The Cleanliness of Reusable Water Bottles: How Contamination Levels Are Affected by Bottle Usage and Cleaning Behaviors of Bottle Owners
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions
AN ABSTRACT OF THE THESIS OF Paul John Dornath for the degree of Honors Baccalaureate of Science in Chemical Engineering presented on May 29, 2010. Title: Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions Abstract approved: ______________________________________________ Skip Rochefort There has been much controversy in recent years over the leaching of chemicals from plastic water bottles. In this study, two of the most common plastics used in water bottles, polyethylene terphthalate (PETE) and polycarbonate (PC) were studied. The leaching of the chemical bisphenol-A (BPA) from polycarbonate (Nalgene ™, Camelback ™) water bottles was studied to examine the validity of these claims by exposing polycarbonate bottles to various conditions and analyzing how much BPA leaches into water contained in the bottles. New polycarbonate bottles were filled with water and exposed to treatment conditions ranging from 65 to 120 ⁰C. A reverse-phase solid phase extraction process was developed to extract BPA from the water and concentrate it into an organic phase. GC/MS was used to analyze the organic extract. BPA was only found to leach in detectable amounts (< 10ppb) when the bottles were exposed to 120 ⁰C water for 2 hours. Polyethylene terephthalate bottles were also tested and were exposed to sunlight for three months during the summer. Small amounts of the plasticizer DEHP were found to leach after several months. A method for determining what chemicals would leach from BPA-Free Tritan™ copolyester was also developed but not tested due to time constraints. An analysis of internal stress due to high humidity and temperature was performed on these BPA-Free bottles. -
(WHO) Report on Microplastics in Drinking Water
Microplastics in drinking-water Microplastics in drinking-water ISBN 978-92-4-151619-8 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
Guide to Good Hygienic Practices for Packaged Water in Europe
Guide to Good Hygienic Practices for Packaged Water In Europe Guide to Good Hygienic Practices for Packaged Water In Europe GUIDE TO GOOD HYGIENIC PRACTICES FOR PACKAGED WATER IN EUROPE TABLE OF CONTENTS INTRODUCTION 6 ACKNOWLEDGMENTS 6 SCOPE OF THE GUIDE 7 STRUCTURE OF THE GUIDE 7 SECTION 1. GENERAL ASPECTS OF QUALITY & FOOD SAFETY MANAGEMENT 8 1.1. Quality and food safety management systems . 9 1.1.1. Basic principles 9 1.1.2. Documentation 9 1.2. Management responsibility . 10 1.2.1. Management commitment and objectives 10 1.2.2. Quality and food safety policy 10 1.2.3. Quality and food safety management systems planning 10 1.2.4. Responsibility, authority and internal and external communication 10 1.2.5. Management review 11 1.3. Resource management . 12 1.3.1. Provision of resources 12 1.3.2. Human resources 12 1.3.3. Infrastructure and work environment 12 1.4. Control of product quality and safety . 13 1.5. Measurements, analysis and improvement . 14 1.5.1. Monitoring and measurement 14 1.5.2. Analysis of data 14 1.5.3. Continual improvement 14 1.6. Product information and consumer awareness . 15 SECTION 2. PREREQUISITE PROGRAMMES - PRPS 16 2.1. Water resources / Water treatments . 17 2.1.1. Resource development 17 2.1.1.1. General requirements 2.1.1.2. Risk assessment 2.1.2. Resource protection 18 2.1.3. Exploitation of the resource 19 2.1.3.1. Technical requirements 2.1.3.2. Point of abstraction 2.1.3.3. Transfer/piping to the filling operation 2.1.3.4. -
Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests
ENVIRONMENTAL Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests Katrin Schwind, Application Scientist, Analytical Point-of-Use R&D, [email protected] Gunter Decker, Senior Global Product Manager, Analytical Point-of-Use Analytics | Photometry, [email protected] The quality of drinking water is regulated by a variety The determination of iron using the 1,10-phenanthroline of guidelines, such as the EU Council Directive 98/831,2 method according to APHA 3500-Fe B and DIN 38406-1 and WHO guideline.3 The key principles used to define enables photometric measurement down to a level of these limits consider both health hazards and sensory 0.01 mg/L, which is entirely sufficient for many samples.9 and technical reasons. Iron, for example, does not exhibit a risk for health in concentrations usually found If lower LOQs are required, the triazine method can in drinking water.2,3 However, increased concentrations be chosen. In this method, all iron ions are reduced to of iron result in the formation of iron hydroxide iron (II) ions. These react in a thioglycolate-buffered products, which can form deposits in water pipe medium containing a triazine derivative to form a systems and a brown discoloration of the water.4 red-violet complex, which is subsequently determined photometrically.10 Using a 100 mm cell and the Prove To ensure the supply of clear and colorless water, 600 UV-VIS spectrometer, LOQs for iron as low as country-specific limits have been set for drinking 0.0025 mg/L can be achieved. -
Changes in Packaging Impact Recycling Right in Santa Cruz
Page 4 Spring 2016 Changes in Packaging … packaging material is clamshell and (Continued from Page 1) blister packaging—those plastic shells ❝❞ that cover new toys and other products What’s New? in a kid-friendly, squeezable plastic pouch. and the clear, hinged boxes that hold deli Check out the new Plastic pouches may also hold yogurt, rice, foods and produce. Clamshell packaging, Recycle Right! videos soup, coffee beans, cat food and snack which is designed for single-use and has on the City website. foods. Pouches are made up of polyester, practically no value in the recycling market, You can find out exactly aluminum foil, polyethylene, Mylar and is therefore destined for the landfill. Most what’s recyclable in your more, plus added spouts, caps, straws “clamshells” are made out of PET (plastic curbside recycle cart and or zipping mechanisms of various other resin code #1)—a highly recyclable plastic. what’s not. The short types of plastic. This packaging is almost However, clamshells are produced from (831) 420-5160 videos are divided into impossible to clean and difficult to recycle. a process known as “thermoforming,” www.cityofsantacruz.com different materials, so if If you and your kids love squeezable snack which changes the composition of the PET, you have questions about pouches, there is a reusable “kindness making them different from PET plastic Spring 2016 metal recycling, glass pouch” available from Squooshi™. bottles, which are blow molded. This slight or plastic bags, you can Have you ever noticed a number on the difference makes clamshells undesirable watch that segment. -
SOP 408 Biosafety Level-2 (BSL-2) Rodent Husbandry
STANDARD OPERATING PROCEDURES DIVISION OF COMPARATIVE MEDICINE UNIVERSITY OF SOUTH FLORIDA SOP#: 408.14 Date Issued: 10/98 Date Revised: 5/19 Page 1 of 6 TITLE: Animal Biosafety Level-2 (ABSL-2) Rodent Husbandry SCOPE: All Authorized Personnel RESPONSIBILITY: Facility Manager and Technical Staff PURPOSE: To Outline the Proper Procedures for Safe Husbandry Practices for Rodents Housed at ABSL-2. I. PURPOSE 1. To outline the proper procedures for safely conducting husbandry of rodents housed under animal biosafety level 2 (ABSL-2) conditions. 2. Reduce the risk of exposure of research and animal care staff to biohazardous agents within the animal facility. II. RESPONSIBILITY 1. The Facility Manager is responsible for ensuring: a. That staff contributing to husbandry are adequately trained to perform the husbandry practices described. b. Implementation of the procedures described. c. Dedicated ABSL-2 rooms for infectious agents, and animal housing rooms for rDNA and PDX biocontainment at the cage level are clearly labeled with the biohazardous agent present and specific safety practices implemented. d. Appropriate personal protective equipment (PPE) is available. e. Biohazard Safety Data Sheets (SDSs) are accessible, when available. f. Safety practices have been communicated to the relevant personnel. 2. It is the responsibility of the animal care staff to: a. Read, understand, and follow the procedures described. b. Don appropriate PPE and review room signage and SDS prior to implementing the procedures described. III. PROCEDURES 1. Containment -
Difference Between Mineral Water and Spring Water Strictly Speaking, Water Is Water
Difference between Mineral Water and Spring Water Strictly speaking, water is water. That is to say, all water on Earth is a compound of two hydrogen and one oxygen molecule. The difference between various types of bottled waters lies mainly in where the source is located and what processes the water goes through before it is sold to consumers. Not all bottled waters are recommended for drink- ing, so it is important to know the difference if your health plan includes increasing water intake or avoiding certain types of beverages. Some types of bottled water, such as well or spring, get their designation from their origi- nal source. Mineral water must contain a specified amount of trace minerals naturally before it can be sold. Distilled or purified water must be put through a filtration or me- chanical process in order to remove contaminants and minerals. Some water types may actually fit into several different categories- distilled water, for example, is also purified by definition. Spring and well waters make excellent refreshments during and afterexercise, but distilled water lacks trace minerals and may not have a satisfying taste. Mineral water may have a natural sparkle and refreshing taste, but a little may go a long way. Here's a closer look at each type of water and how each one fits in an everyday world. 1. Well water. Well water could be the source of other types of consumable bottle waters such as 'drinking' or regular tap water. The main definition of 'well water' is water that has been stored in permeable rocks and soil. -
DID YOU KNOW? PET (Polyethylene Terephthalate) Is Actually Polyester. When PET Is Used for Bottles, Containers and Other
355 Lexington Ave., Suite 1500 ▪ New York, NY 10017 ▪ www.PETresin.org DID YOU KNOW? Little-Known Facts about PET Plastic . PET (polyethylene terephthalate) is actually polyester. When PET is used for bottles, containers and other applications, it is called PET or PET resin. When PET is used as a fiber, it is typically called polyester. The PET bottle was invented by Nathaniel C. Wyeth, a DuPont engineer and brother of American painter Andrew Wyeth. The patent was issued to Wyeth in 1973 and assigned to DuPont. According to the EPA, recycling one pound of PET bottles (that’s about 10 two-liter soda bottles) saves approximately 26,000 BTUs of energy. PET bottles and the sun are helping millions of people in developing countries obtain potable water. Using a system called SODIS (solar water disinfection), inhabitants set water-filled PET bottles in the sun for several hours or days – depending on how much sunlight is available – as a simple but effective means of destroying disease-causing bacteria and gaining safe drinking water. More than 1.5 billion pounds of used PET bottles and containers are collected in the U.S. each year for recycling. PET is the most recycled plastic in the U.S. and the world. A single-serve PET bottle (0.5 liter) is strong enough to hold 50 times its weight in water. Chemists keep finding new ways to make PET lighter without losing any strength. A 2-liter PET bottle that weighed 68 grams in 1980 now weighs as little as 42 grams. The average weight of single-serve 0.5 liter PET water bottle is now 9.9 grams, nearly half of what it weighed in 2000. -
Plastic Bottles Today Innovating to Reach Today’S Consumer
PLASTICS MARKET WATCH PLASTIC BOTTLES TODAY INNOVATING TO REACH TODAY’S CONSUMER BETTER INDUSTRY. BETTER WORLD. February 2017 The Plastics Industry Association (PLASTICS) sends special thanks to the Brand Owners, Processors and Equipment Councils, and Rigid Plastics Packaging Group (RPPG) for their guidance and input on this Bottling Plastics Market Watch Report. Materials were compiled, written and edited by William (Bill) Mashek, with editorial assistance from Kim Holmes, George Southworth, Kendra Martin and Ashley Stoney at PLASTICS. Copyright Plastics Industry Association. 02 Plastics Market Watch—Watching: Bottling Plastics Market Watch Plastic Bottles Today Innovating to Reach Today’s Consumer A series examining the business of plastics, including demographics, economics, policy developments and technological trends in specific plastics end markets. Contents 05 Forward 08 Introduction: Plastic Bottles Today— Innovating to Reach Today’s Consumer 11 Role of Plastics in Bottling 16 Growth of Plastics Bottling 20 Innovation 25 Plastic Bottle Economics 29 Bottling Equipment & Machinery 31 Recycling Progress 37 Conclusion 42 Plastic Bottle Glossary 49 Sources 52 Plastics Market Watch Snapshot Plastics Market Watch—Watching: Bottling 03 04 Plastics Market Watch—Watching: Bottling Forward The Plastics Industry Association’s (PLASTICS’) Plastics Market Watch reports provide forward-looking data and insights on key plastics industry end markets. The series examines the business of plastics, including demographics, economics, policy developments and technological improvements for markets including automotive and transportation, healthcare and medical devices, packaging, building and construction, automotive recycling, bioplastics and consumer electronics. Given the role that plastics play in today’s modern society, Plastics Market Watch reports offer a holistic picture of our technology—from beginning-of-life resins and polymers to end-of-life management and recycling efforts. -
Sustainability at Work Bottled Vs. Tap Water
Sustainability at Work Providing free tools and expertise to achieve your goals Phone: 503-823-7037 Email: [email protected] Bottled vs. Tap Water When it comes to water, the best environmental choice is to avoid single-serve bottles all together and drink water from the tap [1]. Quick links: Reduce, reuse, recycle: water edition. What can your workplace do to support tap water? What about delivery service water? Why? Disposable bottled water uses more resources than tap water and costs more money. And, in Portland, we have great tap water! So good in fact, that it’s won “Best Tasting Water” contests [2]! Curious about where our tap water comes from, how it’s processed and how much Portlanders use? Find answers and learn more about Portland’s water system (http://www.portlandoregon.gov//water/48904). Don't like the taste of your office's tap water? Could be older pipes or other causes. Get a free test kit (http://www.portlandoregon.gov/#WaterQuality), or consider installing a filter (http://www.portlandoregon.gov/#WaterFilter) on your tap. Did you know? Some of Portland's water pipes generate electricity (http://www.opb.org/news/article/portland-now-generating-hydropower-in-its-water-pipes/)! Reduce, reuse, recycle: water edition 1. Reduce your environmental impact by drinking from the tap instead of disposable plastic bottles. Buying a reusable water bottle prevents the need to continue purchasing bottled water. You can even get your bottle from a local company (http://www.portlandmonthlymag.com/health-and-fitness/the-balance/articles/3-local-bottle-companies-beg-you-to-ditch-the-plastic-may-2015). -
Vicki Williams Ozarka Eco-Shape Water Bottle General Description
Vicki Williams Ozarka Eco-Shape Water Bottle General Description Bottled water is purified or natural spring water, most often sold in plastic bottles, made for human consumption. One bottled water brand, Ozarka, has debuted a new, more environmentally friendly bottle. According to the label, the shape, along with other new design elements, mean it uses 40% less plastic than the previously used bottle. It holds a half liter of natural spring water. Description of Parts As Figure 1 shows, the Ozarka Eco-Shape bottle is comprised of three parts: the lid, label, and body. Figure 1: Ozarka Eco-Shape Water Bottle Image Source: Global Package Gallery. Retrieved: April 26, 2010. http://www.globalpackagegallery.com Lid The lid on a bottle of water keeps foreign particles from entering the water. It also enables the water to be transported. Without the lid, a bottle of water would have no portability. It screws on and off easily. The lid on the new Eco-Shape bottle measures about 4/16” in width and 1” in diameter. This lid is much smaller than any other brand of bottled water. Label Generally, labels on bottled water offer the same information: amount of water held in the bottle, brand, and contact information, and company logo. This paper label is colorful and informative. It has a picture of a spring and a red banner that reads “Ozarka.” It informs that the company was established in 1905, produces natural spring water, establishes origin information, and describes in detail the eco-friendly aspects of the new bottle. The label is 2 ¾” in diameter and 1 5/16” in width. -
Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.