was graduated from Boston University in 2009 with a Bachelors of Arts degree in Archaeology and a minor in Classical Civilizations. After obtaining her degree, Ms. Kaiser held a research assistant position at the Massachusetts Board of Underwater Archaeological Resources and worked as a field technician in CRM at Public Archaeology Laboratory. While interning with the National Park Service at the Historic Kingsley Plantation in 2010, Ms. Kaiser volunteered with the University of Florida’s archaeological field school led by Dr.
    [Show full text]
  • Defects Introduced Into Metals During Fabrication and Service - A.J.Wilby and D.P
    MATERIALS SCIENCE AND ENGINEERING – Vol. III – Defects Introduced into Metals During Fabrication and Service - A.J.Wilby and D.P. Neale DEFECTS INTRODUCED INTO METALS DURING FABRICATION AND SERVICE A.J.Wilby and D.P. Neale British Energy Ltd., Gloucester, UK Keywords: Defects, metals, service, failure, casting, cracks, forging, fabrication, welding, metallurgical, heat-treatment, embrittlement, fatigue, creep, oxidation, wear, cavitation, tribosystem Contents 1. Introduction 2. Primary Production Defects 2.1. Casting Defects 2.1.1. Pipe and Shrinkage 2.1.2. Inclusions 2.1.3. Segregation 2.1.4. Porosity 2.1.5. Surface Defects 2.1.6. Other Defects 2.2. Forming Defects 2.2.1. Cracks, Laps and Seams 2.2.2. Surface Defects 3. Defects Introduced During Fabrication 3.1. Defects Resulting From Cutting 3.2. Joining Methods 3.2.1. Design Related Defects 3.2.2. Procedure and Process Defects 3.2.3. Metallurgical Factors 3.3. Heat Treatment 3.3.1. Stress relief of machined or welded components 3.3.2. Hardening and quench cracking 3.3.3. Embrittlement 4. Defects IntroducedUNESCO in Service – EOLSS 4.1. Fatigue 4.2. High Temperature Defects 4.2.1. Mechanical property degradation and creep 4.2.2. EnvironmentalSAMPLE interaction CHAPTERS 4.2.3. Microstructural Changes 4.3. Wear 4.3.1. Abrasive Wear 4.3.2. Adhesive Wear 4.3.3. Fretting 4.3.4. Erosion 4.3.5. Rolling Contact Wear 4.4. Embrittlement 5. The significance of defects entering service ©Encyclopedia of Life Support Systems (EOLSS) MATERIALS SCIENCE AND ENGINEERING – Vol. III – Defects Introduced into Metals During Fabrication and Service - A.J.Wilby and D.P.
    [Show full text]
  • SILICON INGOT PRODUCTION PROCESS for WAFERS the Element Silicon Has Been the Leading Semiconductor Material for Microelectronic Circuits for Decades
    Basics of Microstructuring 01 Chapter MicroChemicals® – Fundamentals of Microstructuring www.microchemicals.com/downloads/application_notes.html SILICON INGOT PRODUCTION PROCESS FOR WAFERS The element silicon has been the leading semiconductor material for microelectronic circuits for decades. It can be produced in an extremely pure mono-crystalline form and doped with foreign materials in a targeted manner allowing for the modulation of the electrical conductivity over approx. six orders of magnitude. A great advantage of silicon compared to other semiconductor materials such as germanium or gallium arsenide is the possibility of generating a chemically stable electrical insulator with high breakdown fi eld strength from the substrate itself using selective thermal oxidation to SiO2. As a substrate for microelectronic circuits, silicon must be mono-crystalline in its purest form as described in this chapter. From Quartz to High-Purity Silicon Origin and Occurrence of Silicon Universe: 0.1 % Si Silicon fuses in the interior of massive suns at temperatures above 109 K from oxygen cores and is fl ung into the uni- Nuclear Fusion: Crust: 28 % Si verse at the end of the star’s life during 2 16O 28Si + 4He supernova explosions. Hydrogen and Earth: 17 % Si helium dominate the visible matter of the universe; silicon makes up less than 0.1% of the total mass (Fig. 1). Core: 7 % Si In our solar system formed from the "ashes" of earlier star explosions, silicon has been enriched, especially in the in- ner planets which have lost most of the volatile elements due to their proxim- ity to the central sun. The entire plan- et Earth contains approx.
    [Show full text]
  • Optimizing IC Test Via Machine Learning and Decision Theory
    AN ABSTRACT OF THE THESIS OF Tony R. Fountain for the degree of Doctor of Philosophy in Computer Science presented on August 21, 1998. Title: Just Enough Die-Level Test: Optimizing IC Test via Machine Learning and Decision Theory. Abstract approved: Redacted for Privacy Thomas G. Dietterich This research explores the hypothesis that methods from decision theory and machine learning can be combined to provide practical solutions to current manufacturing control problems. This hypothesis is explored by developing an integrated approach to solving one manufacturing problem - the optimization of die-level functional test. An integrated circuit (IC) is an electronic circuit in which a number of devices are fabricated and interconnected on a single chip of semiconductor material. According to current manufacturing practice, integrated circuits are produced en masse in the form of processed silicon wafers. While still in wafer form the ICs are referred to as dice, an individual IC is called a die. The process of cutting the dice from wafers and embedding them into mountable containers is called packaging. During the manufacturing process the dice undergo a number of tests. One type of test is die-level functional test (DLFT). The conventional approach is to perform DLFT on all dice. An alternative to exhaustive die-level testing is selective testing. With this approach only a sample of the dice on each wafer is tested. Determining which dice to test and which to package is referred to as the "optimal test problem", and this problem provides the application focus for this research. In this study, the optimal test problem is formulated as a partially observable Markov decision model that is evaluated in real time to provide answers to test questions such as which dice to test, which dice to package, and when to stop testing.
    [Show full text]
  • Aluminum Foundry Products
    ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Copyright © 1990 ASM International® ASM Handbook Committee, p 123-151 All rights reserved. DOI: 10.1361/asmhba0001061 www.asminternational.org Aluminum Foundry Products Revised by A. Kearney, Avery Kearney & Company Elwin L. Rooy, Aluminum Company of America ALUMINUM CASTING ALLOYS are wrought alloys. Aluminum casting alloys cast aluminum alloys are grouped according the most versatile of all common foundry must contain, in addition to strengthening to composition limits registered with the alloys and generally have the highest cast- elements, sufficient amounts of eutectic- Aluminum Association (see Table 3 in the ability ratings. As casting materials, alumi- forming elements (usually silicon) in order article "Alloy and Temper Designation Sys- num alloys have the following favorable to have adequate fluidity to feed the shrink- tems for Aluminum and Aluminum Al- characteristics: age that occurs in all but the simplest cast- loys"). Comprehensive listings are also • Good fluidity for filling thin sections ings. maintained by general procurement specifi- The phase behavior of aluminum-silicon • Low melting point relative to those re- cations issued through government agencies compositions (Fig. 1) provides a simple quired for many other metals (federal, military, and so on) and by techni- • Rapid heat transfer from the molten alu- eutectic-forming system, which makes pos- cal societies such as the American Society sible the commercial viability of most high- minum to the mold, providing shorter for Testing and Materials and the Society of casting cycles volume aluminum casting. Silicon contents, Automotive Engineers (see Table 1 for ex- • Hydrogen is the only gas with apprecia- ranging from about 4% to the eutectic level amples).
    [Show full text]