Bacterial SBP56 Identified As a Cu-Dependent Methanethiol Oxidase Widely Distributed in the Biosphere Özge Eyice, Nataliia My

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial SBP56 Identified As a Cu-Dependent Methanethiol Oxidase Widely Distributed in the Biosphere Özge Eyice, Nataliia My Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyice, Nataliia Myronova, Arjan Pol, Ornella Carrión, Jonathan Todd, Tom J. Smith, Stephen J. Gurman, Adam Cuthbertson, Sophie Mazard, Monique A.S.H. Mennink-Kersten, Timothy D.H. Bugg, K. Kristoffer Andersson, Andrew W.B. Johnston, Huub J.M. Op den Camp, Hendrik Schäfer Supplementary Information This document contains supplementary information including additional detail concerning methods and results of methanethiol oxidase protein purification and characterization, Electron Paramagnetic Resonance Spectroscopy (EPR) analysis, X-ray spectroscopy analyses (EXAFS), genome sequencing of Hyphomicrobium sp. VS (Supplementary Figures S1-S12, Supplementary Tables S1-S7). Protein purification An initial protocol for purification of methanethiol oxidase from Hyphomicrobium sp. VS was developed as shown below in Supplementary Table S1. This resulted in a protein preparation that revealed a single dominant polypeptide in SDS-PAGE analysis with a molecular weight of approximately 46 kDa (Kertens-Mennink, Pol, Op den Camp, unpublished results). The activity of methanethiol oxidase in this preparation was enriched 36-fold in this fraction. Supplementary Table S1. Purification Table for preliminary MTO purification. MTO activity Protein Purification volume (µmol MT/min) [mg] fold Recovery crude extract 5.0 4.8 135.0 1.0 100.0 Q-sepharose 7.4 3.5 12.7 7.8 73.3 Amicon filtration 2.0 4.1 10.3 10.9 84.0 Superose 12 12.0 4.7 3.3 40.2 98.0 Amicon filtration 6.1 1.8 3.9 12.8 36.7 TSK-DEAE 7.0 0.5 0.4 36.0 10.8 Notes: after the second Amicon filtration, only 26.3% of the material was purified further, leading to a recovery of 10.8%. The theoretical recovery would therefore be 40% if all material had been further purified. The above purification procedure (Supplementary Table S1) resulted in an active enzyme preparation showing a single dominant polypeptide on SDS-PAGE of a molecular weight of ~45-46 kDa (result not shown). The final purification protocol adopted for MTO was as described in Materials and Methods of the main text, consisted of sequential steps of anion exchange chromatography on a MonoQ 10/100 column followed by size exclusion chromatography using a Superdex-75 column. This also resulted in a protein preparation that was dominated by a 46 kDa polypeptide. The fraction with MTO activity eluting from the anion-chromatography run again showed a single dominant polypeptide of 46 kDa, which was up to 50-fold enriched in specific activity in neighbouring fractions compared to the cleared supernatant (Supplementary Table S2). This demonstrated that the enzyme activity responsible for MT degradation in Hyphomicrobium sp. VS was successfully enriched. Supplementary Table S2. Modified purification scheme, comparison of specific enzyme activity in active fraction recovered after MonoQ anion exchange chromatography with initial soluble enzyme extract after removal of cell membranes specific MT degraded activity protein in [µmol] in 30 (µmol/min mg fold- assay [mg] min protein) purification Supernatant 1.56 10 0.21 1.0 MonoQ fraction 18 0.17 54 10.58 50.4 A B C ' M S 18 19 20 M MTO kDa 18 669 1 16 440 2 14 66 232 12 45 10 3 d 140 ' 36 K 8 29 6 24 4 4 20 5 2 14 67 0 1 10 100 molecular weight [kDa] Supplementary Figure S1. (A) SDS-PAGE analysis of protein fractions of Hyphomicrobium sp. VS. M, molecular weight marker (weights in kDa); S, soluble fraction after removal of membrane fraction; 18, 19 and 20 are fraction numbers of the Mono-Q run. (B) Native (10% w/v polyacrylamide) gel electrophoresis analysis of MTO purified from Hyphomicrobium VS. Lanes: MTO, methanethiol oxidase; lane M, molecular size standards (Mw given in kDa). (C) Calibration plot of the analytical gel filtration showing for estimation of the molecular weight of MTO. Standards used for column calibration: 1, ovalbumin (43 kDa); 2, conalbumin (75 kDa); 3, aldolase (158 kDa); 4, ferritin (440 kDa); 5, thyroglobulin (669 kDa), the relative elution of MTO is indicated giving an estimated Mw of approX 200 kDa. Supplementary Figure S2. Electrospray ionisation mass spectrometry analysis of purified MTO shows molecular weight of the subunit to be approXimately 46.2 kDa. Kinetics MTO 18 16 14 12 10 8 µmol MT/mg/min 6 4 2 0 0 2 4 6 8 10 µM MT Supplementary Figure S3. Kinetic analysis of methanethiol oxidase from Hyphomicrobium sp. VS. Based on the data shown in the plot, the estimated Km for MT was 0.2-0.3µM -1 -1 and the VmaX was approXimately 16µmol mg protein min . Electron Paramagnetic Resonance Spectroscopy – Results In resting and oxidized samples we observed EPR signals at temperatures of 7 and 13 K (Supplementary Fig S4). The resting oxidized MTO EPR signals did not have well-resolved Cu(II) EPR signals from an isolated mono-nuclear Cu(II) site(s), suggesting that the Cu-ions are coupled/interacting between Cu ions and/or with a radical in some redox state (Supplementary Fig S4). We could observe trace amounts of a radical with a very narrow signal centered around 2.0 (as it is a first derivative of a peak it has both positive and negative features). These broad signals were probably from two magnetically-interacting Cu(II) centres, with positive signals before 2.05, somewhat similar to CuA in cytochrome c oxidase or nitrous-oxide reductase, both binuclear copper centres, as well as Cu model complex possibly also without bridging sulfur (Antholine et al 1992, Monzani et al 1998, Solomon et al 1996, Kaim et al, 2013). These could be species from a Cu(II)Cu(I)/ Cu(1.5)Cu(1.5) cluster. The oxidized samples also had a signal around g=4.8 (see Supplementary Fig S5 at 7 and 13 K) indicating spin-coupled or spin-interacting species at this high g-value. The EPR spectra (Supplementary Figures S4 and S5) have several features of a Cu protein that cannot come from a single Cu site as the positive signals at g = 2.46 lack other resolved hyperfine interactions from a single isolated Cu (it is also a very weak Cu(II) at higher g-values visible with 4 hyperfine couplings resolved). The g= 2.39 and 2.24 could be linked to the 2.46 signal but all these three features did not look like normal hyperfines but could possibly indicate that sulfur may be a ligand. The g=2.053 is a zero crossing signal (like the radical) with both positive and negative signal and might be linked to any of the 2.46, 2.39 or 2.24 signals, but at this point of time it is unclear which. The last negative feature with g= 1.905 has unusually low g-value that might be seen in spin-interacting signals (Andersson et al 2003). In summary, the changes in features in the EPR spectra indicate changes in coordination of Cu when substrate binds, which could indicate direct interaction of the substrate with the Cu centre. Although at this point the exact nature of the Cu environment and status cannot be fully resolved, it is likely to be a binuclear site, as the data do not support a single atom Cu centre. g=2.05 | g=4.8 | Electron Paramagnetic Resonance first derivative Field, mTesla Supplementary Figure S4. Oxidized MTO at 7 K (blue) and 13 K (orange). MTO 9.2 mg/ml, 10 mM TRICINE, pH 8.2, 1 mM benzamidine, 1.8 mM sodium heXachloroiridate (V). 2.24 2.053 2.309 -6000 2.46 -7000 -8000 -9000 -10000 intensity -11000 -12000 1.905 -13000 Electron Paramagnetic Resonance first derivative -14000 2000 2500 3000 3500 4000 4500 Field, field,gaussmTesla Supplementary Figure S5. Electron Paramagnetic Resonance Spectroscopy analysis of oXidized MTO (MTO with ethanethiol and oXygen) at 15 K and microwave power 200 μW. X-ray Spectroscopy Analysis of Methanethiol Oxidase Detailed Methods X-ray absorption spectra were obtained in fluorescent mode on station B18 of the Diamond Light Source (Didcot, UK). This uses the technique of quick EXAFS (QuEXAFS), where the monochromator rotates at a constant rate during data acquisition. The fluorescence was detected using a nine element germanium solid state detector. Data were obtained at the Cu K edge for a variety of samples and standards. All data were obtained with the samples at 77K in a cryostat. To minimize radiation damage the beam was rastered across the sample, which was moved between each scan. Each scan took about 20 minutes to acquire. The fluorescence signals were merged and normalized using the Athena program. The output from this program is used in studies of the absorption edge shape and the chemical shifts. The background was then subtracted using the Pyspline program to produce the oscillatory EXAFS spectrum. This was analysed using the EXCURV program. This employs the rapid curved wave theory, including multiple scattering when necessary (Gurman et al. 1986). Scattering properties of the atoms were calculated ab initio within the program. The structure surrounding the Cu atom is described in terms of shells of atoms: a shell is a set of atoms of the same chemical type at the same average distance. The structural parameters fitted are the number and type of atom within a shell, their average distance from the Cu atom and the mean square deviation in this distance (the Debye-Waller factor). Copper metal (foil), CuO and CuS were used as reference samples. The copper- containing enzyme tyrosinase (Sigma Aldrich, Gillingham, UK) was used as additional reference.
Recommended publications
  • Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
    Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright.
    [Show full text]
  • Smith Bacterial SBP56 Identified As a Cu-Dependent Methanethiol
    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas <http://orcid.org/0000-0002-4246-5020>, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/17252/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik (2018). Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. The ISME journal, 1 (12), 145-160. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk OPEN The ISME Journal (2017), 1–16 www.nature.com/ismej ORIGINAL ARTICLE Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyice1,2,9, Nataliia Myronova1,9, Arjan Pol3, Ornella Carrión4, Jonathan D Todd4, Tom J Smith5, Stephen J Gurman6, Adam Cuthbertson1,
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Protein Targets of Acetaminophen Covalent Binding in Rat and Mouse
    ORIGINAL RESEARCH published: XX XX 2021 doi: 10.3389/fchem.2021.736788 1 58 2 59 3 60 4 61 5 62 6 63 7 64 8 65 9 66 10 Protein Targets of Acetaminophen 67 11 68 12 Covalent Binding in Rat and Mouse 69 13 70 14 Q2 Liver Studied by LC-MS/MS 71 15 Q3 72 Q1 16 Timon Geib, Ghazaleh Moghaddam, Aimee Supinski, Makan Golizeh† and Lekha Sleno* Q4 73 17 Q5 74 18 Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada Q6 75 19 76 20 Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. 77 21 78 Although considered a safe and effective over-the-counter medication, it is also the leading 22 79 23 cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent 80 24 binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The 81 Edited by: 25 aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to 82 26 Marcus S Cooke, 83 University of South Florida, compare the results from both species, using bottom-up proteomics with data-dependent 27 United States 84 28 high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) 85 Reviewed by: 29 experiments. Livers from rats and mice, treated with APAP, were homogenized and 86 Hartmut Jaeschke, 30 University of Kansas Medical Center digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction 87 31 Research Institute, United States prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    [Show full text]
  • Volatile Sulfur Compounds in Coastal Acid Sulfate Soils, Northern N.S.W
    VOLATILE SULFUR COMPOUNDS IN COASTAL ACID SULFATE SOILS, NORTHERN N.S.W Andrew Stephen Kinsela A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth & Environmental Sciences THE UNIVERSITY OF NEW SOUTH WALES, AUSTRALIA 2007 DECLARATION ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ………………………………………………… Date …………………………………………………… iii ACKNOWLEDGEMENTS There are numerous people who have assisted me throughout the course of my thesis. I therefore want to take this opportunity to thank a few of those who contributed appreciably, both directly and indirectly. First of all, I would like to express my heartfelt gratitude to my supervisor, Associate Professor Mike Melville. Mike’s initial teachings as part of my undergraduate studies first sparked my interest in soils. Since then his continued enthusiasm on the subject has helped shape the way I approach my own work.
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds.
    [Show full text]
  • Experimental Horizontal Gene Transfer of Methylamine
    Experimental Horizontal Gene Transfer of Methylamine Dehydrogenase Mimics Prevalent Exchange in Nature and Overcomes the Methylamine Growth Constraints Posed by the Sub- Optimal N-Methylglutamate Pathway The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nayak, Dipti D., and Christopher J. Marx. 2015. “Experimental Horizontal Gene Transfer of Methylamine Dehydrogenase Mimics Prevalent Exchange in Nature and Overcomes the Methylamine Growth Constraints Posed by the Sub-Optimal N-Methylglutamate Pathway.” Microorganisms 3 (1): 60-79. doi:10.3390/microorganisms3010060. http://dx.doi.org/10.3390/ microorganisms3010060. Published Version doi:10.3390/microorganisms3010060 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407840 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Microorganisms 2015, 3, 60-79; doi:10.3390/microorganisms3010060 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article Experimental Horizontal Gene Transfer of Methylamine Dehydrogenase Mimics Prevalent Exchange in Nature and Overcomes the Methylamine Growth Constraints Posed by the Sub-Optimal N-Methylglutamate Pathway Dipti D. Nayak 1,2,† and Christopher J. Marx 1,2,3,4,* 1 Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-Mail: [email protected] 2 Biological Sciences, University of Idaho, Moscow, ID 83844, USA 3 Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA 4 Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA † Present Address: Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
    [Show full text]
  • Dynamic Changes in the Urine Proteome in Two Ovarian Cancer Rat
    bioRxiv preprint doi: https://doi.org/10.1101/604850; this version posted April 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamic changes in the urine proteome in two ovarian cancer rat models Yuqiu Li 1,2, Linpei Zhang1,2, Wenshu Meng 1,2, Youhe Gao *1,2 1. Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875; 2. Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing 100875 *Corresponding author: Youhe Gao Email: [email protected] Phone: 86-10-5880-4382; Fax: 86-10-6521-2284 Abstract: Ovarian cancer is the most lethal gynecological malignancy in women, and it is likely to metastasize and has a poor prognosis. The early and reliable diagnosis and monitoring of ovarian cancer is very important. Without a homeostasis mechanism, urine can reflect early systemic changes in the body and has a great potential to be used for the early detection of cancer. This study tested whether early changes could be detected in two ovarian cancer rat models. Two rat models were established by either intraperitoneal (i.p.) or orthotopic (o.t.) injection of NuTu-19 ovarian cancer cells in female Fischer344 rats. Urine samples from ovarian cancer rats were collected at five time points during cancer development, and urinary proteins from the rats were profiled by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Compared with pre-injection samples, 49 differential proteins that have human orthologues were significantly changed in the orthotopically injected model.
    [Show full text]
  • Linking Activity and Function to Ecosystem Dynamics in a Coastal Bacterioplankton Community
    Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gifford, Scott M., Shalabh Sharma, and Mary Ann Moran. “Linking Activity and Function to Ecosystem Dynamics in a Coastal Bacterioplankton Community.” Frontiers in Microbiology 5 (April 24, 2014). As Published http://dx.doi.org/10.3389/fmicb.2014.00185 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/88031 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ORIGINAL RESEARCH ARTICLE published: 24 April 2014 doi: 10.3389/fmicb.2014.00185 Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community Scott M. Gifford †, Shalabh Sharma and Mary Ann Moran* Department of Marine Sciences, University of Georgia, Athens, GA, USA Edited by: For bacterial communities containing hundreds to thousands of distinct populations, Anton F.Post, Marine Biological connecting functional processes and environmental dynamics at high taxonomic Laboratory, USA resolution has remained challenging. Here we use the expression of ribosomal proteins Reviewed by: (%RP) as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in Gerhard Josef Herndl, University of Vienna, Austria a coastal ocean time series encompassing both seasonal variability and diel dynamics. Frank Stewart, Georgia Institute of %RP patterns grouped the taxa into seven activity clusters with distinct profiles in Technology, USA functional gene expression and correlations with environmental gradients.
    [Show full text]
  • Download (8Mb)
    Manuscript version: Author’s Accepted Manuscript The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or, Version of Record. Persistent WRAP URL: http://wrap.warwick.ac.uk/117505 How to cite: Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected]. warwick.ac.uk/lib-publications 1 Identification of proteins and genes expressed by Methylophaga thiooxydans during 2 growth on dimethylsulfide and their presence in other members of the genus 3 4 5 6 Eileen Kröber1,2, Hendrik Schäfer1* 7 8 9 10 1 School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, 11 United Kingdom 12 2 Current address: Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz 13 Centre for Agricultural Landscape Research, Müncheberg, Germany 14 15 16 17 *Correspondence to 18 H Schäfer, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, 19 CV4 7AL, United Kingdom 1 20 Abstract 21 Dimethylsulfide is a volatile organic sulfur compound that provides the largest input of biogenic 22 sulfur from the oceans to the atmosphere, and thence back to land, constituting an important 23 link in the global sulfur cycle.
    [Show full text]
  • Molecular Changes in Tissue Proteome During Prostate Cancer Development: Proof-Of-Principle Investigation
    diagnostics Article Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation Agnieszka Latosinska 1,*, Katarina Davalieva 2 , Manousos Makridakis 3, William Mullen 4 , Joost P. Schanstra 5,6, Antonia Vlahou 3, Harald Mischak 1 and Maria Frantzi 1 1 Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; [email protected] (H.M.); [email protected] (M.F.) 2 Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; [email protected] 3 Biomedical Research Foundation of the Academy of Athens, Centre of Systems Biology, 11527 Athens, Greece; [email protected] (M.M.); [email protected] (A.V.) 4 Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] 5 Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, 31432 Toulouse, France; [email protected] 6 Université Toulouse III Paul-Sabatier, 31400 Toulouse, France * Correspondence: [email protected]; Tel.: +49-(0)51-15-547-4430; Fax: +49-(0)51-15-547-4431 Received: 30 July 2020; Accepted: 26 August 2020; Published: 31 August 2020 Abstract: (1) Background: Prostate cancer (PCa) is characterized by high heterogeneity. The aim of this study was to investigate molecular alterations underlying PCa development based on proteomics data. (2) Methods: Liquid chromatography coupled to tandem mass spectrometry was conducted for 22 fresh-frozen tissue specimens from patients with benign prostatic hyperplasia (BPH, n = 5) and PCa (n = 17). Mann Whitney test was used to define significant differences between the two groups.
    [Show full text]
  • Production of Indigo and Indirubin Using Recombinant Escherichia Coli Harboring a Novel Flavin-Containing Monooxygenase Gene
    August 2012 Ph.D. Dissertation Production of indigo and indirubin using recombinant Escherichia coli harboring a novel flavin-containing monooxygenase gene Graduate School of Chosun University Department of Environmental Engineering Gui Hwan Han Production of indigo and indirubin using recombinant Escherichia coli harboring a novel flavin-containing monooxygenase gene Methylophaga aminisulfidivorans MPT 유래 flavin-containing monooxygenase 유전자를 내포시킨 재조합 대장균을 이용한 인디고 및 인디루빈의 생산 August 24 2012 Graduate School of Chosun University Department of Environmental Engineering Gui Hwan Han Production of indigo and indirubin using recombinant Escherichia coli harboring a novel flavin-containing monooxygenase gene Supervisor : Prof. Si Wouk Kim A dissertation submitted to the Department of Environmental Engineering and the Graduate School of Chosun University in fulfillment of the requirements for the degree of Doctor of Philosophy April 2012 Graduate School of Chosun University Department of Environmental Engineering Gui Hwan Han This certifies that the degree of Doctor of Philosophy of Gui Hwan Han is approved by Heon Man Lim Chair of committee Il Soo Bang Committee member Hyung Joon Cha Committee member Jintae Lee Committee member Si Wouk Kim Committee member June 2012 Graduate School of Chosun University Contents Contents ······································································································································ i List of tables ····························································································································
    [Show full text]