New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Hydropus Mediterraneus</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.393 Volume 121, pp. 393–403 July–September 2012 Laccariopsis, a new genus for Hydropus mediterraneus (Basidiomycota, Agaricales) Alfredo Vizzini*, Enrico Ercole & Samuele Voyron Dipartimento di Scienze della Vita e Biologia dei Sistemi - Università degli Studi di Torino, Viale Mattioli 25, I-10125, Torino, Italy *Correspondence to: [email protected] Abstract — Laccariopsis (Agaricales) is a new monotypic genus established for Hydropus mediterraneus, an arenicolous species earlier often placed in Flammulina, Oudemansiella, or Xerula. Laccariopsis is morphologically close to these genera but distinguished by a unique combination of features: a Laccaria-like habit (distant, thick, subdecurrent lamellae), viscid pileus and upper stipe, glabrous stipe with a long pseudorhiza connecting with Ammophila and Juniperus roots and incorporating plant debris and sand particles, pileipellis consisting of a loose ixohymeniderm with slender pileocystidia, large and thin- to thick-walled spores and basidia, thin- to slightly thick-walled hymenial cystidia and caulocystidia, and monomitic stipe tissue. Phylogenetic analyses based on a combined ITS-LSU sequence dataset place Laccariopsis close to Gloiocephala and Rhizomarasmius. Key words — Agaricomycetes, Physalacriaceae, /gloiocephala clade, phylogeny, taxonomy Introduction Hydropus mediterraneus was originally described by Pacioni & Lalli (1985) based on collections from Mediterranean dune ecosystems in Central Italy, Sardinia, and Tunisia. Previous collections were misidentified as Laccaria maritima (Theodor.) Singer ex Huhtinen (Dal Savio 1984) due to their laccarioid habit. The generic attribution to Hydropus Kühner ex Singer by Pacioni & Lalli (1985) was due mainly to the presence of reddish watery droplets on young lamellae and sarcodimitic tissue in the stipe (Corner 1966, Singer 1982). -
Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10 -
Kotlobay Et Al. 10.1073/Pnas.1803615115
Supplementary materials for Kotlobay et al. 10.1073/pnas.1803615115 Supplementary Methods Molecular biology Identification of the nnluz gene. To achieve strong constitutive expression of cDNA library from Neonothopanus nambi, we constructed the GAP-pPic9K vector. The plasmid was created based on pPic9K vector (Invitrogen) by replacing inducible alcohol oxidase promoter AOX1 and alpha-factor signal sequences with the glyceraldehydes-3-phosphate dehydrogenase (GAP) promoter from Pichia pastoris. GAP promoter sequence was obtained from the vector pGAPZA by digestion with BglII, completion of overhanging nucleotides with Klenow fragment and subsequent digestion with EcoRI. pPic9K vector was digested with AatII, blunted with Klenow fragment, subsequently digested with EcoRI and used as a backbone for cloning of GAP promoter fragment. Unique restriction sites BamHI, Eco53kI, SacI were further introduced by PCR with primers 5’-AATTGGATCCCAGAGGCTCGC-3’ and 5’-GGCCGCGAGCTCTGGGATCC-3’ and cloning with EcoRI/NotI sites. Total RNA from N.nambi mycelium was prepared according to the protocol from Chomczynski and Sacchi (1987) [ref. (1)] and the cDNA library was constructed with SMART PCR cDNA Synthesis Kit (Clontech). Amplified cDNA was cloned into the GAP-pPic9K vector using BamHI/NotI restriction sites. pPic9K vector spontaneously generate multiple insertion events after linearization, as linear DNA can generate stable transformants of Pichia pastoris via homologous recombination between the transforming DNA and regions of homology within the genome (2–4). Multiple insertion events occur spontaneously 10-100 times less often than single insertion events (GAP-pPic9K vector manual, ThermoFisher). Extracted cDNA plasmid library was linearized by AvrII restriction site and used for transformation of Pichia pastoris GS115 strain by electroporation. -
Virulence of Two Entomophthoralean Fungi, Pandora Neoaphidis
Article Virulence of Two Entomophthoralean Fungi, Pandora neoaphidis and Entomophthora planchoniana, to Their Conspecific (Sitobion avenae) and Heterospecific (Rhopalosiphum padi) Aphid Hosts Ibtissem Ben Fekih 1,2,3,*, Annette Bruun Jensen 2, Sonia Boukhris-Bouhachem 1, Gabor Pozsgai 4,5,*, Salah Rezgui 6, Christopher Rensing 3 and Jørgen Eilenberg 2 1 Plant Protection Laboratory, National Institute of Agricultural Research of Tunisia, Rue Hédi Karray, Ariana 2049, Tunisia; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark; [email protected] (A.B.J.); [email protected] (J.E.) 3 Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] 4 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China 5 Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 6 Department of ABV, National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082 EL Menzah, Tunisia; [email protected] * Correspondence: [email protected] (I.B.F.); [email protected] (G.P.) Received: 03 December 2018; Accepted: 02 February 2019; Published: 13 February 2019 Abstract: Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field. -
Tesis Milagro Granados
UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO ESTUDIO DE LA EPIDEMIOLOGÍA Y ALTERNATIVAS DE MANEJO AGROECOLÓGICO DEL OJO DE GALLO ( Mycena citricolor ) EN CAFETO BAJO SISTEMAS AGROFORESTALES EN COSTA RICA Tesis sometida a la consideración de la Comisión del Programa de Estudios de Posgrado en Ciencias Agrícolas y Recursos Naturales para optar al grado y título de Doctorado Académico en Sistemas de Producción Agrícola Tropical Sostenible MARÍA DEL MILAGRO GRANADOS MONTERO Ciudad Universitaria Rodrigo Facio, Costa Rica 2015 Dedicatoria Todo este esfuerzo es para mi familia, Erick, Josué y Amanda. Los amo. Agradecimientos A Dios por darme las fuerzas para concluir esta meta, a mi familia por darme su amor, calidez y compresión en momentos difíciles y a mis amigos por todo su apoyo. A don Edgar Vargas (q.e.g.e.) por enseñarme el verdadero sentido de ser profesional. Agradezco de todo corazón a Gustavo Arroyo Arias por su incondicional ayuda, por su voz de aliento y su valiosa amistad. A mí Comité Asesor por su colaboración durante todo el proceso, por todos los consejos y apoyo para lograr la conclusión del programa. Además, a Juan Ramón Navarro Flores por su gran ayuda en el análisis de los datos. Agradezco a todas las personas del Instituto Earthwatch, de CoopeDota R.L, del Centro Agrícola Cantonal de Tarrazú, a todos los caficultores y personas relacionadas con la actividad que permitieron que se realizara esta investigación. Finalmente, al programa de becas SEP-CONARE, a doña Rita Vargas de la Vicerrectoría de Docencia y doña Rita Vázquez del Sistema de Estudios de Posgrado, así como a los miembros de la Escuela de Agronomía que permitieron que culminara mis estudios de doctorado. -
Československa Vedecka Společnost Pro Mykologii
------ ČESKOSLOVENSKA VEDECKA SPOLEČNOST PRO MYKOLOGII i 2 4 ■ 1 ACADEMIA/PRAHA LEDEN 1970 I ČESKÁ MYKOLOGIE i Časopis Čs. vědecké společnosti pro mykologii pro šíření znalosti hub po stránce vědecké i praktické R o č n í k 2 4 Č í s 1 o 1 Leden 1970 :i Vydává Čs. vědecká společnost pro mykologii v Nakladatelství Československé akademie věd Vedoucí redaktor: člen korespondent ČSAV Albert Pilát, doktor biologických věd Redakční rada: akademik Ctibor Blattný, doktor zemědělských věd, univ. prof. Karel Cejp, doktor biologických věd, dr. Petr Fragner, MUDr. Josef Hearink, dr. František Kotlaba, kan didát biologických věd, inž. Karel Kříž, prom. biol. Zdeněk Pouzar, dr. František Šmarda Výkonný redaktor : dr. Mirko Svrček, kandidát biologických věd Příspěvky zasílejte na adresu výkonného redaktora: Praha 1, Václavské nám. 68, Národní muzeum, telefon 233541, linka 87. ; 4. sešit 23. ročníku vyšel 15. října 1969 OBSAH A. P i 1 á t : K sedmdesátinám prof. dr. Karla Cejpa, D S c . ..............................................................1 M. Svrček a Z. Pouzar: Cejpomyces gen. nov., nový rod resupinátních hymeno- mycetů ( C o r t ic ia c e a e ) ....................................................................................................................... 5 J H e r n k : Doc. inž. Antonín Příhoda padesátníkem............................................................................. 12 I F. Kotlaba: Studie o hvězdovce Pouzarově — Geastrum pouzarii V. J. Staněk . 21 J. Moravec: Morchella pragensis Smotlacha 1952 — smrž pražský, málo známý druh rodu Morchella Dill. ex St. A m a n s.............................................................................................. 32 ■ A. Příhoda: Battarrea stevenii (Lib.) Fr. v Řecku. (S barevnou tabulí č. 75; . 4 0 M. Semerdžieva a V. Musile k: Růst a vývoj slizečky slizké — Oudemansiella mucida 44 f C. -
The Holomorph of Parasarcopodium (Stachybotryaceae), Introducing P
Phytotaxa 266 (4): 250–260 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.266.4.2 The holomorph of Parasarcopodium (Stachybotryaceae), introducing P. pandanicola sp. nov. on Pandanus sp. SAOWALUCK TIBPROMMA1,2,3,4,5, SARANYAPHAT BOONMEE2, NALIN N. WIJAYAWARDENE2,3,5, SAJEEWA S.N. MAHARACHCHIKUMBURA6, ERIC H. C. McKENZIE7, ALI H. BAHKALI8, E.B. GARETH JONES8, KEVIN D. HYDE1,2,3,4,5,8 & ITTHAYAKORN PROMPUTTHA9,* 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kun- ming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Crop Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman 7Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand *Corresponding author: e-mail: [email protected] Abstract Collections of microfungi on Pandanus species (Pandanaceae) in Krabi, Thailand resulted in the discovery of a new species in the genus Parasarcopodium, producing both its sexual and asexual morphs. -
Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As an Alternative for Biological Control
Appl Microbiol Biotechnol (2016) 100:3799–3812 DOI 10.1007/s00253-015-7233-6 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 29 December 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant-parasitic nematodes are estimated to cause Keywords Phytoparasitic nematodes . Nematicides . global annual losses of more than US$ 100 billion. The num- Oligosporon-type antibiotics . Nematophagous fungi . ber of registered nematicides has declined substantially over Secondary metabolites . Biocontrol the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally Introduction beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, Nematodes as economically important crop pests are therefore urgently required. Nematophagous fungi are nat- ural antagonists of nematode parasites, and these offer an eco- Among more than 26,000 known species of nematodes, 8000 physiological source of novel biocontrol strategies. In this first are parasites of vertebrates (Hugot et al. 2001), whereas 4100 section of a two-part review article, we discuss 83 nematicidal are parasites of plants, mostly soil-borne root pathogens and non-nematicidal primary and secondary metabolites (Nicol et al. 2011). Approximately 100 species in this latter found in nematophagous ascomycetes. Some of these sub- group are considered economically important phytoparasites stances exhibit nematicidal activities, namely oligosporon, of crops. -
Soil As a Huge Laboratory for Microorganisms
Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium. -
Announcement Nampijja 4.5.21
Plant Pathology Seminar Series Bioluminescent fungi, a source of genes to monitor plant stresses and changes in the environment Marilen Nampijja, PhD student Bioluminescence is a natural phenomenon of light emission by a living organism resulting from oxidation of luciferin catalyzed by the enzyme luciferase (Dubois 1887). This process serves as a powerful biological tool for scientists to study gene expression in plants and animals. A wide diversity of living organisms is bioluminescent, including some fungi (Shimomura 2006). For many of these organisms, the ability to emit light is a defining feature of their biology (Labella et al. 2017; Verdes and Gruber 2017; Wainwright and https://www.sentinelassam.com Longo 2017). For example, bioluminescence in many organisms serves purposes such as attracting mates and pollinators, scaring predators, and recruiting other creatures to spread spores (Kotlobay et al. 2018; Shimomura 2006; Verdes and Gruber 2017). Oliveira and Stevani (2009) confirmed that the fungal bioluminescent reaction involved reduction of luciferin by NADPH and a luciferase. Their findings supported earlier studies by Airth and McElroy (1959) who found that the addition of reduced pyridine nucleotide and NADPH resulted in sustained light emission using the standard luciferin-luciferase test developed by Dubois (1887). Additionally, Kamzolkina et al. (1984;1983) and Kuwabara and Wassink (1966) purified and crystallized luciferin from the fungus Omphalia flavida, which was active in bioluminescence when exposed to the enzyme prepared according to the procedure described by Airth and McElroy (1959). Decades after, Kotlobay et al. (2018) showed that the fungal luciferase is encoded by the luz gene and three other key enzymes that form a complete biosynthetic cycle of the fungal luciferin from caffeic acid. -
LES MORILLES Vues Par Philippe Clowez
Morilles de France et d'Europe Philippe CLOWEZ & Pierre-Arthur MOREAU Cap Régions Éditions SOMMAIRE PRÉFACE par le Professeur Régis Courtecuisse.............................................................................. 12 LES MORILLES vues par Philippe Clowez................................................................................. 14 LES MORILLES non vues par Pierre-Arthur Moreau.................................................................... 15 INTRODUCTION............................................................................................................... 17 I UNE HISTOIRE DE LA MORCHELLOLOGIE............................................................... 19 II ORIGINE ET PHYLOGÉNIE DES MORILLES............................................................... 33 III CLASSER ET NOMMER LES MORILLES...................................................................... 37 IV QU’EST-CE QU’UNE MORILLE ?.................................................................................... 41 V RÉACTIONS MACROCHIMIQUES................................................................................ 45 VI LES SPORÉES DES MORILLES....................................................................................... 49 VII LA MICROSCOPIE DES MORILLES............................................................................... 51 VIII INDEX SYSTÉMATIQUE.................................................................................................. 65 IX PARTIE DESCRIPTIVE................................................................................................... -
Listado De La Colección De Hongos (Ascomycota Y Basidiomycota) Del Herbario Nacional Del Ecuador (QCNE) Del Instituto Nacional De Biodiversidad (INABIO)
Artículo/Article Sección/Section B 12 (20), 38-71 Listado de la colección de hongos (Ascomycota y Basidiomycota) del Herbario Nacional del Ecuador (QCNE) del Instituto Nacional de Biodiversidad (INABIO) Rosa Batallas-Molina1, Gabriela Fernanda Moya-Marcalla2, Daniel Navas Muñoz3 1Instituto Nacional de Biodiversidad del Ecuador (INABIO), colección micológica del Herbario Nacional del Ecuador (QCNE), Av. Río Coca E6-115 e Isla Fernandina, sector Jipijapa, Quito, Ecuador 2Programa de Maestría en Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica (UTI), Machala y Sabanilla, Quito, Ecuador 3Carrera en Ingeniería en Biodiversidad y Recursos Genéticos, Universidad Tecnológica Indoamérica (UTI), Machala y Sabanilla, Quito, Ecuador *Autor para correspondencia / Corresponding author, email: [email protected] Checklist of the fungi collection (Ascomycota and Basidiomycota) of the National Herbarium of Ecuador (QCNE) of the National Institute of Biodiversity (INABIO) Abstract The National Herbarium of Ecuador (QCNE) of the National Institute of Biodiversity (INABIO) preserves the public mycological collection of Ecuador, being the most representative of the country with 6200 specimens between fungi and lichens. The mycological collection started in 1999 with contributions from university students and specialists who deposited their specimens in the cryptogam section of the QCNE Herbarium. Since 2013 the information has been digitized and 4400 records were taken as the basis for this manuscript. The objective of this work is to present the list of species of fungi of the mycological collection of QCNE. The collection of fungi is organized according to the criteria of the most recent specialized literature, and 319 species of fungi are reported, corresponding to samples from the Ascomycota and Basidiomycota divisions.