Deutscher Wetterdienst: Unternehmenskultur Und Strategie

Total Page:16

File Type:pdf, Size:1020Kb

Deutscher Wetterdienst: Unternehmenskultur Und Strategie Corporate culture and strategy through to 2030 Protecting life and property. Producing economic benefits. A word from DWD President Prof. Dr Adrian Our daily lives are shaped by change. phenomena, such as thunderstorms. This also applies to the Deutscher The Deutscher Wetterdienst strives Wetterdienst and its topics of weather to become a central port of call, both and climate. We must be prepared here in Germany and worldwide, for for climate change, globalisation and climate monitoring, climate forecasting digital transformation as well as new and adaptation to climate change. statutory and political assignments to At the same time, we intend to intensify ensure that we can successfully fulfil our international commitments and our legal mandate today and tomorrow. networking – for example in data acquisition, in weather and climate For this reason, we have asked research and in strengthening resili- ourselves the following questions: ence to natural disasters. how might the world change during the next decade, and what must we do Achieving these objectives depends on in order to continue fulfilling our duty our ability to continue attracting skilled to protect life and property and produce and committed employees. We are in economic benefits? competition for the ‘brightest minds’ – nationally and internationally. On the following pages, we present We know full well that, despite our the Deutscher Wetterdienst’s most exciting tasks, we will only be perceived important strategic objectives for the as an attractive employer if we cultivate period 2020–2030 as our response a corporate culture of respect, esteem to these questions about the future. and open communication which fosters We have considered how we can use diversity. Our new guiding principles new technologies in the future to meet are committed to the goal of achieving expectations for more systematic just that. observation and measurement of the „Weather and climate know no borders. To an increasing weather in Germany and globally. extent, this is equally true for meteorology and all the tasks Our aim is to take entirely new and services it involves. This is why co-operation at all research approaches and to assume international levels has become indispensable to the National Meteorological or Hydrological Services. I am very pleased a leading global position in producing that the new strategy of the Deutscher Wetterdienst promotes accurate weather forecasts several Prof. Dr Gerhard Adrian even greater international co-operation.“ days in advance. One particular focus President of the Deutscher Wetterdienst Petteri Taalas will be on forecasting very small-scale Secretary-General of the World Meteorological Organization (WMO) and especially hazardous weather 2 3 The DWD‘s Guiding Principles The Deutscher Wetterdienst (DWD) is ∙ anchored in Germany‘s constitution ∙ established as a federal authority and ∙ legitimised by federal law Values Our work is permeated by respectful co-operation with others, proactive responsibility for the work assigned to us, and appreciation of the role of change as a permanent element of our development and a prerequisite for Vision Mission the future. The DWD is an innovative meteoro- As the Federal Republic of Germany’s logical and climatological service which meteorological and climatological Our management culture is shaped by provides products and services based service, we stand for high levels of intense knowledge sharing, a culture on advanced scientific and operational quality, reliability and sustainability. of open information and principles expertise, addresses present and future We use analyses, forecasts and which enable employees to reconcile challenges and offers solutions in projections to describe the impact the demands of work, family and response. of meteorological and climatological personal needs. processes, including climate change. We answer questions on the weather We operate a high-performance We communicate with others in search and climate. meteorological infrastructure for of solutions. Open-mindedness and this purpose. a respectful and critical discourse are We are confident about the value of our sought and valued. work for society as a whole. We are actively engaged in the pursuit of new knowledge. Our strength lies in achieving more by We are passionate about our technical working together across the board and and scientific assignments and the We use modern digital technologies borders without any preconceptions pursuit of new knowledge. to provide the meteorological and and by accepting difference and climatological services our customers We make committed and recognised diversity. and parent/mandating authorities need contributions in co-operation with to take informed decisions. Our expertise and qualifications are a diverse range of national and actively developed, complement each international partners around the We co-operate with our national and other in teamwork and promote the world. international partners on the basis work of the DWD as a whole. of professional expertise, mutual confidence and trust. 4 5 The DWD’s Strategy 2020–2030 In order for the DWD to fulfil its legal mandate, we must press ahead with research and technological develop- ments in various areas, at the national level and in close co-operation with our A future full of challenges as amended in 2017, mandates us to international partners. We must also deliver public meteorological services adapt the communication of climate Drier and hotter summers with more to protect life and property and safe- and weather information to the needs heavy rainfall events are a threat to our guard key sectors of infrastructure in of our customers and society‘s changing population, damage our infrastructure Germany. Our mission is to engage in information culture. This also applies and are detrimental for agriculture research and offer advice on climate with regard to our responsibility as across large stretches of Europe. change and its impacts. an employer. The DWD’s regular annual press con- ference in Berlin is an opportunity In other words, the DWD‘s task is for broad, national media coverage to provide dependable support to of issues, such as extreme weather Germany and – within the framework events, climate change adaptation and of international co-operation – the services for the protection of life and international community in this period property. These examples demonstrate of rapid change. In this context, we eloquently how technical and scientific supply all our data free of charge to issues, such as climate change or the the Federation, the federal states and predictability of severe weather, as well the local and district authorities, which as advances in information and data require this information in order to technology are now enmeshed with fulfil their tasks in the fields of disaster action at all levels of society and with control, civil and environmental the building of resilient communities. protection. We also offer most of our data free of charge to the general These three challenges – scientific, public at www.dwd.de/opendata and technical and social – in a world of in the Geoportal for spatial data accelerating change are the context of Germany‘s national spatial data in which the DWD operates. The infrastructure (www.geoportal.de). Deutscher Wetterdienst Act (DWDG), 6 7 The ten lines of development in the Strategy 2020–2030 Our key task is to monitor the weather and the climate, to issue warnings in good time and to offer relevant advice. The challenge in this case lies in the technical recording and most precise scientific description possible of an extreme breadth of different atmospheric processes on all temporal and spatial scales. This information must then be processed and commu- We therefore face a future full of com- intelligently processed and transformed nicated in a way that is useful for plex, challenging and fascinating tasks. into information and knowledge. This users. The macro and micro aspects Our response is to concentrate all information must be made intuitively of weather and climate interact with our energies and focus our Strategy understandable and be communicated each other in space and time, beginning 2020–2030 on ten lines of development to our customers and the general public with small-scale thunderstorm cells, which will be critical in the next in a diverse range of products. The for example, right through to large- decade. One part naturally concerns remaining lines of development concern scale seasonal weather cycles and the the scientific and technological our future challenges as an employer, process of climate change over production of increasingly complex whereby the DWD is fortunate in being a period of decades. weather and climate services. Another very popular, particularly among highly part concentrates on how the growing qualified professionals, precisely flood of data in which this will result because it engages in interesting work – quite literally ‘big data’ – can be of great relevance to society at large. 8 9 First port of call for weather and climate 10 11 1. Data acquisition in the future On a global scale, this concerns the worldwide network of measurement The worldwide meteorological obser- stations hosted for the World vation system, to which the DWD Meteorological Organization (WMO), makes a substantial contribution, of which our observation network has to capture all these processes as forms a part. New ground-based seamlessly and in as much detail as remote sensing systems, which the current state of the art permits. produce a far more precise image of The precision with which weather can the three-dimensional structure of the be forecast and the climate predicted atmosphere, will become increasingly depends on the exactness of the avail- important. Our weather radar stations able data on the current state of the have played a key role over many years global ‘weather brew’. Our strategic and four more radar stations will close data acquisition line of development the existing gaps in the network by therefore focuses on the future of 2025. This concerns the metropolitan observing systems.
Recommended publications
  • 30Th Computing Representatives' Meeting
    30th Computing Representatives’ meeting 16-18 May 2018 List of participants Aalto, Mikko FMI Finland [email protected] Allouache, Caroline Meteo France France [email protected] Andritsos, Nikolaos HNMS, Computing Representative Greece [email protected] Corredor, Raul AEMET Spain [email protected] Curic, Sinisa RHMSS Serbia [email protected] Daly, Thomas Met Éireann Ireland [email protected] de Vries, Hans KNMI Netherlands [email protected] Elliott, Simon EUMETSAT Germany [email protected] Facciorusso, Leonardo Italian Weather Center Italy [email protected] Gal, Pavel CHMI Czech Republic [email protected] Giraud, Remy Météo-France France [email protected] Ihasz, Istvan OMSZ Hungary [email protected] Kushida, Noriyuki CTBTO Austria [email protected] ECMWF, Shinfield Park, Reading, Berkshire, RG2 9AX, UK Langer, Matthias ZAMG Austria [email protected] Magnússon, Garðar Þór Icelandic Met Office Iceland [email protected] Malovic, Vladimir DHMZ Croatia [email protected] Melanitis, Dimitra Royal Meteorologic Institute Belgium [email protected] Milton, Roger Met Office United Kingdom [email protected] Ostroveanu, Catalin National Meteorological Administration Romania [email protected] Pejcoch, Martin Grønlien MET Norway Norway [email protected] Reiter, Manuel Deutscher Wetterdienst Germany [email protected] Spaniel, Oldrich SHMU Slovakia [email protected] Speranza, Luciano Italian Weather Center (Air Force) Italy [email protected]
    [Show full text]
  • ECMWF 41R2 Press Release
    PRESS RELEASE 10 MARCH 2016 EUROPEAN MEDIUM-RANGE WEATHER FORECAST MODEL UPGRADED TO BEST EVER • More accurate global weather predictions at record-breaking resolution • Number of grid points tripled to 900 million, evenly distributed around the globe • Gain in predictability of up to half a day at same level of quality Years of scientific and technical work came to fruition today as the European Centre for Medium-Range Weather Forecasts (ECMWF) launched a significant set of upgrades, dramatically increasing the quality of both its high-resolution and its ensemble forecasts. The changes nearly halve the distance between global weather prediction points, substantially increasing the effective resolution of the final forecast. As a result, ECMWF’s numerical weather predictions, which are widely used by Europe’s meteorological services, are more accurate than they have ever been before. These model upgrades represent a huge leap forward for ECMWF’s 34 Member and Co- operating States, giving National Meteorological Services access to higher resolution and improved data to help them deliver weather forecast services. Europe’s weather can now be predicted with more detail, with greater accuracy, and as a result, up to half a day further ahead. The upgrades are set to offer improved range, reliability and accuracy to provide earlier warnings of adverse conditions and extreme weather to help protect property and vital infrastructure, and to aid long-term planning for weather-dependent industries. Speaking for Météo-France, Nicole Girardot commented: “The ECMWF upgrade to its model resolution represents a significant step. The advances brought by this new version will allow Météo-France to improve the quality of its own forecasts and the wind forcing for warnings of poor air quality and dangerous conditions at sea.
    [Show full text]
  • Page 1 of 22 Last Name First Name Affiliation Country A. Pastor Maria
    EMS2019: list of participants who agreed to have their name published on-line (version of 13 September 2019, 11:30 CEST) Last name First name Affiliation Country A. Pastor Maria AEMET Spain Aaltonen Ari Finnish Meteorological Institute Finland Akansu Elisa Deutscher Wetterdienst Germany Albus-Moore Alexandra EUMETNET Belgium Altava-Ortiz Vicent SMC-Meteorological Service of Catalonia Spain Alvarez-Castro Carmen FONDAZIONE CMCC Italy Amorim Inês University of Porto, Portugal Portugal Andersen Henrik Steen European Environment Agency Denmark Andrade Cristina Polytechnic Institute of Tomar, NHRC.ipt Portugal Andreas Dahl Larsen Morten Technical University of Denmark Denmark Andrée Elin Technical University of Denmark Denmark Andrews Martin Met Office Hadley Centre United Kingdom Aniśkiewicz Paulina Institute of Oceanology PAN Poland Asgarimehr Milad German Research Centre for Geosciences Germany Audouin Olivier Météo France, CNRM France Badger Jake Technical University of Denmark Denmark Bange Jens University of Tübingen Germany Barantiev Damyan CAWRI-BAS Bulgaria Baronetti Alice University of Turin Italy Barrett Bradford U.S. Naval Academy United States Barry James University of Heidelberg Germany Båserud Line Norwegian Meteorological Institute Norway Batchvarova Ekaterina CAWRI-BAS Bulgaria Bazile Eric Météo-France/CNRS CNRM-UMR3589 France Beljaars Anton ECMWF United Kingdom Bell Louisa Climate Service Center Germany, HZG Germany Benassi Marianna CMCC FOUNDATION Italy Benestad Rasmus Norwegian Meteorological Institute Norway Benson Randall
    [Show full text]
  • 11.1 How to Make an International Meteorological Workstation Project Successful
    11.1 HOW TO MAKE AN INTERNATIONAL METEOROLOGICAL WORKSTATION PROJECT SUCCESSFUL Hans-Joachim Koppert 1 Deutscher Wetterdienst, Offenbach, Germany Torben Strunge Pedersen Danish Meteorological Institute, Copenhagen, Denmark Bruno Zürcher MeteoSwiss, Zürich, Switzerland Paul Joe Meteorological Service of Canada, Toronto, Canada 1. INTRODUCTION partners. In the course of the project, they are refined when the respective sub-project work- The Deutsche Wetterdienst (DWD) together packages are initiated. with the German Military Geophysical Service (GMGO) started a new Meteorological Workstation project (NinJo) in 2000. Soon thereafter Meteo- Swiss and the Danish Meteorological Institute (DMI) joined the project. Just recently, the Meteorological Service of Canada (MSC) decided to become a member of the NinJo consortium. The aim of the project is to replace aging workstation systems (Kusch 1994, Koppert 1997) and to provide an unified environment to support forecasting and warning operations. Besides the development of new, or the integration of recently developed applications, it is necessary to provide most of the capabilities of the existing systems. Forecasters are conservative and often would like to stay with their old tools. So we are facing an enormous pressure to implement a system that does (nearly) everything better. Since NinJo is a multi-national project with 5 Figure 1: A NinJo window with 3 scenes: gridded partners, diverse hardware and software infra- data (left), surface observations ( top right), satellite structures, distributed development sites, and local image (bottom right) meteorological needs, a strong requirement is to built the software with a sound software architecture The following list shows NinJo’s main features : that could easily be adapted to the needs of the partners.
    [Show full text]
  • DVAS - Data Visualization and Analysis Software: Processing and Analysis of the Radiosonding Data for the Next WMO Upper-Air Instruments Intercomparison UAII2021
    Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss DVAS - Data Visualization and Analysis Software: processing and analysis of the radiosonding data for the next WMO Upper-Air Instruments Intercomparison UAII2021 Frédéric P.A. Vogt1, Giovanni Martucci1, Ruud Dirksen2, Gonzague Romanens1, Luca Modolo1, Alexander Haefele1, Michael Sommer2, Christian Félix1, Volker Lehmann2, Holger Voemel3, David Edwards4, Stewart Taylor5, Tom Gardiner6, Mohd. Imran Ansari7, Emad Eldin Mahmoud8, Tim Oakley9, Isabelle Ruedi9, Krunoslav Premec9, Franz Berger2, and Bertrand Calpini1 1 - MeteoSwiss, Payerne, Switzerland ([email protected]); 2 - Lindenberg Meteorological Observatory, Deutscher Wetterdienst, Lindenberg, Germany; 3 - University Corporation for Atmospheric Research, UCAR, Boulder, CO, USA; 4 - Met office, Exeter, United Kingdom; 5 - EUMETNET; 6 - National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW Middlesex, UK; 7 - Indian Meteorological Department (IMD), Delhi, India; 8 - Egyptian Meteorological Authority, Cairo, Egypt; 9 - World Meteorological Organization (WMO), Geneva, Switzerland D701 ¦ EGU2020 -17779 ¦ 07.05.2020 1 WMO Upper-Air Instruments Intercomparison UAII2021 What: international comparison of upper-air instrument performances. Based on laboratory radiosonde test measurements, and multi-payload radiosonde flights in combination with ground-based remote sensing and in-situ aircraft measurements. When & Where: December 2020 (lab); August 2021 (flights) @ Lindenberg, Germany. Who: DWD (lead), MeteoSwiss, under the auspices of the WMO. Primary goals: 1. To test and evaluate as many operational radiosonde systems as possible at the same location and time. 2. To characterize the individual radiosondes with respect to their reproducibility and to determine the uncertainty of the different measured parameters. 3. To compare the different radiosonde systems to characterized reference systems employed in the GCOS Reference Upper Air Network (GRUAN).
    [Show full text]
  • DWD's Climate Services Help to Adapt to Climate Change As Well As Possible
    2010s 2000s 1990s 1980s 1970s 1960s 1950s DWD’s Climate Services Observing – Modelling – Consulting Foreword Dear readers, Climate change presents us with great challenges. Extreme weather events and changes in the climate can cause humanitarian disasters and huge damage to the environment. Decision-makers in politics, administration and business require meaningful information about the changing climate and the climate of the future to be able to develop preventive measures against the consequences of climate change. There is therefore demand for high spatial resolution information as well as information for specific fields of action, such as water management and health. The Deutscher Wetterdienst (DWD) regards the provision of climate information as a comprehen- sive and user-oriented service. The DWD has the biggest climate data collection in the whole of Germany and offers many years of experience in climate monitoring, climate modelling on different space and timescales and model result evaluation. The DWD is also well networked with other scientific institutions at the national and international level and ensures that customers are given state-of-the-art scientific information. Besides supplying data and information on various portals, a key aspect of our mission is communicating directly with and providing consultancy services to our customers. This also helps enhance users’ capability to use climate data in various areas of application. The DWD also assists in the development of climate services in other countries, including, in particular, developing countries. All these activities take account of the elements for successful climate services recommended by the Global Framework for Climate Services. Our aim in publishing this brochure is to provide a readable overview of all the climate services provided by the DWD.
    [Show full text]
  • The Model Chain of the Deutscher Wetterdienst and Its Use in Operational Weather Forecasting
    THE MODEL CHAIN OF THE DEUTSCHER WETTERDIENST AND ITS USE IN OPERATIONAL WEATHER FORECASTING M. KURZ Head , Department of Weather Forecasting, DWI) INTRODUCTION According to law the Deutscher Wetterdienst (DWD) has to guarantee the meteorological safety of air and sea navigation. The DWD has also to provide forecast information for a wide variety of users including the public, private enter- prises and media. These tasks are carried out in the business area ,Forecast Cus- tomers and media,, of the new organizational structure of the DWD. Within the international collaboration of the National Meteorological and Hydrological Services (NMHS's) organized by the World Meteorological Organi- zation (WMO), the DWD runs one of the Regional Specialized Meteorological Centres (RSMC's) of the Global Data Processing System (GDPS) of the World Weather Watch (WWW). In this function the DWD has to provide basic weather analyses and forecasts for Europe and the North Atlantic. The backbone of all activities of the DWD in weather forecasting is a chain of Numerical Weather Prediction (NWP)-models providing analyses as well as forecasts up to seven days ahead. In this paper this model chain and its use in operational forecasting is described. TI IF MODEL Cl IAIN The model chain of the DWD consists of three NWP models, namely - a global model (GM), - a limited area model covering Europe and the North Atlantic (called ,Europa- Modell,,, EM), and - a high resolution model covering Germany and the neighbouring countries (called ,Deutschland-Modell,,, DM). IBudl. Soc. (a . Cicnc.], Vol. XV, Mini. 1, 1995 120 (/// 1101) 13 (ILILV'OFFI/F/)EC7:c'C/I//I)V Ill /2/ (IL VII The global model (GM) has been derived from a similar model of the Euro- pean Centre for Medium Range Weather Forecasting (ECMWF).
    [Show full text]
  • Kunst Im Deutschen Wetterdienst
    Kunst im Deutschen Wetterdienst Patrick Raddatz Before And After Science „Aufgabe von Kunst ist es heute, Chaos in die Ordnung zu bringen“ Kunst im Deutschen Wetterdienst Als ich diesen Aphorismus des Philosophen Theodor Adorno (1903 – 1969) neulich in einem populären Kunst - magazin las, kamen mir unwillkürlich die Arbeiten von Patrick Raddatz in den Sinn, die unsere Kunst-Jury gerade für die Ausstellung des Deutschen Wetterdienstes im Rahmen der Offenbacher Kunstansichten 2013 ausgewählt hatte. Ich stellte mir die Frage, ob der in Berlin geborene Künstler mit seinen „Nebelbildern“ Partrick Raddatz eigentlich auch ein Chaos in einer vorgegebenen Ordnung schaffen will. Den von ihm abgelichteten Before And After Science menschenleeren Räumen wird durch künstlichen Nebel quasi der Boden entzogen, die Trittsicherheit geht verloren, das Ungewisse lauert in einer nicht zu fassenden Tiefe. Die vermeintliche Ruhe löst Unbehagen beim Betrachter aus. Chaos? Das Adorno-Zitat geht noch weiter: „Künstlerische Produktivität ist das Vermögen der Willkür im Unwillkürlichen.“ Dieser Satz war mir äußerst willkommen, glaubte ich doch damit Patrick Raddatz durch - schaut zu haben. Habe ich das wirklich oder denkt unser Protagonist viel subtiler? Diese Frage mag ein Ein - stieg in unsere Ausstellung sein, die dem Konzeptkünstler und Fotografen gewidmet ist, der an der Offenbacher Hochschule für Gestaltung studiert hat. Wir sind Patrick Raddatz besonders dankbar, dass er einige Arbeiten in den Räumen unserer Offenbacher Zentrale gefertigt hat, nämlich in unserem TV-Studio und unseren Laboreinrichtungen. Ungewohnte Ansichten! Neue Einsichten? Der Deutsche Wetterdienst versteht sein kulturelles Engagement als gesellschaftlichen Auftrag und selbst - verständlichen Bestandteil seiner Unternehmenskultur. Die Kunstwerke in unserem Haus sollen keine bloßen Dekorationsobjekte sein, sondern unsere Räumlichkeiten zu anregenden Kommunikations- und Begegnungs - stätten machen.
    [Show full text]
  • Book of Abstracts
    Book of Abstracts DOI: 10.5676/DWD pub/nwv/iccarus 2021 Max-Planck-Institut für Meteorologie DOI: 10.5676/DWD pub/nwv/iccarus 2021 The CC license “BY-NC-ND” allows others only to download the publication and share it with others as long as they credit the publication, but they can’t change it in any way or use it commercially. Publisher Editors Deutscher Wetterdienst Daniel Rieger, DWD, Business Area “Research and Development” [email protected] Frankfurter Straße 135 Christian Steger, DWD, 63067 Offenbach [email protected] www.dwd.de Contents 1 Invited & Solicited Talks7 Developing the ICON-A model for direct QBO simulations on GPUs...........7 ICON-Land/JSBACH: A Framework for the Land Component in the ICON Modeling System.................................7 Advances in forecast quality achieved with ICON-D2, and upcoming further development steps................................8 Once upon a Time at DWD - The COSMO-Model.....................8 HPC Infrastructure of ICON for high-res simulations....................9 Waves and drag processes in atmospheric models......................9 Status and applications of the modelling system ICON-ART................9 2 Special Session: ICON-Seamless 11 Roadmap to ICON-Seamless................................. 11 The ICON-System at MPI-M and its application for Climate Simula- tions........................................... 11 Sapphire - towards the next generation of Earth System models.............. 11 3 Climate Model Applications 13 Tuning ICON-NWP for Climate applications........................ 13 Impact of Urban Canopy Parameters on a Megacity's Modelled Thermal Environment. 13 COSMO-CLM Performance and Projection of Daily and Hourly Tem- peratures Reaching 50◦C or Higher in Southern Iraq................. 14 COSMO-CLM Russian Arctic hindcast 1980 { 2016: modelling work- flow, evaluation techniques and preliminary assessment...............
    [Show full text]
  • Kurzportrait Deutscher Wetterdienst
    Informationen zu Wetter und Klima aus einer Hand Der Deutsche Wetterdienst ◀ Wetterballonaufstieg auf dem Hohenpeißenberg, der weltweit ältesten Bergwetterwarte Qualität, Zuverlässigkeit und Kundenorientierung Der DWD ist als einziger Komplettanbieter in Sachen Der DWD ist aber nicht nur erste Adresse für Wet­ Wetter und Klima ein kompetenter und zuverlässiger tervorhersagen, sondern liefert auch grundlegende Partner für öffentliche und private Kunden in klimatologische Daten für die langfristige Planung Deutschland. So haben die Wetter- und Unwettervor­ im Bauwesen, der Wasserwirtschaft oder für die hersagen des DWD unter anderem im Winter großen Nutzung regenerativer Energien. Er bietet den Kom­ Einfluss: Die Straßen- und Autobahnmeistereien nut­ munen, Ländern oder Bundeseinrichtungen wissen­ zen die Informationen des DWD, um Straßen recht­ schaftlich fundierte Beratung und Gutachten, die für zeitig winterfest zu machen und damit die Zahl von eine ökonomische und ökologische Planung gerade in Staus und Unfällen deutlich zu senken. Ähnliches gilt Zeiten des Klimawandels unerlässlich sind. für die Sicherheit in der Luftfahrt und Schifffahrt: Das Wissen über das aktuelle Wetter am Start, Ziel­ Die steigenden Qualitätsansprüche seiner Kunden ort und auf der gesamten Route ist für eine sichere verpflichten den DWD nicht nur zur Lieferung hoch­ Reise unverzichtbar. So verlässt in Deutschland kein wertiger Produkte und Dienstleistungen. Sie sind Wetter und Klima aus einer Hand Schiff den Hafen und kein Flugzeug die Rollbahn auch täglicher Ansporn zur weiteren Verbesserung ohne die Wettervorhersage des DWD. der Produktqualität, Kundenorientierung und Wirt­ Das Wetter und inzwischen auch das Klima sind hauptamtlichen Wetterwarten und Wetterstationen schaftlichkeit – im Interesse der Bürgerinnen und weltweit alltägliche und beliebte Gesprächsthe­ sowie rund 1 750 ehrenamtlich betreuten Mess­ Die Medizinmeteorologen des DWD geben Warnun­ Bürger und der Wirtschaft in Deutschland.
    [Show full text]
  • 2 European Nowcasting Conference
    2nd European Nowcasting Conference BOOK OF ABSTRACT 03 - 05 May 2017, Offenbach, Headquarters of DWD Table of contents The importance of nowcasting in the WMO WWRP strategy 3 The EUMETNET ASIST project 3 Use of Applications in Nowcasting and Very Short Range Forecasting in Europe – a Study within the Framework of the EUMETNET ASIST Project 4 Observations as basis for Nowcasting 5 Radar data - processing and their application in thunderstorm nowcasting at ZAMG 5 Potential uses of the SESAR 3D Radar Reflectivity Mosaic for Aviation Applications in UK Airspace 5 Prediction of Observation Uncertainty using Data Assimilation in an Ensemble-Nowcasting System 6 Aircraft Moisture Observations: Their importance in Nowcasting and NWP 6 The potential of the S-NPP VIIRS DNB from a forecaster’s perspective 7 Potential of the Lightning Mapping Array for the Nowcasting of Severe Weather 7 Lightning characteristics during hailstorms 8 Multi-sensor insight into severe convective events: potential for improving the nowcasting of hailstorms 8 Convective storm nowcasting by remote sensing data combination 9 Convective growth and glaciation with Meteosat in relation to precipitation formation 9 Validation of the satellite-based Thunderstorm Detection and Nowcasting System Cb-global with IAGOS Onboard Measurements 10 A novel multispectral algorithm for the detection, tracking and nowcasting of the thunderstorms using the Meteosat Second Generation images 10 SATICUS - A novel approach for the detection and short-term forecast of thunderstorms. 11 Improving Satellite-based Convective Weather Nowcasts by coupling short-range GOES-R Legacy Sounding NearCasts to Convective Initiation Products 11 Nowcasting technics and systems 12 The Nowcasting SAF (NWC SAF): products and user services.
    [Show full text]
  • Meeting Summary First International Short-Range Numerical Weather Prediction Workshop on Nonhydrostatic Modeling, 11-13 March 1996, Offenbach, Germany
    meeting summary First International Short-Range Numerical Weather Prediction Workshop on Nonhydrostatic Modeling, 11-13 March 1996, Offenbach, Germany J. Steppeler Deutscher Wetterdienst, Offenbach, Germany 1. Introduction Several lead centers exist within SRNWP. Their aim is to increase the level of cooperation within the The First International Short-Range Numerical participating weather services in a particular area. Weather Prediction Workshop on Nonhydrostatic Deutscher Wetterdienst (DWD) has taken on the role Modeling took place from 11 to 13 March in of "lead center for nonhydrostatic modeling." Apart Offenbach, Germany; it is planned to be the first of a from being a forum of scientific exchange, the work- series of workshops. It offered a forum for all aspects shop sought to define the role of the lead center and of atmospheric modeling on a scale small enough that explore the potential of cooperation in this area on the nonhydrostatic models are necessary. These aspects international level. include model development, numerics, physical parameterizations, and applications of models, such as meso-a-scale forecasting, prediction of visibility, 2. Nonhydrostatic models available to or small-scale climate applications. The presentation SRNWP of methods that are currently used operationally with hydrostatic models but have potential for small-scale The section on nonhydrostatic (NH) models pre- modeling was encouraged. Even though the purpose sented five model systems that are currently prepared of the workshop was the development of operational or actually used for use in the practical work of applications, participation from universities and re- weather services. The meso-NH system of Meteo search institutes was encouraged.
    [Show full text]