What's So Special About Bottled Drinking Water?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for The
J. Braz. Chem. Soc., Vol. 19, No. 8, 1523-1530, 2008. Printed in Brazil - ©2008 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Article Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for the Separation and Preconcentration of Cationic Surfactants Prior to their Quantitation by Spectrophotometric Method Mohammad Ali Karimi,*,a,b Reza Behjatmanesh-Ardakani,b Ali Aghaei Goudi b and Sara Zali b aDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Sirjan, Iran bDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Ardakan, Iran Um novo método de extração em fase sólida foi desenvolvido para separar e pré-concentrar traços de tensoativos catiônicos, tais como, brometo de dodeciltrimetilamônio (DTAB), brometo de cetiltrimetilamônio (CTAB) e cloreto de cetilpiridínio (CPC). Esse método é baseado na sorção do tensoativo aniônico (AS−), dodecilssulfato de sódio (SDS), sobre a superfície de γ-alumina, + enquanto um cartucho C18 é utilizado para a pré-concentração dos tensoativos catiônicos (CS ). O método espectrofotométrico, utilizado para a determinação dos tensoativos catiônicos, baseia-se na competição entre o corante catiônico, azul de metileno (MB+), e o CS+, para associação e formação do complexo SDS. O íon complexo formado (MB+) pode ser quantitativamente substituído pelo CS+, levando a um aumento da absorvância medida em 662 nm. Foram estabelecidas ótimas condições experimentais para a separação, pré-concentração e determinação dos tensoativos catiônicos. Sob essas condições otimizadas, realizou-se a pré-concentração (2×) e os resultados mostraram que a determinação do CPC, DTAB e CTAB poderia ser realizada nas faixas de concentração de 1×10-5-2×10-4, 4×10-5-5×10-4 and 5×10-5-5×10-4 mol L-1, respectivamente. -
(WHO) Report on Microplastics in Drinking Water
Microplastics in drinking-water Microplastics in drinking-water ISBN 978-92-4-151619-8 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
Guide to Good Hygienic Practices for Packaged Water in Europe
Guide to Good Hygienic Practices for Packaged Water In Europe Guide to Good Hygienic Practices for Packaged Water In Europe GUIDE TO GOOD HYGIENIC PRACTICES FOR PACKAGED WATER IN EUROPE TABLE OF CONTENTS INTRODUCTION 6 ACKNOWLEDGMENTS 6 SCOPE OF THE GUIDE 7 STRUCTURE OF THE GUIDE 7 SECTION 1. GENERAL ASPECTS OF QUALITY & FOOD SAFETY MANAGEMENT 8 1.1. Quality and food safety management systems . 9 1.1.1. Basic principles 9 1.1.2. Documentation 9 1.2. Management responsibility . 10 1.2.1. Management commitment and objectives 10 1.2.2. Quality and food safety policy 10 1.2.3. Quality and food safety management systems planning 10 1.2.4. Responsibility, authority and internal and external communication 10 1.2.5. Management review 11 1.3. Resource management . 12 1.3.1. Provision of resources 12 1.3.2. Human resources 12 1.3.3. Infrastructure and work environment 12 1.4. Control of product quality and safety . 13 1.5. Measurements, analysis and improvement . 14 1.5.1. Monitoring and measurement 14 1.5.2. Analysis of data 14 1.5.3. Continual improvement 14 1.6. Product information and consumer awareness . 15 SECTION 2. PREREQUISITE PROGRAMMES - PRPS 16 2.1. Water resources / Water treatments . 17 2.1.1. Resource development 17 2.1.1.1. General requirements 2.1.1.2. Risk assessment 2.1.2. Resource protection 18 2.1.3. Exploitation of the resource 19 2.1.3.1. Technical requirements 2.1.3.2. Point of abstraction 2.1.3.3. Transfer/piping to the filling operation 2.1.3.4. -
Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests
ENVIRONMENTAL Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests Katrin Schwind, Application Scientist, Analytical Point-of-Use R&D, [email protected] Gunter Decker, Senior Global Product Manager, Analytical Point-of-Use Analytics | Photometry, [email protected] The quality of drinking water is regulated by a variety The determination of iron using the 1,10-phenanthroline of guidelines, such as the EU Council Directive 98/831,2 method according to APHA 3500-Fe B and DIN 38406-1 and WHO guideline.3 The key principles used to define enables photometric measurement down to a level of these limits consider both health hazards and sensory 0.01 mg/L, which is entirely sufficient for many samples.9 and technical reasons. Iron, for example, does not exhibit a risk for health in concentrations usually found If lower LOQs are required, the triazine method can in drinking water.2,3 However, increased concentrations be chosen. In this method, all iron ions are reduced to of iron result in the formation of iron hydroxide iron (II) ions. These react in a thioglycolate-buffered products, which can form deposits in water pipe medium containing a triazine derivative to form a systems and a brown discoloration of the water.4 red-violet complex, which is subsequently determined photometrically.10 Using a 100 mm cell and the Prove To ensure the supply of clear and colorless water, 600 UV-VIS spectrometer, LOQs for iron as low as country-specific limits have been set for drinking 0.0025 mg/L can be achieved. -
Guideline on the Quality of Water for Pharmaceutical Use
20 July 2020 EMA/CHMP/CVMP/QWP/496873/2018 Committee for Medicinal Products for Human Use (CHMP) Committee for Medicinal Products for Veterinary Use (CVMP) Guideline on the quality of water for pharmaceutical use Draft agreed by Quality Working Party 7 June 2018 Adopted by CHMP for release for consultation 28 June 2018 Adopted by CVMP for release for consultation 19 July 2018 Start of public consultation 15 November 2018 End of consultation (deadline for comments) 15 May 2019 Agreed by GMDP IWG 5 March 2020 Agreed by BWP 18 March 2020 Agreed by QWP 6 May 2020 Adopted by CHMP for publication 28 May 2020 Adopted by CVMP for publication 18 June 2020 Date for coming into effect 1 February 2021 This guideline replaces the Note for guidance on quality of water for pharmaceutical use (CPMP/QWP/158/01 EMEA/CVMP/115/01) and CPMP Position Statement on the Quality of Water used in the production of Vaccines for parenteral use (EMEA/CPMP/BWP/1571/02 Rev.1). Keywords Guideline, water for injections, purified water, Ph. Eur. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us An agency of the European Union Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Guideline on the quality of water for pharmaceutical use Table of contents Executive summary ..................................................................................... 3 1. Introduction (background) ...................................................................... 3 2. Scope....................................................................................................... 4 3. -
Find Your Brand
Find your brand - Ratings for 173 bottled waters The Environmental Working Group rated 173 bottled waters for transparency - what each company is willing to share with you about where their water comes from, how or if it's treated, and how pure it is. More than half of all bottled waters flunked. Bottom line? Drink plenty of water, but avoid bottled water when you can. It pollutes the environment and is often nothing more than tap water. When you must, choose brands with high scores (clear labeling) and advanced treatment. PRODUCT GRADE (Stop & Shop) Acadia Natural F Spring Water (Stop & Shop) Electrolyte Enhanced Water D ! ! (Walgreens) Drinking Water F ! ! (Walgreens) Pure Drinking Water ✓ C ! ! (Walgreens) Spring Water D ! ! 365 Everyday Value Spring Water D ! ! 7 Select Spring Water D ! ! Acqua Panna Natural Spring Water C ! ! Alhambra Crystal-Fresh Purified Water ✓ C ! ! Alhambra Jr. Sport Crystal-Fresh Purified Water ✓ D ! ! American Falls Purified Drinking Water ✓ D ! ! Angel Fire Water Drinking Water F ! ! Aquafina Purified Drinking Water ✓ D ! ! Aquarius Spring! Natural Spring Water C ! ! Archer Farms Natural Spring Water F ! ! Arrowhead Mountain Spring Water C ! ! Athena Purified Water with Minerals Added ✓ F ! ! Atlanta Bread Natural Spring Water D ! ! Belmont Springs Purified Water ✓ C ! ! Big Y Natural Spring Water F ! ! Bristol Farms Drinking Water F ! ! Calistoga Sparkling Mineral Water C ! ! Chukchansi Gold Resort and Casino Purified F ! ! PRODUCT GRADE Drinking Water Ciao Acqua Naturale Natural Spring Water F ! ! Cool -
Difference Between Mineral Water and Spring Water Strictly Speaking, Water Is Water
Difference between Mineral Water and Spring Water Strictly speaking, water is water. That is to say, all water on Earth is a compound of two hydrogen and one oxygen molecule. The difference between various types of bottled waters lies mainly in where the source is located and what processes the water goes through before it is sold to consumers. Not all bottled waters are recommended for drink- ing, so it is important to know the difference if your health plan includes increasing water intake or avoiding certain types of beverages. Some types of bottled water, such as well or spring, get their designation from their origi- nal source. Mineral water must contain a specified amount of trace minerals naturally before it can be sold. Distilled or purified water must be put through a filtration or me- chanical process in order to remove contaminants and minerals. Some water types may actually fit into several different categories- distilled water, for example, is also purified by definition. Spring and well waters make excellent refreshments during and afterexercise, but distilled water lacks trace minerals and may not have a satisfying taste. Mineral water may have a natural sparkle and refreshing taste, but a little may go a long way. Here's a closer look at each type of water and how each one fits in an everyday world. 1. Well water. Well water could be the source of other types of consumable bottle waters such as 'drinking' or regular tap water. The main definition of 'well water' is water that has been stored in permeable rocks and soil. -
Water Quality Report 2020
Water Quality Report 2020 1440 Bridgegate Dr. Diamond Bar, CA 91765 (877) 487-7873 Copyright © 2020 Niagara Bottling, LLC. All rights reserved. Table of Contents State of the Art Purification 1 History/Mission Statement 2 Sustainability Initiatives 3 Our Commitment To Quality 4 Regulations 5 Purified Water, Distilled Water, Purified with 6 Minerals Added and Alkaline Water Spring Water 7 Purified, Distilled, Spring and Alkaline Water 8 - 9 Process Water Quality Analysis 10 -13 Definitions and Statement Required by California 14-15 Law Copyright © 2020 Niagara Bottling, LLC. All rights reserved. State of the Art Purification Niagara Bottling utilizes state of the art purification, filtration and disinfection technologies to produce safe and refreshing products for our customers to enjoy. Niagara Bottling is pleased to provide you this water quality report. Copyright © 2020 Niagara Bottling, LLC. All rights reserved. 1 History It all started back in 1963 when Andrew Peykoff Sr. began to bottle high quality, low cost Niagara water in 5 gallon glass containers for home and office delivery. With his insurmountable work ethic, integrity and customer service, Niagara soon became a household name in southern California. The customer base quickly expanded and Niagara started providing single-serve private label bottled water to grocery, club and convenience stores as well as wholesale customers all the while maintaining the family owned-business values. Over the following decades, Niagara made significant advancements in high speed manufacturing and innovative bottle design; it’s no wonder why Niagara is now considered the largest family-owned and operated bottled water company in the United States. -
ELGA Veolia Water Guide V6.Pdf
A GUIDE FOR LABORATORIES Pure labwater guide An essential overview of lab water purification applications, monitoring and standards. Dedicated to Discovery 2 Dedicated to Discovery PURE LABWATER GUIDE Inside 3-5 Introduction 6-16 Research and analysis applications 17-20 Clinical diagnostics 21-23 Healthcare 23-47 Water purification overview 48 Glossary 51 Further reading 3 Dedicated to Discovery PURE LABWATER GUIDE The pure labwater guide Introduction The Pure LabWater Guide is an essential resource for individuals who use pure water or wish to learn more about the subject. Providing an overview of water purification requirements, techniques and applications in science and medicine, this educational guide will enable you to choose the correct grade of water and most reliable method of production at an economical cost to both your budget and the environment. CHALLENGES: vary significantly in purity both from There are 5 classes of impurities found IMPURITIES AND one geographical region to another in natural and drinking water: and from season to season. VARIATIONS IN • Suspended particles In today’s laboratories, the availability DRINKING WATER • Dissolved inorganic compounds of pure water is essential, and Water for most laboratory and clinical while domestic consumers consider • Dissolved organic compounds applications is usually purified from tap water to be “pure”, laboratory • Microorganisms & biomolecules drinking water. However, the unique scientists and healthcare professionals ability of water to dissolve (to some regard it as -
Drinking Water Treatment: Distillation Bruce I
® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G1493 (Revised December 2013) Drinking Water Treatment: Distillation Bruce I. Dvorak, Extension Environmental Engineering Specialist Sharon O. Skipton, Extension Water Quality Educator water as it is boiled in the distiller. Such compounds will not Homeowners are increasingly concerned about be completely removed unless another process is used prior contaminants in their water supply that may affect to condensation. See the section in this NebGuide on treat- health or cause taste, odor, or nuisance problems. Dis- ment principles for further discussion of ways distillers may tillation, one of the oldest methods of water treatment, remove VOCs. is an effective method for reducing many impurities The boiling process during distillation generally inacti- found in water. This NebGuide discusses the process vates microorganisms. However, if the distiller is idle for an and related equipment used for household drinking extended period, bacteria can be reintroduced from the outlet water treatment by distillation. spigot and may recontaminate the water. Water Testing Contaminants Removed from Water by Distillation Regardless of which water treatment system is con- Distillation can remove nearly all impurities from sidered, the water first should be tested to determine what water. Compounds removed include sodium, hardness substances are present. Public water systems routinely test compounds such as calcium and magnesium, other dis- for contaminants. Water utilities are required to publish solved solids (including iron and manganese), fluoride, Consumer Confidence Reports (CCRs), which inform con- and nitrate. Operated properly, it effectively inactivates sumers on the source of the water, contaminants present, microorganisms such as bacteria, viruses, and protozoan potential health effects of those contaminants, and methods cysts (though protozoan cysts are not likely to be found in of treatment used by the utility. -
Loops of Purified Water (Pw) and Water for Injections (Wfi)Ms
LOOPS OF PURIFIED WATER (PW) AND WATER FOR INJECTIONS (WFI)MS The use of purified water (PW) and water for injection (WFI) in the production processes is very common in the pharmaceutical industry. These systems are represented by two main stages: water production and its storage and distribution. The assembly consisting of a storage tank and a distribution loop is called a purified water (PW) loop or a water for injection (WFI) loop. The difference between the purified water (PW) and water for injection (WFI) is mainly based on their physical, chemical and microbiological properties. The main differences are briefly described below. I Purified water (PW) A typical purified water system consists of various stages, each one is designed for further purification of water. The first step is known as "pretreatment" and the aim of is to modify the supplied water quality until it is suitable for final treatment. The following processes are performed at this stage: control over fouling, elimination of particles and turbidity; control over rust and elimination of water hardness and of metals; control over corrosion and degradation; elimination of organic materials and microbiological impurities; and also control over microbial growth and elimination of the applied chemical agents. The next step is known as “final treatment” and mostly consists of passing the pretreated water through the reverse osmosis modules (other systems available: ultrafiltration, electro-deionisation, distillation according to the requirements). Before its storage, the treated water is passed through a UV lamp to reduce the microbial load. I Water for injection (WFI) Water for injection has the highest purity possible and it is sterile. -
13. Nutrient Minerals in Drinking Water: Implications for the Nutrition
13. NUTRIENT MINERALS IN DRINKING WATER: IMPLICATIONS FOR THE NUTRITION OF INFANTS AND YOUNG CHILDREN Erika Sievers Institute of Public Health North Rhine Westphalia Munster, Germany ______________________________________________________________________________ I. INTRODUCTION The WHO Global Strategy on Infant and Young Child Feeding emphasizes the importance of infant feeding and promotes exclusive breastfeeding in the first six months of life. In infants who cannot be breast-fed or should not receive breast milk, substitutes are required. These should be a formula that complies with the appropriate Codex Alimentarius Standards or, alternatively, a home-prepared formula with micronutrient supplements (1). Drinking water is indispensable for the reconstitution of powdered infant formulae and needed for the preparation of other breast-milk substitutes. As a result of the long-term intake of a considerable volume in relation to body weight, the concentrations of nutrient minerals in drinking water may contribute significantly to the total trace element and mineral intake of infants and young children. This is especially applicable to formula-fed infants during the first months of life, who may be the most vulnerable group affected by excessive concentrations of nutrients or contaminants in drinking water. Defining essential requirements of the composition of infant formulae, the importance of the quality of the water used for their reconstitution has been acknowledged by the Scientific Committee on Food, SCF, of the European Commission (2). Although it was noted that the mineral content of water may vary widely depending upon its source, the optimal composition remained undefined. Recommendations for the composition of infant formulae refer to total nutrient content as prepared ready for consumption according to manufacturer’s instructions.