Haustorium #42, December 2002
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site. -
Lodgepole Pine Dwarf Mistletoe in Taylor Park, Colorado Report for the Taylor Park Environmental Assessment
Lodgepole Pine Dwarf Mistletoe in Taylor Park, Colorado Report for the Taylor Park Environmental Assessment Jim Worrall, Ph.D. Gunnison Service Center Forest Health Protection Rocky Mountain Region USDA Forest Service 1. INTRODUCTION ............................................................................................................................... 2 2. DESCRIPTION, DISTRIBUTION, HOSTS ..................................................................................... 2 3. LIFE CYCLE....................................................................................................................................... 3 4. SCOPE OF TREATMENTS RELATIVE TO INFESTED AREA ................................................. 4 5. IMPACTS ON TREES AND FORESTS ........................................................................................... 4 5.1 TREE GROWTH AND LONGEVITY .................................................................................................... 4 5.2 EFFECTS OF DWARF MISTLETOE ON FOREST DYNAMICS ............................................................... 6 5.3 RATE OF SPREAD AND INTENSIFICATION ........................................................................................ 6 6. IMPACTS OF DWARF MISTLETOES ON ANIMALS ................................................................ 6 6.1 DIVERSITY AND ABUNDANCE OF VERTEBRATES ............................................................................ 7 6.2 EFFECT OF MISTLETOE-CAUSED SNAGS ON VERTEBRATES ............................................................12 -
Dwarf Mistletoes: Biology, Pathology, and Systematics
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. CHAPTER 10 Anatomy of the Dwarf Mistletoe Shoot System Carol A. Wilson and Clyde L. Calvin * In this chapter, we present an overview of the Morphology of Shoots structure of the Arceuthobium shoot system. Anatomical examination reveals that dwarf mistletoes Arceuthobium does not produce shoots immedi are indeed well adapted to a parasitic habit. An exten ately after germination. The endophytic system first sive endophytic system (see chapter 11) interacts develops within the host branch. Oftentimes, the only physiologically with the host to obtain needed evidence of infection is swelling of the tissues near the resources (water, minerals, and photosynthates); and infection site (Scharpf 1967). After 1 to 3 years, the first the shoots provide regulatory and reproductive func shoots are produced (table 2.1). All shoots arise from tions. Beyond specialization of their morphology (Le., the endophytic system and thus are root-borne shoots their leaves are reduced to scales), the dwarf mistle (Groff and Kaplan 1988). In emerging shoots, the toes also show peculiarities of their structure that leaves of adjacent nodes overlap and conceal the stem. reflect their phylogenetic relationships with other As the internodes elongate, stem segments become mistletoes and illustrate a high degree of specialization visible; but the shoot apex remains tightly enclosed by for the parasitic habit. From Arceuthobium globosum, newly developing leaf primordia (fig. 10.lA). Two the largest described species with shoots 70 cm tall oppositely arranged leaves, joined at their bases, occur and 5 cm in diameter, toA. -
Lodgepole Pine Dwarf Mistletoe Common Cause of Brooming in Lodgepole Pine
Lodgepole Pine Dwarf Mistletoe Common cause of brooming in lodgepole pine Pathogen—Lodgepole pine dwarf mistletoe (Arceuthobium americanum) is the most widely distributed, one of the most damag- ing, and one of the best studied dwarf mistletoes in North America. Aerial shoots are yellowish to olive green, 2-3 1/2 inches (5-9 cm) long (maximum 12 inches [30 cm]) and up to 1/25-1/8 inch (1-3 mm) diameter (figs. 1-2). The distribution generally follows that of its principal host, lodgepole pine, in the Rocky Mountain Region (fig. 3). Hosts—Lodgepole pine dwarf mistletoe infects primarily its namesake, but ponderosa pine is considered a secondary host of this species. However, lodgepole pine dwarf mistletoe can sustain itself and even be aggressive in pure stands of Rocky Mountain ponderosa pine in northern Colorado and southern Wyoming sometimes a mile or more away from infected lodgepole pine. This infection generally occurs in areas outside the range of ponderosa pine’s usual parasite, southwestern dwarf mistletoe. Figure 1. Flowering male lodgepole pine dwarf mistletow plant para- Figure 2. Female lodgepole pine dwarf mistletoe plant with imma- sitizing lodgepole pine. Photo: Brian Howell, USDA Forest Service. ture fruit parasitizing lodgepole pine. Note the basal cups left behind where old shoots have fallen off. Photo: Brian Howell, USDA Forest Service. Signs and Symptoms—Signs of infection are shoots and basal cups (fig. 2) found at infection sites. Symptoms include witches’ brooms, swelling of in- fected branches, and dieback. Lodgepole pine dwarf mistletoe infections grow systemically with the branches they infect, sometimes causing large witches’ brooms with elongated, loosely hanging branches. -
Researchcommons.Waikato.Ac.Nz
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Commons@Waikato http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Identifying Host Species of Dactylanthus taylorii using DNA Barcoding A thesis submitted in partial fulfilment of the requirements for the degree of Masters of Science in Biological Sciences at The University of Waikato by Cassarndra Marie Parker _________ The University of Waikato 2015 Acknowledgements: This thesis wouldn't have been possible without the support of many people. Firstly, my supervisors Dr Chrissen Gemmill and Dr Avi Holzapfel - your professional expertise, advice, and patience were invaluable. From pitching the idea in 2012 to reading through drafts in the final fortnight, I've been humbled to work with such dedicated and accomplished scientists. Special mention also goes to Thomas Emmitt, David Mudge, Steven Miller, the Auckland Zoo horticulture team and Kevin. -
Ventura County Plant Species of Local Concern
Checklist of Ventura County Rare Plants (Twenty-second Edition) CNPS, Rare Plant Program David L. Magney Checklist of Ventura County Rare Plants1 By David L. Magney California Native Plant Society, Rare Plant Program, Locally Rare Project Updated 4 January 2017 Ventura County is located in southern California, USA, along the east edge of the Pacific Ocean. The coastal portion occurs along the south and southwestern quarter of the County. Ventura County is bounded by Santa Barbara County on the west, Kern County on the north, Los Angeles County on the east, and the Pacific Ocean generally on the south (Figure 1, General Location Map of Ventura County). Ventura County extends north to 34.9014ºN latitude at the northwest corner of the County. The County extends westward at Rincon Creek to 119.47991ºW longitude, and eastward to 118.63233ºW longitude at the west end of the San Fernando Valley just north of Chatsworth Reservoir. The mainland portion of the County reaches southward to 34.04567ºN latitude between Solromar and Sequit Point west of Malibu. When including Anacapa and San Nicolas Islands, the southernmost extent of the County occurs at 33.21ºN latitude and the westernmost extent at 119.58ºW longitude, on the south side and west sides of San Nicolas Island, respectively. Ventura County occupies 480,996 hectares [ha] (1,188,562 acres [ac]) or 4,810 square kilometers [sq. km] (1,857 sq. miles [mi]), which includes Anacapa and San Nicolas Islands. The mainland portion of the county is 474,852 ha (1,173,380 ac), or 4,748 sq. -
JUSTIFICATION for SUBSPECIES in ARCEUTHOBIUM CAMPYLOPODUM (VISCACEAE) ABSTRACT in the Dwarf Mistletoes
Nickrent, D.L. 2012. Justification for subspecies in Arceuthobium campylopodum (Viscaceae). Phytoneuron 2012-51: 1–11. Published 23 May. ISSN 2153 733X JUSTIFICATION FOR SUBSPECIES IN ARCEUTHOBIUM CAMPYLOPODUM (VISCACEAE) DANIEL L. NICKRENT Department of Plant Biology Southern Illinois University Carbondale, Illinois 62901-6509 [email protected] ABSTRACT In the dwarf mistletoes ( Arceuthobium , Viscaceae), sect. Campylopoda was previously considered to include entities treated at the rank of species: A. abietinum, A. apachecum, A. blumeri, A. californicum, A. campylopodum , A. cyanocarpum, A. laricis, A. littorum, A. microcarpum, A. monticola , A. occidentale , A. siskiyouense , and A. tsugense . Morphology, host associations, levels of sympatry and genetic evidence are reviewed here and, in contrast, it is concluded that these taxa are best viewed as ecotypes of a single variable species. Formal nomenclature treating these taxa at the rank of subspecies is presented, following previous conventions for recognizing infraspecific taxa in dwarf mistletoes. KEY WORDS : Arceuthobium campylopodum , dwarf mistletoe, ecotype, subspecies, Viscaceae Arceuthobium (dwarf mistletoes, Viscaceae) has been of great interest to American plant morphologists, pathologists, and systematists since the late 1800s. This is the only genus in Viscaceae that naturally occurs in both the Old and New World. In contrast to most viscaceous mistletoes such as Viscum and Phoradendron , Arceuthobium is morphologically reduced with scale leaves (squamate habit) and small monochlamydeous flowers whose morphology varies little between species. The explosively dehiscent fruits are unique in the family and allow population expansion without requiring bird vectors. The adult shoots produce only a small amount of carbohydrate through photosynthesis, thus these mistletoes approach the holoparasitic condition (Nickrent & García 2009). -
Viscum Album L.) in Urban Areas (A Case Study of the Kaliningrad City, Russia)
plants Article Ecological and Landscape Factors Affecting the Spread of European Mistletoe (Viscum album L.) in Urban Areas (A Case Study of the Kaliningrad City, Russia) Liubov Skrypnik 1,* , Pavel Maslennikov 1 , Pavel Feduraev 1 , Artem Pungin 1 and Nikolay Belov 2 1 Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya str., 2, Kaliningrad 236040, Russia; [email protected] (P.M.); [email protected] (P.F.); [email protected] (A.P.) 2 Institute of Environmental Management, Urban Development and Spatial Planning, Immanuel Kant Baltic Federal University, Zoologicheskaya str., 2, Kaliningrad 236022, Russia; [email protected] * Correspondence: [email protected]; Tel.: +74012533707 Received: 1 March 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: Green spaces are very important for an urban environment. Trees in cities develop under more stressful conditions and are, therefore, more susceptible to parasite including mistletoe infestation. The aim of this study was to investigate the ecological, microclimatic, and landscape factors causing the spread of European mistletoe (Viscum album L.) in urban conditions. The most numerous hosts of mistletoe were Tilia cordata (24.4%), Acer platanoides (22.7%), and Populus nigra (16.7%). On average, there were more than 10 mistletoe bushes per tree. The mass mistletoe infestations (more than 50 bushes per the tree) were detected for Populus berolinensis, Populus nigra, × and Acer saccharinum. The largest number of infected trees was detected in the green zone (city parks), historical housing estates, and green zone along water bodies. Based on the results of principal component analysis (PCA), the main factors causing the spread of mistletoe on the urban territories are trees’ age and relative air humidity. -
Eastern Dwarf Mistletoe, Arceuthobium Pusillum
Natural Heritage Eastern Dwarf Mistletoe & Endangered Species Arceuthobium pusillum Peck Program www.mass.gov/nhesp State Status: Special Concern Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: A member of the Christmas Mistletoe family (Viscaceae), Eastern Dwarf Mistletoe is a very small fleshy shrub, usually no more than 2 cm (0.8 in.) tall that parasitizes conifer trees. Its generic name reflects this parasitic habit, coming from the Greek words for juniper (arkeuthos) and life (bios). This simple or sparingly branched plant has greenish to chestnut-colored, or even purplish, stems that are circular when fresh and four-angled when dry. The opposite leaves are reduced to thin, connate, obtuse (blunt-tipped) scales with a width of only 1 mm (0.04 in.). Eastern Dwarf Mistletoe spreads beneath the bark of its host by means of a haustoria, an organ used to obtain nutrients from the host. The formation of globose clumps of swollen, infected branches or “witches’ brooms” saps the trees’ strength and, eventually, a tree covered with them may weaken and die. Eastern Dwarf Mistletoe is a dioecious plant (a plant with unisexual flowers in which the individual plants are either male or female). Mistletoes reproduce by means of seeds expelled from explosive fruits. The sticky seeds cling to needles, eventually sliding down the needles to germinate on twigs. During the first year, the parasite penetrates the wood with a root-like structure and develops food and water transport systems. An Distribution in Massachusetts Top: USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An 1985-2010 illustrated flora of the northern United States, Canada and the British Based on records in Natural Heritage Database Possessions. -
California Forest Insect and Disease Training Manual
California Forest Insect and Disease Training Manual This document was created by US Forest Service, Region 5, Forest Health Protection and the California Department of Forestry and Fire Protection, Forest Pest Management forest health specialists. The following publications and references were used for guidance and supplemental text: Forest Insect and Disease Identification and Management (training manual). North Dakota Forest Service, US Forest Service, Region 1, Forest Health Protection, Montana Department of Natural Resources and Conservation and Idaho Department of Lands. Forest Insects and Diseases, Natural Resources Institute. US Forest Service, Region 6, Forest Health Protection. Forest Insect and Disease Leaflets. USDA Forest Service Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339. 654 p. Goheen, E.M. and E.A. Willhite. 2006. Field Guide to Common Disease and Insect Pests of Oregon and Washington Conifers. R6-NR-FID-PR-01-06. Portland, OR. USDA Forest Service, Pacific Northwest Region. 327 p. M.L. Fairweather, McMillin, J., Rogers, T., Conklin, D. and B Fitzgibbon. 2006. Field Guide to Insects and Diseases of Arizona and New Mexico. USDA Forest Service. MB-R3-16-3. Pest Alerts. USDA Forest Service. Scharpf, R. F., tech coord. 1993. Diseases of Pacific Coast Conifers. USDA For. Serv. Ag. Hndbk. 521. 199 p.32, 58. Tree Notes Series. California Department of Forestry and Fire Protection. Wood, D.L., T.W. Koerber, R.F. Scharpf and A.J. Storer, Pests of the Native California Conifers, California Natural History Series, University of California Press, 2003. Cover Photo: Don Owen. 1978. Yosemite Valley. -
Vegetation Response to Wildfire and Climate Forcing in a Rocky Mountain Lodgepole Pine Forest Over the Past 2500 Years
HOL0010.1177/0959683620941068The HoloceneChileen et al. 941068research-article2020 Research Paper The Holocene 1 –11 Vegetation response to wildfire and climate © The Author(s) 2020 forcing in a Rocky Mountain lodgepole pine Article reuse guidelines: sagepub.com/journals-permissions DOI:https://doi.org/10.1177/0959683620941068 10.1177/0959683620941068 forest over the past 2500 years journals.sagepub.com/home/hol Barrie V Chileen,1 Kendra K McLauchlan,1 Philip E Higuera,2 Meredith Parish3,4 and Bryan N Shuman3 Abstract Wildfire is a ubiquitous disturbance agent in subalpine forests in western North America. Lodgepole pine (Pinus contorta var. latifolia), a dominant tree species in these forests, is largely resilient to high-severity fires, but this resilience may be compromised under future scenarios of altered climate and fire activity. We investigated fire occurrence and post-fire vegetation change in a lodgepole pine forest over the past 2500 years to understand ecosystem responses to variability in wildfire and climate. We reconstructed vegetation composition from pollen preserved in a sediment core from Chickaree Lake, Colorado, U.S.A. (1.5-ha lake), in Rocky Mountain National Park, and compared vegetation change to an existing fire history record. Pollen samples (n = 52) were analyzed to characterize millennial-scale and short-term (decadal-scale) changes in vegetation associated with multiple high-severity fire events. Pollen assemblages were dominated by Pinus throughout the record, reflecting the persistence of lodgepole pine. Wildfires resulted in significant declines in Pinus pollen percentages, but pollen assemblages returned to pre-fire conditions after 18 fire events, within c.75 years. The primary broad- scale change was an increase in Picea, Artemisia, Rosaceae, and Arceuthobium pollen types, around 1155 calibrated years before present. -
Haustorium 50 Issue!
HAUSTORIUM 50 January 2007 1 HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society 50th ISSUE! January 2007 Number 50 MESSAGE FROM THE IPPS PRESIDENT acquaintances between those interested in parasitic Dear IPPS Members, plants. The IPPS wishes you a happy festive season and a While the main reports during the early years of peaceful and happy 2007. We all wish that the New Haustorium were on taxonomic, anatomical and Year will bring a better understanding of parasitic physiological aspects of parasitic plants, the recent plants, and new breakthroughs in our ability to control issues also report on significant progress in molecular parasitic weeds. research of parasitic plants, with emphasis on three In addition to celebrating the birth of a new year, we main areas: (a) genome studies of parasitic plants, are also happily celebrating the issue of the 50th including evolutionary, genetic and physiological edition of Haustorium, the well established considerations; (b) the development of new resistances Newsletter of the parasitic plant research community. It against parasitic weeds either directly by genetic is my pleasure to send our special thanks and engineering or indirectly by the employment of appreciation to the dedicated founding Editors of herbicide resistance; and (c) the development of Haustorium and honorary members of the IPPS, Chris molecular markers for diagnostic purposes, and for Parker and Lytton Musselman, for their immense marker-assisted selection, serving more efficient long lasting contribution in distributing updated breeding of various crops for resistance against knowledge on parasitic plants to all parts of the world, parasitic weeds. gathering pieces of information on a variety of aspects Another encouraging development of the last decade is of parasitic plant biology and on the management of the availability of a number of effective means for the parasitic weeds, for the benefit of us all.