View Country Assessment Report for Philippines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
American Meteorological Society 2011 Student Conference Paper
Sea Surface Height and Intensity Change in Western North Pacific Typhoons Julianna K. Kurpis, Marino A. Kokolis, and Grace Terdoslavich: Bard High School Early College, Long Island City, New York Jeremy N. Thomas and Natalia N. Solorzano: Digipen Institute of Technology& Northwest Research Associates, Redmond, Washington Abstract Eastern/Central Pacific Hurricane Felicia (2009) Western North Pacific Typhoon Durian (2006) Although the structure of tropical cyclones (TCs) is well known, there are innumerable factors that contribute to their formation and development. The question that we choose to assess is at the very foundation of what conditions are needed for TC genesis and intensification: How does ocean heat content contribute to TC intensity change? Today, it is generally accepted that warm water promotes TC development. Indeed, TCs can be modeled as heat engines that gain energy from the warm water and, in turn, make the sea surface temperature (SST) cooler. Our study tests the relationship between the heat content of the ocean and the intensification process of strong Western North Pacific (WNP) Typhoons (sustained winds greater than 130 knots). We obtained storm track and wind speed data from the Joint Typhoon Warning Center and sea surface height (SSH) data from AVISO as a merged product from altimeters on three satellites: Jason-1, November/December: 25 26 27 28 29 30 1 2 3 4 5 6 Aug: 4 5 6 7 8 9 10 11 12 Jason-2, and Envisat. We used MATLAB to compare the SSH to the wind speeds, The strongest wind for Typhoon Durian occurred when the SSH was below using these as proxies for ocean heat content and intensity, respectively. -
Angat Water Transmission Improvement Project Metro Manila, the Philippines
Angat Water Transmission Improvement Project Metro Manila, The Philippines i Summary Metro Manila also called the National Capital Region (NCR) is situated in the south eastern part of the Philippines. Serving as the main economic culture and educational center, the region is a densely populated metropolitan area. The Angat Water Transmission Improvement Project (AWTIP) was designed to ensure secured and sufficient raw water supply to meet the current and future demands of the rapidly growing population of Metro Manila. The project focuses on the construction of a new 6.3 km tunnel (no. 4), intake structures at the Ipo dam and connecting structures of the transition basins, new aqueduct (no. 6)., rehabilitating and retrofitting of existing tunnels and aqueducts. The project is expected to restore the water transmission capacity of the Angat transmission system which currently operates about the 30% below its design capacity. Given the rapidly growing population of a highly populated Metro Manila, the project would ensure that a maximum capacity of 4.65 million m3/d of raw water is transmitted from the Angat dam at maximum efficiency. In addition, the execution of the project is expected to build the technical capacity of the staffs of the Metropolitan Waterworks and Sewerage System (MWSS), who are the primary administrators of the project. The project features social and economic aspects that are targeted towards improving the livelihood and health conditions of source community’s programs and indigenous people. The project also has in place environmental safeguards that aim at reducing and mitigating direct and indirect impacts on the biotic and abiotic parts of the environment. -
Tropical Depression USMAN and the Heavy Rainfall Event of 28-29 December 2018
Republic of the Philippines DEPARTMENT OF SCIENCE AND TECHNOLOGY Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) Weather Division TROPICAL CYCLONE REPORT Tropical Depression USMAN and the Heavy Rainfall Event of 28-29 December 2018 st Tropical Depression USMAN is the 21 and last Philippine tropical cyclone for the 2018 season and only tropical cyclone within the Philippine Area of Responsibility (PAR) for the month of December 2018. As a tropical depression during its entire lifespan, USMAN did not bear any international name from the Regional Specialized Meteorological Center (RSMC) in Tokyo. Although relatively weak by meteorological standards, this tropical depression was one of the key weather systems that caused the Heavy Rainfall Event of 28-29 December 2018 over large portions of Southern Luzon and Eastern Visayas that resulted in hundreds of casualties and millions of pesos in damages to personal and public property. Meteorological History USMAN developed from a tropical disturbance embedded within a near-equatorial buffer zone (Conover and Sadler 1960; Ramage 1995) situated over the western portion of the Caroline Islands. This disturbance was first noted on the surface weather chart in the afternoon of 23 December 2018. PAGASA first noted the disturbance as a tropical depression at 2:00 PM of 25 December with maximum winds of 45 km/h and central pressure of 1002 hPa as the system approached Palau. USMAN entered the PAR at 3:00 PM of the same day. (a) (b) Fig. 1. (a) Himawari-8 RGB composite image at 2:00 PM on 28 December and (b) DOST-PAGASA warning best track of Tropical Depression USMAN. -
OFFICIALS SCHOOLS L(Cpur)Ltc (Jr Rllri I-Fliilpprirb$ 'Fi3$F# Department of Educati Ps.Frhn
Republic of the Philippines Department of Education National Capital Region DIVISION OF CITY SCHOOLS Quezon City SFHS Comp., Nueva Ecija St., Bantay, Quezon City r 21,2011 Division Memorandum No. .'&E s. 2Afi SYNCHRONIZING WTH THE PHILIPPINE ST, TIME To: Asst. Schools Division Superintenden Divi sion/District $upervisors/Coordi Elementary/Secondary School Princi Head Teachers/Officers ln-Charge Chief Administrative Officer Heads, Administrative Units For the information and guidance of ail d, enclosed is DepEd Order No. 86, s, 2A11 from Br. ARMIN A. LUIS RO FSC, Secretary, Department of Education, Meralco Avenue, Pasig Ci , dated November 3, 2011, on the subject: SyTVCHRONIZING WITH THE LIPPINE STANDARD TIME, which is self-explanaiory. lmmediate and wide dissemination of this Memo ndum is desired CORAZON C. RUBI , cEso vt $chools Division Su rintendent Reference: None To be indicated in the Perpetual lndex under the following subjects: BUREAUS AND OFFICES POLICY OFFICIALS SCHOOLS l(CpUr)ltc (Jr rllri I-flIilpprirb$ 'fi3$F# Department of Educati Ps.frHn 0 3 ?011 DepEdORDER No.$$, s. 2O1l SYNCHRONIZING W:ITH THE PIIEIPPINE ST To: Undersecretaries Assistant Secretari.es Bureau Directors Directors of Services, Centers, and Heads of Units Regional Directors Schools Division/City Superintendents !-i Fleads, Public Elementary Schools A11 Others Concerrred t. To s5mchronize al7 activities of the Department of Edu {DepEd) from the Central Ofhce to the school level, all DepEd Offices are here directed to set all clocks inside offices and school properties including time ing devices (a1so known as bundy clocks, clock card machines, or punch c to match the Philippine Standard Time (PST) established by the Departme t of Science and Technologr {DOST) through the Philippine Atmospheric, Geophysicerl and Astronomical Services Administration (PAGASA). -
A Domestication Strategy of Indigenous Premium Timber Species by Smallholders in Central Visayas and Northern Mindanao, the Philippines
A DOMESTICATION STRATEGY OF INDIGENOUS PREMIUM TIMBER SPECIES BY SMALLHOLDERS IN CENTRAL VISAYAS AND NORTHERN MINDANAO, THE PHILIPPINES Autor: Iria Soto Embodas Supervisors: Hugo de Boer and Manuel Bertomeu Garcia Department: Systematic Botany, Uppsala University Examyear: 2007 Study points: 20 p Table of contents PAGE 1. INTRODUCTION 1 2. CONTEXT OF THE STUDY AND RATIONALE 3 3. OBJECTIVES OF THE STUDY 18 4. ORGANIZATION OF THE STUDY 19 5. METHODOLOGY 20 6. RESULTS 28 7. DISCUSSION: CURRENT CONSTRAINTS AND OPPORTUNITIES FOR DOMESTICATING PREMIUM TIMBER SPECIES 75 8. TOWARDS REFORESTATION WITH PREMIUM TIMBER SPECIES IN THE PHILIPPINES: A PROPOSAL FOR A TREE 81 DOMESTICATION STRATEGY 9. REFERENCES 91 1. INTRODUCTION The importance of the preservation of the tropical rainforest is discussed all over the world (e.g. 1972 Stockholm Conference, 1975 Helsinki Conference, 1992 Rio de Janeiro Earth Summit, and the 2002 Johannesburg World Summit on Sustainable Development). Tropical rainforest has been recognized as one of the main elements for maintaining climatic conditions, for the prevention of impoverishment of human societies and for the maintenance of biodiversity, since they support an immense richness of life (Withmore, 1990). In addition sustainable management of the environment and elimination of absolute poverty are included as the 21 st Century most important challenges embedded in the Millennium Development Goals. The forest of Southeast Asia constitutes, after the South American, the second most extensive rainforest formation in the world. The archipelago of tropical Southeast Asia is one of the world's great reserves of biodiversity and endemism. This holds true for The Philippines in particular: it is one of the most important “biodiversity hotspots” .1. -
Cruising Guide to the Philippines
Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used. -
GIS and Remote Sensing in the Assessment of Magat Watershed in the Philippines
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Use GIS and Remote Sensing in the Assessment of Magat Watershed in the Philippines A thesis presented in partial fulfilment of the requirements for the degree of Master of Environmental Management Massey University, Turitea Campus, Palmerston North, New Zealand Emerson Tattao 2010 Abstract The Philippine watersheds are continually being degraded— thus threatening the supply of water in the country. The government has recognised the need for effective monitoring and management to avert the declining condition of these watersheds. This study explores the applications of remote sensing and Geographical Information Systems (GIS), in the collection of information and analysis of data, in order to support the development of effective critical watershed management strategies. Remote sensing was used to identify and classify the land cover in the study area. Both supervised and unsupervised methods were employed to establish the most appropriate technique in watershed land cover classification. GIS technology was utilised for the analysis of the land cover data and soil erosion modelling. The watershed boundary was delineated from a digital elevation model, using the hydrological tools in GIS. The watershed classification revealed a high percentage of grassland and increasing agricultural land use, in the study area. The soil erosion modelling showed an extremely high erosion risk in the bare lands and a high erosion risk in the agriculture areas. -
30Th Computing Representatives' Meeting
30th Computing Representatives’ meeting 16-18 May 2018 List of participants Aalto, Mikko FMI Finland [email protected] Allouache, Caroline Meteo France France [email protected] Andritsos, Nikolaos HNMS, Computing Representative Greece [email protected] Corredor, Raul AEMET Spain [email protected] Curic, Sinisa RHMSS Serbia [email protected] Daly, Thomas Met Éireann Ireland [email protected] de Vries, Hans KNMI Netherlands [email protected] Elliott, Simon EUMETSAT Germany [email protected] Facciorusso, Leonardo Italian Weather Center Italy [email protected] Gal, Pavel CHMI Czech Republic [email protected] Giraud, Remy Météo-France France [email protected] Ihasz, Istvan OMSZ Hungary [email protected] Kushida, Noriyuki CTBTO Austria [email protected] ECMWF, Shinfield Park, Reading, Berkshire, RG2 9AX, UK Langer, Matthias ZAMG Austria [email protected] Magnússon, Garðar Þór Icelandic Met Office Iceland [email protected] Malovic, Vladimir DHMZ Croatia [email protected] Melanitis, Dimitra Royal Meteorologic Institute Belgium [email protected] Milton, Roger Met Office United Kingdom [email protected] Ostroveanu, Catalin National Meteorological Administration Romania [email protected] Pejcoch, Martin Grønlien MET Norway Norway [email protected] Reiter, Manuel Deutscher Wetterdienst Germany [email protected] Spaniel, Oldrich SHMU Slovakia [email protected] Speranza, Luciano Italian Weather Center (Air Force) Italy [email protected] -
ECMWF 41R2 Press Release
PRESS RELEASE 10 MARCH 2016 EUROPEAN MEDIUM-RANGE WEATHER FORECAST MODEL UPGRADED TO BEST EVER • More accurate global weather predictions at record-breaking resolution • Number of grid points tripled to 900 million, evenly distributed around the globe • Gain in predictability of up to half a day at same level of quality Years of scientific and technical work came to fruition today as the European Centre for Medium-Range Weather Forecasts (ECMWF) launched a significant set of upgrades, dramatically increasing the quality of both its high-resolution and its ensemble forecasts. The changes nearly halve the distance between global weather prediction points, substantially increasing the effective resolution of the final forecast. As a result, ECMWF’s numerical weather predictions, which are widely used by Europe’s meteorological services, are more accurate than they have ever been before. These model upgrades represent a huge leap forward for ECMWF’s 34 Member and Co- operating States, giving National Meteorological Services access to higher resolution and improved data to help them deliver weather forecast services. Europe’s weather can now be predicted with more detail, with greater accuracy, and as a result, up to half a day further ahead. The upgrades are set to offer improved range, reliability and accuracy to provide earlier warnings of adverse conditions and extreme weather to help protect property and vital infrastructure, and to aid long-term planning for weather-dependent industries. Speaking for Météo-France, Nicole Girardot commented: “The ECMWF upgrade to its model resolution represents a significant step. The advances brought by this new version will allow Météo-France to improve the quality of its own forecasts and the wind forcing for warnings of poor air quality and dangerous conditions at sea. -
Cordillera Energy Development: Car As A
LEGEND WATERSHED BOUNDARY N RIVERS CORDILLERACORDILLERA HYDRO ELECTRIC PLANT (EXISTING) HYDRO PROVINCE OF ELECTRIC PLANT ILOCOS NORTE (ON-GOING) ABULOG-APAYAO RIVER ENERGY MINI/SMALL-HYDRO PROVINCE OF ENERGY ELECTRIC PLANT APAYAO (PROPOSED) SALTAN B 24 M.W. PASIL B 20 M.W. PASIL C 22 M.W. DEVELOPMENT: PASIL D 17 M.W. DEVELOPMENT: CHICO RIVER TANUDAN D 27 M.W. PROVINCE OF ABRA CARCAR ASAS AA PROVINCE OF KALINGA TINGLAYAN B 21 M.W AMBURAYAN PROVINCE OF RIVER ISABELA MAJORMAJOR SIFFU-MALIG RIVER BAKUN AB 45 M.W MOUNTAIN PROVINCE NALATANG A BAKUN 29.8 M.W. 70 M.W. HYDROPOWERHYDROPOWER PROVINCE OF ILOCOS SUR AMBURAYAN C MAGAT RIVER 29.6 M.W. PROVINCE OF IFUGAO NAGUILIAN NALATANG B 45.4 M.W. RIVER PROVINCE OF (360 M.W.) LA UNION MAGAT PRODUCERPRODUCER AMBURAYAN A PROVINCE OF NUEVA VIZCAYA 33.8 M.W AGNO RIVER Dir. Juan B. Ngalob AMBUKLAO( 75 M.W.) PROVINCE OF BENGUET ARINGAY 10 50 10 20 30kms RIVER BINGA(100 M.W.) GRAPHICAL SCALE NEDA-CAR CORDILLERA ADMINISTRATIVE REGION SAN ROQUE(345 M.W.) POWER GENERATING BUED RIVER FACILITIES COMPOSED BY:NEDA-CAR/jvcjr REF: PCGS; NWRB; DENR DATE: 30 JANUARY 2002 FN: ENERGY PRESENTATIONPRESENTATION OUTLINEOUTLINE Î Concept of the Key Focus Area: A CAR RDP Component Î Regional Power Situation Î Development Challenges & Opportunities Î Development Prospects Î Regional Specific Concerns/ Issues Concept of the Key Focus Area: A CAR RDP Component Cordillera is envisioned to be a major hydropower producer in Northern Luzon. Car’s hydropower potential is estimated at 3,580 mw or 27% of the country’s potential. -
A Homogenised Daily Temperature Data Set for Australia
A homogenised daily temperature data set for Australia Blair Trewin and Simon Grainger Climate Information Services Australian Bureau of Meteorology [email protected] 1. What observations are available to support long-term 2. The ACORN-SAT network and data 3. Why do we need a complex adjustment algorithm? temperature analysis in Australia? 112 locations were selected for the Australian Climate Observations Reference Network – The impact of an inhomogeneity on temperature observations is not necessarily uniform Surface Air Temperature (ACORN-SAT) network (Figure 2). 60 of these 112 locations have throughout the year. Inhomogeneities may have a seasonal cycle; for example, if a site moves The first systematic long-term temperature observations in Australia began in the mid-19th digitised daily data extending back to 1910 (in many cases, from a composite of two or more from a coastal location to one which is more continental, the impact on maximum century, although some fragmented short-term observations were made at various locations stations in close proximity to each other). A number of key stations in central Australia opened temperatures is likely to be largest during the summer when sea breezes are a more since shortly after European settlement in 1788. in the 1940s and 1950s. Much pre-1957 Australian daily temperature data remains to be significant influence. digitised, and about 20 more stations are potential candidates for addition to the data set once Until 1901, Australia was governed as six separate British colonies (each with their own their pre-1957 data are available. Figure 3 shows an example of a case where there is no significant inhomogeneity in the government agency responsible for meteorology), and the Bureau of Meteorology was not annual mean but a substantial one in seasonal values. -
Worldwide Marine Radiofacsimile Broadcast Schedules
WORLDWIDE MARINE RADIOFACSIMILE BROADCAST SCHEDULES U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC and ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE January 14, 2021 INTRODUCTION Ships....The U.S. Voluntary Observing Ship (VOS) program needs your help! If your ship is not participating in this worthwhile international program, we urge you to join. Remember, the meteorological agencies that do the weather forecasting cannot help you without input from you. ONLY YOU KNOW THE WEATHER AT YOUR POSITION!! Please report the weather at 0000, 0600, 1200, and 1800 UTC as explained in the National Weather Service Observing Handbook No. 1 for Marine Surface Weather Observations. Within 300 nm of a named hurricane, typhoon or tropical storm, or within 200 nm of U.S. or Canadian waters, also report the weather at 0300, 0900, 1500, and 2100 UTC. Your participation is greatly appreciated by all mariners. For assistance, contact a Port Meteorological Officer (PMO), who will come aboard your vessel and provide all the information you need to observe, code and transmit weather observations. This publication is made available via the Internet at: https://weather.gov/marine/media/rfax.pdf The following webpage contains information on the dissemination of U.S. National Weather Service marine products including radiofax, such as frequency and scheduling information as well as links to products. A listing of other recommended webpages may be found in the Appendix. https://weather.gov/marine This PDF file contains links to http pages and FTPMAIL commands. The links may not be compatible with all PDF readers and e-mail systems. The Internet is not part of the National Weather Service's operational data stream and should never be relied upon as a means to obtain the latest forecast and warning data.