Map of Ohio Karst Areas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama
Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Theories of landscape origin are compared using as an example an area of gently dipping rocks that differ in their resistance to erosion UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract___________________________________________ C1 Cumberland Plateau and Highland Rim as a system in Introduction_______________________________________ 1 equilibrium______________________________________ C7 General description of area___________________________ 1 Valleys and coves of the Cumberland Escarpment___ 7 Cumberland Plateau and Highland Rim as dissected and Surficial deposits of the Highland Rim____________ 10 deformed peneplains _____________________ ,... _ _ _ _ _ _ _ _ 4 Elk River profile_______________________________ 12 Objections to the peneplain theory____________________ 5 Paint Rock Creek profile________________________ 14 Eastern Highland Rim Plateau as a modern peneplain__ 6 Conclusions________________________________________ 14 Equilibrium concept -
When the Mountain Became the Escarpment.FH11
Looking back... with Alun Hughes WHEN THE MOUNTAIN BECAME THE ESCARPMENT The Niagara Escarpment hasnt always been But Coronelli was not the first to put Niagara known by that name. Early in the 19th century it on the map. That distinction belongs to Father Louis was often referred to as the Mountain, and of course Hennepin, the Recollect priest who was the first it is still called that in Hamilton and Grimsby today. European to describe Niagara Falls from personal We in eastern Niagara have largely forgotten the observation. In his Description de la Louisiane, name, though it survives in the City of Thorolds published in 1683, five years after his visit, he speaks motto Where the Ships Climb the Mountain. of le grand Sault de Niagara, and labels it thus on the accompanying map. This is the form that So when did the name Niagara Escarpment first prevails thereafter, and it is the spelling used for Fort come into use? And what about the areas other de Niagara, established by the French at the mouth Niagara names, like Niagara Falls, Niagara River of the river in 1726. The English followed suit, and Niagara Peninsula? When did these first appear? though on many early maps (e.g. Moll 1715, I dont pretend to have definitive answers there Mitchell 1782) they use the name Great Fall of are too many sources I have not seen but I can Niagara rather than Niagara Falls. suggest some preliminary conclusions. In his Description Hennepin also refers to la The name Niagara is definitely of native origin, belle Riviere de Niagara, so the name Niagara though there is no agreement about its meaning. -
Geologic Atlas of Blue Earth County, Minnesota
Prepared and Published with the Support of COUNTY ATLAS SERIES THE BLUE EARTH COUNTY BOARD OF COMMISSIONERS AND ATLAS C-26, PART A MINNESOTA GEOLOGICAL SURVEY the Minnesota ENVironment and Natural Resources Trust Fund Blue Earth County Harvey Thorleifson, Director as recommended by the LEGislatiVE-CitiZen Commission on Minnesota Resources Plate 2—Bedrock Geology NIC OLL ET COU NTY 7 Minnesota B BEDROCK GEOLOGY Ka 44°15' N. 285 300 R. 29 W. Kd m STRATIGRAPHIC COLUMN River 285 By 240 s 94° W. e i Lithostratigraphic r Composite natural gamma log 255 NICOLLET LE SUEUR COUNTY R. 26 W. COUNTY R. 25 W. e unit S 270 - e 315 Increasing count 330 Era m Lithology Kd e T. 109 N. sl Os 315 Julia R. Steenberg t Group, 0 100 s 24 Map symbol 19 y 300 300 24 24 Formation 270 lr 19 S API-G units Oo Thickness (in feet) 300 River 285 LIME JAMESTOWN 345 94°15' W. 255 Kd Wita Kd Creek 315 2012 315 )68 j Kd Lake j Dakota Kd 5-90 m.y.) Upper Formation Os Y 300 (99.6-93.5 T Duck Cretaceous 300 lr Morgan Os Lake N T. 109 N. CAMBRIA U 315 O 300 Minnesota 240 Ballantyne C LOCATION DIAGRAM Oo 300 Lake R 270 Madison MESOZOIC R. 28 W. U 31 Kd 300 31 Oo Unnamed Ka Os E Kd 30-90 36 31 Eagle Lake lr lr 36 315 36 U 36 S Cretaceous 300 ) 31 300 22 (112-93.5 m.y.) (112-93.5 Gilfillin 315 E Lower to Upper Lake L Judson Lake 315 300 lr 240 1 6 Y 6 240 Os Platteville Formation 255 315 T Opg 6 Madison 5-20 1 1 N 6 Glenwood Formation Ph 1 255 U sl 255 1 CORRELATION OF MAP UNITS O )60 Upper 315 315 C Lake A j (450 m.y.) 315 C ? E Kd Upper Cretaceous 285 14 Kd S Lithology Key 315 A St. -
The Abyssal Giant Pockmarks of the Black Bahama Escarpment: Relations Between Structures, fluids and Carbonate Physiography” by Thibault Cavailhes Et Al
Solid Earth Discuss., https://doi.org/10.5194/se-2020-11-RC2, 2020 SED © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Interactive comment Interactive comment on “The abyssal giant pockmarks of the Black Bahama Escarpment: Relations between structures, fluids and carbonate physiography” by Thibault Cavailhes et al. Charles Paull (Referee) [email protected] Received and published: 10 April 2020 The manuscript describes a series of ∼circular depressions at the base of the Bahama Escarpment. These are curious features and their discovery may ultimately merit pub- lication. However, the manuscript more closely resembles a first draft, rather than a Printer-friendly version polished work. As is, the existing draft is too poorly written to fully follow many of the arguments in detail. Part of may be attributed to the challenge of writing in a second Discussion paper language. I have made some suggestions as to how to begin to sharpen the word- ing, but it is an incomplete effort. There are also a number of science related points C1 (also indicate below) that need to be considered before this could be recommended for publication. SED Why are these depressions called pockmarks from the outset? What is actually ob- served are approximately circular depressions. The term ‘pockmark’ has evolved to Interactive imply that the depression was somehow physically excavated by seepage, not phys- comment ical collapse. Moreover, it is not commonly been used in carbonate settings. The manuscript also refers to other similar depressions that have been previously been called plunge pools. This is yet another mechanism for surface erosion. -
Message from the New Chairman
Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques. -
Introduction to Virginia's Karst
Introduction to Virginia’s Karst A presentation of The Virginia Department of Conservation and Recreation’s Karst Program & Project Underground Karst - A landscape developed in limestone, dolomite, marble, or other soluble rocks and characterized by subsurface drainage systems, sinking or losing streams, sinkholes, springs, and caves. Cross-section diagram by David Culver, American University. Karst topography covers much of the Valley and Ridge Province in the western third of the state. Aerial photo of karst landscape in Russell County. Smaller karst areas also occur in the Cumberland Plateau, Piedmont, and Coastal Plain provinces. At least 29 counties support karst terrane in western Virginia. In western Virginia, karst occurs along slopes and in valleys between mountain ridges. There are few surface streams in these limestone valleys as runoff from mountain slopes disappears into the subsurface upon contact with the karst bedrock. Water flows underground, emerging at springs on the valley floor. Thin soils over fractured, cavernous limestone allow precipitation to enter the subsurface directly and rapidly, with a minimal amount of natural filtration. The purer the limestone, the less soil develops on the bedrock, leaving bare pinnacles exposed at the ground surface. Rock pinnacles may also occur where land use practices result in massive soil loss. Precipitation mixing with carbon dioxide becomes acidic as it passes through soil. Through geologic time slightly acidic water dissolves and enlarges the bedrock fractures, forming caves and other voids in the bedrock. Water follows the path of least resistance, so it moves through voids in rock layers, fractures, and boundaries between soluble and insoluble bedrock. -
Minnesota's Mineral Heritage
MINNESOTA'S MINERAL HERITAGE CONSERVATION BULLETIN NUMBER TWELVE MINNESOTA OF CONSERVATION This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.) Author's Foreword Our natural resources constitute the foundations· of our well-being. the means of our protection, the hope of our future. The resources of any region determine to a marked degree .the activity of its inhabitants. Minnesota, though known as an agricultural state, has great mineral wealth and many of its citizens are engaged in mineral industries. Only ten states exceed Minnesota in the value of their annual mineral output. Of these ten, six are the great oil-producing states, three are the coal-producting states of Pennsylvania, West Virginia and Illinois, and one is California with its oil and gold. All of the mineral substances produced from the rocks of the states may be considered industrial minerals. Some are metals and others are non-metals. Metal mining· is restricted to the iron ranges, but the non-metals include a great variety of materials, such as limestone, agricultural lime, dolomite, marl, sand and gravel, clays and shales, wool rock, structural and architectural stone, etc., which are excavated and processed at many different places in the state. In the preparation of the articles in this bulletin, the main objective of the author was to acquaint the citizens of the state with the nature and extent of our mineral heritage. -
Limestone & Dolomite
Issue Number: 20 Limestone & Dolomite Date: March 2009 1. IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND Both materials may contain trace OF THE COMPANY / UNDERTAKING quantities of other minerals, metal salts, halides. 1.1 Identification of the substance or preparation This datasheet applies to the following products: 3.1.1 Limestone Composition 1.1.1 Limestone: Limestone Aggregates, Granules and Powders Calcium Carbonate Substance Tradenames: Superlon, Longcal and Longcliffe CaCO3 Trivial Chemical Description: Natural Calcium Carbonate Limestone Name 1.1.2 Dolomite: Magnesium Limestone Aggregates, Granules and Powders CAS 1317-65-3 Tradenames: Golconda Number EINECS Chemical Description: Natural Calcium Magnesium Carbonate 215-279-6 Number 1.2 Use of the substance/preparation Powders and granules typically used as inert filler material in applications such 3.1.2 Dolomite Composition as plastics and rubber and building products. Also used in soil stabilization, Calcium Magnesium animal and pet feeds, and glass manufacture. Aggregates used in concrete, Substance Carbonate construction and landscaping. CaMg(CO3)2 Trivial Dolomite 1.3 Company identification Name Longcliffe Quarries Ltd CAS 16389-88-1 Brassington, Matlock, Derbyshire, DE4 4BZ Number EINECS Telephone : +44 (0)1629 540284 Fax :+44 (0)1629 540569 240-440-2 Number E-mail: [email protected] 3.2 Components presenting a 1.4 Emergency telephone health hazard Emergency telephone number available during office hours: 01629 540284 The products contain no Emergency telephone number available outside office hours: No components classified as dangerous according to EC 2. HAZARDS IDENTIFICATION directive 1999/45/EC. The products contain no substances classified as being hazardous to health according to EC directive 1999/45/EC. -
Middle Devonian Formations in the Subsurface of Northwestern Ohio
STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 SCIENTIFIC AND TECHNICAL STAFF OF THE OHIO DIVISION OF GEOLOGICAL SURVEY ADMINISTRATIVE SECTION Horace R. Collins, State Geologist and Di v ision Chief David K. Webb, Jr., Geologist and Assistant Chief Eleanor J. Hyle, Secretary Jean S. Brown, Geologist and Editor Pauline Smyth, Geologist Betty B. Baber, Geologist REGIONAL GEOLOGY SECTION SUBSURFACE GEOLOGY SECTION Richard A. Struble, Geologist and Section Head William J. Buschman, Jr., Geologist and Section Head Richard M. Delong, Geologist Michael J. Clifford, Geologist G. William Kalb, Geochemist Adriaan J anssens, Geologist Douglas L. Kohout, Geologis t Frederick B. Safford, Geologist David A. Stith, Geologist Jam es Wooten, Geologist Aide Joel D. Vormelker, Geologist Aide Barbara J. Adams, Clerk· Typist B. Margalene Crammer, Clerk PUBLICATIONS SECTION LAKE ERIE SECTION Harold J. Fl inc, Cartographer and Section Head Charles E. Herdendorf, Geologist and Sectwn Head James A. Brown, Cartographer Lawrence L. Braidech, Geologist Donald R. Camburn, Cartovapher Walter R. Lemke, Boat Captain Philip J. Celnar, Cartographer David B. Gruet, Geologist Aide Jean J. Miller, Photocopy Composer Jean R. Ludwig, Clerk- Typist STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Horace R. Collins, Chief Report of Investigations No. 78 MIDDLE DEVONIAN FORMATIONS IN THE SUBSURFACE OF NORTHWESTERN OHIO by A. Janssens Columbus 1970 GEOLOGY SERVES OHIO CONTENTS Page Introduction . 1 Previous investigations .. .. .. .. .. .. .. .. .. 1 Study methods . 4 Detroit River Group . .. .. .. ... .. ... .. .. .. .. .. .. .. ... .. 6 Sylvania Sandstone .......................... -
Geologic Cross Section C–C' Through the Appalachian Basin from Erie
Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p. -
Waddle Ditch Rattlesnake Creek
Nine-Element Nonpoint Source Implementation Strategy (NPS-IS) for Waddle Ditch-Rattlesnake Creek HUC-12 (05060003 03 05) Prepared for: Fayette Soil and Water Conservation District Prepared by: Civil & Environmental Consultants, Inc. Toledo, Ohio Version 1.0 Approved: June 29, 2021 This page intentionally left blank. Acknowledgements Version 1.0 prepared and written by: Deanna Bobak Civil & Environmental Consultants, Inc. 4841 Monroe Street, Suite 103 Toledo, OH 43623 Brigitte Hisey Fayette Soil & Water Conservation District 1415 US 22 SW, Suite 500 Washington Court House, OH 43160 The Fayette Soil & Water Conservation District (SWCD) would like to acknowledge the collaboration of multiple partners in the preparation of this Nonpoint Source Implementation Strategy (NPS-IS) for the Waddle Ditch-Rattlesnake Creek HUC-12 (05060003 03 05). The Fayette SWCD appreciates those individuals and organizations that contributed background information, insight into objectives and projects for inclusion in this NPS-IS. Thank you to Rick Wilson, Ohio Environmental Protection Agency – Division of Surface Water, for guidance throughout the NPS-IS development process, as well as Jessica D’Ambrosio and the staff of The Nature Conservancy for providing modeling data generated by the Agricultural Conservation Planning Framework (ACPF). This product or publication was financed in part or totally through a grant from the United States Environmental Protection Agency through an assistance agreement with the Ohio Environmental Protection Agency. The contents and views, including any opinions, findings, conclusions or recommendations, contained in this product or publication are those of the authors and have not been subject to any Ohio Environmental Protection Agency or United States Environmental Protection Agency peer or administrative review and may not necessarily reflect the views of the Ohio Environmental Protection Agency or the United States Environmental Protection Agency and no official endorsement should be inferred. -
The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.