The Cleanliness of Reusable Water Bottles: How Contamination Levels Are Affected by Bottle Usage and Cleaning Behaviors of Bottle Owners

Total Page:16

File Type:pdf, Size:1020Kb

The Cleanliness of Reusable Water Bottles: How Contamination Levels Are Affected by Bottle Usage and Cleaning Behaviors of Bottle Owners PEER-REVIEWED ARTICLE Xiaodi Sun,1 Jooho Kim,2* Carl Behnke,1 Barbara Food Protection Trends, Vol 37, No. 6, p. 392–402 1 3 3 Copyright© 2017, International Association for Food Protection Almanza, Christine Greene, Jesse Miller and 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864 Bryan Schindler3 1The School of Hospitality and Tourism Management, Purdue University, 900 W. State St., West Lafayette, IN 47907, USA 2Hart School of Hospitality, Sport and Recreation Management, James Madison University, MSC 2305, Harrisonburg, VA 22807, USA 3NSF International, 789 North Dixboro Road, Ann Arbor, MI 48105, USA The Cleanliness of Reusable Water Bottles: How Contamination Levels are Affected by Bottle Usage and Cleaning Behaviors of Bottle Owners ABSTRACT INTRODUCTION Reusable water bottles are growing in popularity, but Demand for bottled water has consistently increased consumers regularly refill bottles without a corresponding in recent years, making bottled water the fastest growing effort at cleaning them. If the difficulties associated with segment of the non-alcoholic beverage market worldwide various bottle designs and materials are added in, it is (11). However, massive consumption of water in disposable clear that improperly cleaned water bottles may present bottles has been connected to increased pollution and a potential contamination risk and thus be a risk for landfill waste. The EPA(35) reported that each year foodborne illness. The purpose of this study was to measure Americans throw away about 28 billion bottles and jars; contamination levels of water bottles that are in use and to notably, only 26% of plastic bottles were recycled. The investigate bottle usage and cleaning behaviors by collecting environmental cost associated with bottled water has led to survey data from the bottle owners. Total organic materials a social push to adopt reusable water bottles. on the exterior surface and coliform and heterotrophic Reusable bottles are more environmentally friendly bacteria on the interior surface were enumerated, using and economical because consumers can repeatedly refill ATP bioluminescence and the agar plate count method, them. This ability to refill and reuse water bottles comes respectively. The HPC and coliform results revealed a with an implied mandate to clean the bottles on a regular marked microbial contamination level among reusable water basis. However, observation of consumer behaviors related bottles that are in use, and the ATP levels suggest that the to reusable water bottles suggests that users are regularly exterior bottle surfaces may serve as fomites that facilitate refilling bottles without making a corresponding effort the transmission of infectious organisms. The contamination at cleaning them. Moreover, the design of reusable water level can be affected by factors such as bottle material, bottles may pose a barrier to their cleanliness. Bottle refill frequency, beverage type, and cleaning behavior. options are numerous and range from portable plastic or Author for correspondence: Phone: +1 540.568.7668; E-mail: [email protected] 392 Food Protection Trends November/December November/December Food Protection Trends 393 collapsible bottles to multi-purpose containers that can water in the bottles. However, limited information has handle either hot or cold beverages. Some bottles come been published on the cleanliness of reusable water bottles with built-in carbon filters that are replaceable, but not and consumer behaviors related to reusable water bottles. cleanable, while others include straws and areas that are Therefore, the purpose of this study was two-fold: first, to difficult to clean properly. Some bottles have wide mouths measure contamination levels of water bottles that are in that make it easy to clean the interior, while others have use, and second, to understand how contamination levels an opening that is only an inch or so in diameter, making are affected by bottle usage and cleaning behaviors, by it challenging to clean the inside. Users may think that it is collecting survey data from the bottle owners. sufficient to simply put the bottle into the dishwasher for Three methods were used to assess water bottle cleaning, but not all reusable water bottles are dishwasher contamination. First was the use of adenosine triphosphate safe, and/or the diameter of the bottle mouth may not (ATP) bioluminescence on the exterior surface of water permit water and detergent to enter with sufficient force to bottles. ATP tests provide evidence on the level of general coat the interior surface. cleanliness (19) by measuring organic materials (41), with Improperly cleaned water bottles may present a results reported in terms of RLUs (relative light units). potential contamination risk and thus be considered a Results are obtained rapidly but are considered only a risk for foodborne illness, particularly to those at higher generalized assessment that cannot provide information risk such as immune compromised people, older adults, on the identity of organisms present in a sample (25). and young children. Microorganisms will normally grow Because of this, the second method quantified microbial in water and on surfaces in contact with water as biofilms contamination through a heterotrophic plate count (HPC) (3). The availability of nutrients and lack of residual from the bottles’ interior. “Heterotrophic bacteria” include disinfectant are some of the principal determinants of all bacteria that consume organic nutrients for growth. microbial growth in drinking water (3). According to These bacteria are universally present in all types of water, the FDA Food Code (16), water is considered a food. food, soil, vegetation, and air (2). The heterotrophic plate Reusable bottles are therefore food-contact surfaces count is a means of assessing the concentration of these requiring proper cleaning and sanitizing. Unfortunately, bacteria in foods and water (13). Enumeration of total consumers may not be aware of the potential hazards heterotrophic counts is commonly used as an indicator of related to water bottles; thus, there is a possibility for overall microbiological quality (12, 32, 40), and results are complacency with regard to cleaning behaviors. reported as colony forming units per milliliter (CFU/mL). It is recognized that water can be a source of disease Finally, coliform testing was used to assess more potentially outbreaks (27, 42). Despite worldwide efforts and the risky coliform bacterial contamination. Coliform organisms modern technology employed for production of safe have long been recognized as a suitable microbial indicator drinking water, transmission of waterborne diseases is still a of drinking-water quality, largely because they are easy to matter of major concern(9, 37). Some common foodborne detect and enumerate in water (9, 40). organisms associated with water include Campylobacter, E. coli O157:H7, Salmonella, and Vibrio cholerae, to name a few MATERIALS AND METHODS (7). These can lead to severe illnesses and death. Clearly, This study was piloted initially to ensure adequacy of the there are health implications associated with unclean water design, and a mixed methods approach was adopted in the consumption. full study. The bottle exteriors were assessed for organic Combined, the clues point to the possibility of a large contamination by ATP Bioluminescence testing. The bottle and growing problem. Reusable water bottles are growing in interiors were assessed for microbial contamination by use popularity, but consumers may not perceive the importance of Heterotrophic Plate Counts (HPC) and Coliform Plate of cleaning water bottles as other food-contact surfaces Counts. Lastly, the bottle owners were asked to complete must be cleaned, which can result in careless behaviors with a digital questionnaire intended to document routine regard to their cleaning. The difficulties associated with behaviors related to the use and cleaning of the reusable cleaning the bottles adequately, as well as the variability water bottles. Routine behaviors, bottle cleaning, and in designs and materials, make it easy to see the potential design of the bottles (documented during the surveys) were food safety hazard. Previous studies have conducted paired with the cleanliness assessment results through the microbiological evaluation of bottled water(18, 22, 33, 38), use of anonymous coding numbers. as well as cleaning protocols of infant feeding bottles(24, A total of 90 water bottles were collected from the 26). Oliphant, Ryan, & Chu (30) studied water quality in participants. As shown in Table 2, 65 (72.22%) were hard the personal water bottles of 75 elementary students and plastic bottles, 22 of which had a straw or nozzle. The third stated that the use of personal water bottles for students commonly used type of water bottle was a squeezable in elementary classrooms is not recommended because bottle (13.33%), followed by metal bottle (11.11%), and of the significant microbial contamination levels of the glass bottle (3.33%). Built-in carbon filters were also 392 Food Protection Trends November/December November/December Food Protection Trends 393 investigated; nine out of ninety (10%) bottles had a built-in HPC and coliform counts carbon filter. Membrane filtration and pour plating were used to enumerate heterotrophic bacteria and coliform bacteria Sample collection and surveying process from PBS-T samples, respectively. Samples were diluted The sample collection and surveying process was set
Recommended publications
  • Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions
    AN ABSTRACT OF THE THESIS OF Paul John Dornath for the degree of Honors Baccalaureate of Science in Chemical Engineering presented on May 29, 2010. Title: Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions Abstract approved: ______________________________________________ Skip Rochefort There has been much controversy in recent years over the leaching of chemicals from plastic water bottles. In this study, two of the most common plastics used in water bottles, polyethylene terphthalate (PETE) and polycarbonate (PC) were studied. The leaching of the chemical bisphenol-A (BPA) from polycarbonate (Nalgene ™, Camelback ™) water bottles was studied to examine the validity of these claims by exposing polycarbonate bottles to various conditions and analyzing how much BPA leaches into water contained in the bottles. New polycarbonate bottles were filled with water and exposed to treatment conditions ranging from 65 to 120 ⁰C. A reverse-phase solid phase extraction process was developed to extract BPA from the water and concentrate it into an organic phase. GC/MS was used to analyze the organic extract. BPA was only found to leach in detectable amounts (< 10ppb) when the bottles were exposed to 120 ⁰C water for 2 hours. Polyethylene terephthalate bottles were also tested and were exposed to sunlight for three months during the summer. Small amounts of the plasticizer DEHP were found to leach after several months. A method for determining what chemicals would leach from BPA-Free Tritan™ copolyester was also developed but not tested due to time constraints. An analysis of internal stress due to high humidity and temperature was performed on these BPA-Free bottles.
    [Show full text]
  • (WHO) Report on Microplastics in Drinking Water
    Microplastics in drinking-water Microplastics in drinking-water ISBN 978-92-4-151619-8 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.
    [Show full text]
  • Guide to Good Hygienic Practices for Packaged Water in Europe
    Guide to Good Hygienic Practices for Packaged Water In Europe Guide to Good Hygienic Practices for Packaged Water In Europe GUIDE TO GOOD HYGIENIC PRACTICES FOR PACKAGED WATER IN EUROPE TABLE OF CONTENTS INTRODUCTION 6 ACKNOWLEDGMENTS 6 SCOPE OF THE GUIDE 7 STRUCTURE OF THE GUIDE 7 SECTION 1. GENERAL ASPECTS OF QUALITY & FOOD SAFETY MANAGEMENT 8 1.1. Quality and food safety management systems . 9 1.1.1. Basic principles 9 1.1.2. Documentation 9 1.2. Management responsibility . 10 1.2.1. Management commitment and objectives 10 1.2.2. Quality and food safety policy 10 1.2.3. Quality and food safety management systems planning 10 1.2.4. Responsibility, authority and internal and external communication 10 1.2.5. Management review 11 1.3. Resource management . 12 1.3.1. Provision of resources 12 1.3.2. Human resources 12 1.3.3. Infrastructure and work environment 12 1.4. Control of product quality and safety . 13 1.5. Measurements, analysis and improvement . 14 1.5.1. Monitoring and measurement 14 1.5.2. Analysis of data 14 1.5.3. Continual improvement 14 1.6. Product information and consumer awareness . 15 SECTION 2. PREREQUISITE PROGRAMMES - PRPS 16 2.1. Water resources / Water treatments . 17 2.1.1. Resource development 17 2.1.1.1. General requirements 2.1.1.2. Risk assessment 2.1.2. Resource protection 18 2.1.3. Exploitation of the resource 19 2.1.3.1. Technical requirements 2.1.3.2. Point of abstraction 2.1.3.3. Transfer/piping to the filling operation 2.1.3.4.
    [Show full text]
  • Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests
    ENVIRONMENTAL Sensitive Determination of Iron in Drinking Water, Mineral Water, Groundwater, and Spring Water Using Rapid Photometric Tests Katrin Schwind, Application Scientist, Analytical Point-of-Use R&D, [email protected] Gunter Decker, Senior Global Product Manager, Analytical Point-of-Use Analytics | Photometry, [email protected] The quality of drinking water is regulated by a variety The determination of iron using the 1,10-phenanthroline of guidelines, such as the EU Council Directive 98/831,2 method according to APHA 3500-Fe B and DIN 38406-1 and WHO guideline.3 The key principles used to define enables photometric measurement down to a level of these limits consider both health hazards and sensory 0.01 mg/L, which is entirely sufficient for many samples.9 and technical reasons. Iron, for example, does not exhibit a risk for health in concentrations usually found If lower LOQs are required, the triazine method can in drinking water.2,3 However, increased concentrations be chosen. In this method, all iron ions are reduced to of iron result in the formation of iron hydroxide iron (II) ions. These react in a thioglycolate-buffered products, which can form deposits in water pipe medium containing a triazine derivative to form a systems and a brown discoloration of the water.4 red-violet complex, which is subsequently determined photometrically.10 Using a 100 mm cell and the Prove To ensure the supply of clear and colorless water, 600 UV-VIS spectrometer, LOQs for iron as low as country-specific limits have been set for drinking 0.0025 mg/L can be achieved.
    [Show full text]
  • Changes in Packaging Impact Recycling Right in Santa Cruz
    Page 4 Spring 2016 Changes in Packaging … packaging material is clamshell and (Continued from Page 1) blister packaging—those plastic shells ❝❞ that cover new toys and other products What’s New? in a kid-friendly, squeezable plastic pouch. and the clear, hinged boxes that hold deli Check out the new Plastic pouches may also hold yogurt, rice, foods and produce. Clamshell packaging, Recycle Right! videos soup, coffee beans, cat food and snack which is designed for single-use and has on the City website. foods. Pouches are made up of polyester, practically no value in the recycling market, You can find out exactly aluminum foil, polyethylene, Mylar and is therefore destined for the landfill. Most what’s recyclable in your more, plus added spouts, caps, straws “clamshells” are made out of PET (plastic curbside recycle cart and or zipping mechanisms of various other resin code #1)—a highly recyclable plastic. what’s not. The short types of plastic. This packaging is almost However, clamshells are produced from (831) 420-5160 videos are divided into impossible to clean and difficult to recycle. a process known as “thermoforming,” www.cityofsantacruz.com different materials, so if If you and your kids love squeezable snack which changes the composition of the PET, you have questions about pouches, there is a reusable “kindness making them different from PET plastic Spring 2016 metal recycling, glass pouch” available from Squooshi™. bottles, which are blow molded. This slight or plastic bags, you can Have you ever noticed a number on the difference makes clamshells undesirable watch that segment.
    [Show full text]
  • SOP 408 Biosafety Level-2 (BSL-2) Rodent Husbandry
    STANDARD OPERATING PROCEDURES DIVISION OF COMPARATIVE MEDICINE UNIVERSITY OF SOUTH FLORIDA SOP#: 408.14 Date Issued: 10/98 Date Revised: 5/19 Page 1 of 6 TITLE: Animal Biosafety Level-2 (ABSL-2) Rodent Husbandry SCOPE: All Authorized Personnel RESPONSIBILITY: Facility Manager and Technical Staff PURPOSE: To Outline the Proper Procedures for Safe Husbandry Practices for Rodents Housed at ABSL-2. I. PURPOSE 1. To outline the proper procedures for safely conducting husbandry of rodents housed under animal biosafety level 2 (ABSL-2) conditions. 2. Reduce the risk of exposure of research and animal care staff to biohazardous agents within the animal facility. II. RESPONSIBILITY 1. The Facility Manager is responsible for ensuring: a. That staff contributing to husbandry are adequately trained to perform the husbandry practices described. b. Implementation of the procedures described. c. Dedicated ABSL-2 rooms for infectious agents, and animal housing rooms for rDNA and PDX biocontainment at the cage level are clearly labeled with the biohazardous agent present and specific safety practices implemented. d. Appropriate personal protective equipment (PPE) is available. e. Biohazard Safety Data Sheets (SDSs) are accessible, when available. f. Safety practices have been communicated to the relevant personnel. 2. It is the responsibility of the animal care staff to: a. Read, understand, and follow the procedures described. b. Don appropriate PPE and review room signage and SDS prior to implementing the procedures described. III. PROCEDURES 1. Containment
    [Show full text]
  • Difference Between Mineral Water and Spring Water Strictly Speaking, Water Is Water
    Difference between Mineral Water and Spring Water Strictly speaking, water is water. That is to say, all water on Earth is a compound of two hydrogen and one oxygen molecule. The difference between various types of bottled waters lies mainly in where the source is located and what processes the water goes through before it is sold to consumers. Not all bottled waters are recommended for drink- ing, so it is important to know the difference if your health plan includes increasing water intake or avoiding certain types of beverages. Some types of bottled water, such as well or spring, get their designation from their origi- nal source. Mineral water must contain a specified amount of trace minerals naturally before it can be sold. Distilled or purified water must be put through a filtration or me- chanical process in order to remove contaminants and minerals. Some water types may actually fit into several different categories- distilled water, for example, is also purified by definition. Spring and well waters make excellent refreshments during and afterexercise, but distilled water lacks trace minerals and may not have a satisfying taste. Mineral water may have a natural sparkle and refreshing taste, but a little may go a long way. Here's a closer look at each type of water and how each one fits in an everyday world. 1. Well water. Well water could be the source of other types of consumable bottle waters such as 'drinking' or regular tap water. The main definition of 'well water' is water that has been stored in permeable rocks and soil.
    [Show full text]
  • DID YOU KNOW? PET (Polyethylene Terephthalate) Is Actually Polyester. When PET Is Used for Bottles, Containers and Other
    355 Lexington Ave., Suite 1500 ▪ New York, NY 10017 ▪ www.PETresin.org DID YOU KNOW? Little-Known Facts about PET Plastic . PET (polyethylene terephthalate) is actually polyester. When PET is used for bottles, containers and other applications, it is called PET or PET resin. When PET is used as a fiber, it is typically called polyester. The PET bottle was invented by Nathaniel C. Wyeth, a DuPont engineer and brother of American painter Andrew Wyeth. The patent was issued to Wyeth in 1973 and assigned to DuPont. According to the EPA, recycling one pound of PET bottles (that’s about 10 two-liter soda bottles) saves approximately 26,000 BTUs of energy. PET bottles and the sun are helping millions of people in developing countries obtain potable water. Using a system called SODIS (solar water disinfection), inhabitants set water-filled PET bottles in the sun for several hours or days – depending on how much sunlight is available – as a simple but effective means of destroying disease-causing bacteria and gaining safe drinking water. More than 1.5 billion pounds of used PET bottles and containers are collected in the U.S. each year for recycling. PET is the most recycled plastic in the U.S. and the world. A single-serve PET bottle (0.5 liter) is strong enough to hold 50 times its weight in water. Chemists keep finding new ways to make PET lighter without losing any strength. A 2-liter PET bottle that weighed 68 grams in 1980 now weighs as little as 42 grams. The average weight of single-serve 0.5 liter PET water bottle is now 9.9 grams, nearly half of what it weighed in 2000.
    [Show full text]
  • Plastic Bottles Today Innovating to Reach Today’S Consumer
    PLASTICS MARKET WATCH PLASTIC BOTTLES TODAY INNOVATING TO REACH TODAY’S CONSUMER BETTER INDUSTRY. BETTER WORLD. February 2017 The Plastics Industry Association (PLASTICS) sends special thanks to the Brand Owners, Processors and Equipment Councils, and Rigid Plastics Packaging Group (RPPG) for their guidance and input on this Bottling Plastics Market Watch Report. Materials were compiled, written and edited by William (Bill) Mashek, with editorial assistance from Kim Holmes, George Southworth, Kendra Martin and Ashley Stoney at PLASTICS. Copyright Plastics Industry Association. 02 Plastics Market Watch—Watching: Bottling Plastics Market Watch Plastic Bottles Today Innovating to Reach Today’s Consumer A series examining the business of plastics, including demographics, economics, policy developments and technological trends in specific plastics end markets. Contents 05 Forward 08 Introduction: Plastic Bottles Today— Innovating to Reach Today’s Consumer 11 Role of Plastics in Bottling 16 Growth of Plastics Bottling 20 Innovation 25 Plastic Bottle Economics 29 Bottling Equipment & Machinery 31 Recycling Progress 37 Conclusion 42 Plastic Bottle Glossary 49 Sources 52 Plastics Market Watch Snapshot Plastics Market Watch—Watching: Bottling 03 04 Plastics Market Watch—Watching: Bottling Forward The Plastics Industry Association’s (PLASTICS’) Plastics Market Watch reports provide forward-looking data and insights on key plastics industry end markets. The series examines the business of plastics, including demographics, economics, policy developments and technological improvements for markets including automotive and transportation, healthcare and medical devices, packaging, building and construction, automotive recycling, bioplastics and consumer electronics. Given the role that plastics play in today’s modern society, Plastics Market Watch reports offer a holistic picture of our technology—from beginning-of-life resins and polymers to end-of-life management and recycling efforts.
    [Show full text]
  • Sustainability at Work Bottled Vs. Tap Water
    Sustainability at Work Providing free tools and expertise to achieve your goals Phone: 503-823-7037 Email: [email protected] Bottled vs. Tap Water When it comes to water, the best environmental choice is to avoid single-serve bottles all together and drink water from the tap [1]. Quick links: Reduce, reuse, recycle: water edition. What can your workplace do to support tap water? What about delivery service water? Why? Disposable bottled water uses more resources than tap water and costs more money. And, in Portland, we have great tap water! So good in fact, that it’s won “Best Tasting Water” contests [2]! Curious about where our tap water comes from, how it’s processed and how much Portlanders use? Find answers and learn more about Portland’s water system (http://www.portlandoregon.gov//water/48904). Don't like the taste of your office's tap water? Could be older pipes or other causes. Get a free test kit (http://www.portlandoregon.gov/#WaterQuality), or consider installing a filter (http://www.portlandoregon.gov/#WaterFilter) on your tap. Did you know? Some of Portland's water pipes generate electricity (http://www.opb.org/news/article/portland-now-generating-hydropower-in-its-water-pipes/)! Reduce, reuse, recycle: water edition 1. Reduce your environmental impact by drinking from the tap instead of disposable plastic bottles. Buying a reusable water bottle prevents the need to continue purchasing bottled water. You can even get your bottle from a local company (http://www.portlandmonthlymag.com/health-and-fitness/the-balance/articles/3-local-bottle-companies-beg-you-to-ditch-the-plastic-may-2015).
    [Show full text]
  • Vicki Williams Ozarka Eco-Shape Water Bottle General Description
    Vicki Williams Ozarka Eco-Shape Water Bottle General Description Bottled water is purified or natural spring water, most often sold in plastic bottles, made for human consumption. One bottled water brand, Ozarka, has debuted a new, more environmentally friendly bottle. According to the label, the shape, along with other new design elements, mean it uses 40% less plastic than the previously used bottle. It holds a half liter of natural spring water. Description of Parts As Figure 1 shows, the Ozarka Eco-Shape bottle is comprised of three parts: the lid, label, and body. Figure 1: Ozarka Eco-Shape Water Bottle Image Source: Global Package Gallery. Retrieved: April 26, 2010. http://www.globalpackagegallery.com Lid The lid on a bottle of water keeps foreign particles from entering the water. It also enables the water to be transported. Without the lid, a bottle of water would have no portability. It screws on and off easily. The lid on the new Eco-Shape bottle measures about 4/16” in width and 1” in diameter. This lid is much smaller than any other brand of bottled water. Label Generally, labels on bottled water offer the same information: amount of water held in the bottle, brand, and contact information, and company logo. This paper label is colorful and informative. It has a picture of a spring and a red banner that reads “Ozarka.” It informs that the company was established in 1905, produces natural spring water, establishes origin information, and describes in detail the eco-friendly aspects of the new bottle. The label is 2 ¾” in diameter and 1 5/16” in width.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]