Introduction to the Endocrine System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Immuno-Neuroendocrine Interface
Amendment history: Erratum (December 2001) Series Introduction: The immuno-neuroendocrine interface Shlomo Melmed J Clin Invest. 2001;108(11):1563-1566. https://doi.org/10.1172/JCI14604. Perspective The CNS and the various endocrine organs are linked in a dynamic manner through networks of reciprocal interactions that allow for both long-term adaptation and short-term shifts in environmental conditions. These regulatory systems embrace the hypothalamus, the pituitary gland, and any of several target glands, including the adrenal gland and the thyroid. Because the anterior pituitary gland secretes at least six key hormones — adrenocorticotropin (ACTH), growth hormone (GH), prolactin (PRL), thyrotropin (TSH), and the gonadotropins follicle stimulating hormone and luteinizing hormone — such diverse parameters as cell integrity, stress responses, growth, development, reproduction, and energy homeostasis are all directly or indirectly under central control (1). In addition, largely because of the dominant role of the hypothalamo-pituitary-adrenal (HPA) axis, inflammation and immunity are also subject to neuroendocrine effects. The articles in this Perspective series explore some of the developmental, physiological, and molecular interactions occurring at the immuno-neuroendocrine interface. Control of pituitary function Three tiers of control subserve regulation of anterior pituitary trophic hormone secretion (2). First, the hypothalamus synthesizes and secretes releasing and inhibiting hormones, which traverse the hypothalamo-pituitary portal system and bind to specific anterior pituitary G protein−linked transmembrane […] Find the latest version: https://jci.me/14604/pdf PERSPECTIVE SERIES Neuro-immune interface Shlomo Melmed, Series Editor SERIES INTRODUCTION The immuno-neuroendocrine interface Shlomo Melmed Cedars-Sinai Research Institute, University of California Los Angeles, School of Medicine, Los Angeles, California 90048, USA. -
Hormone Research
RECENT PROGRESS IN HORMONE RESEARCH Edited by ANTHONY R. MEANS VOLUME 58 The Human Genome and Endocrinology “Recent Progress in Hormone Research” is an annual publication of The Endocrine Society that is published under the editorial auspices of Endocrine Reviews. The Endocrine Society 8401 Connecticut Avenue, Suite 900 Chevy Chase, Maryland 20815 Copyright 2003 by The Endocrine Society All Rights Reserved The reproduction or utilization of this work in any form or in any electronic, mechanical, or other means, now known or hereafter invented, including photocopying or recording and in any information storage or retrieval system, is forbidden, except as may be expressly permitted by the 1976 Copyright Act or by permission of the publisher. ISBN 0–879225-48-4 CONTENTS Senior Author Correspondence Information v 1. A Functional Proteomics Approach to Signal Transduction 1 Paul R. Graves and Timothy A.J. Haystead 2. The Use of DNA Microarrays to Assess Clinical Samples: The Transition from Bedside to Bench to Bedside 25 John A. Copland, Peter J. Davies, Gregory L. Shipley, Christopher G. Wood, Bruce A. Luxon, and Randall J. Urban 3. Gene Expression Profiling for Prediction of Clinical Characteristics of Breast Cancer 55 Erich Huang, Mike West, and Joseph R. Nevins 4. Statistical Approach to DNA Chip Analysis 75 N.M. Svrakic, O. Nesic, M.R.K. Dasu, D. Herndon, and J.R. Perez-Polo 5. Identification of a Nuclear Factor Kappa B-dependent Gene Network 95 Bing Tian and Allan R. Brasier 6. Role of Defective Apoptosis in Type 1 Diabetes and Other Autoimmune Diseases 131 Takuma Hayashi and Denise L. -
Dysfunction of the Hypothalamic-Pituitary-Adrenal Axis in HIV Infection and Disease
HORMONES 2008, 7(3):205-216 Review Dysfunction of the Hypothalamic-Pituitary-Adrenal axis in HIV infection and disease Evangelia Zapanti1, Konstantinos Terzidis1, George Chrousos2 11st Department of Endocrinology, “Alexandra” Hospital, Athens, 2Endocrine Unit, Department of Pediatrics, Athens University School of Medicine, “Aghia Sophia” Children’s Hospital, Athens, Greece ABSTRACT Abnormalities of the Hypothalamic-Pituitary-Adrenal (HPA) axis have been documented in HIV patients in the early as well as late stages of the infection and range from subtle subclini- cal disturbances to frank adrenal insufficiency. Potential etiologies of these disorders include opportunistic infections, neoplasms, drugs administered to treat infections, cytokine abnor- malities associated with the HIV disease process and acquired alterations in tissue sensitivity to glucocorticoids. In this article, we present a concise review of HPA abnormalities in HIV infection and disease with regard to their etiology with emphasis on syndromes of hypersen- sitivity/resistance to glucocorticoids associated with antiviral medications and/or the HIV infection itself. Key words: AIDS, Glucocorticoid hypersensitivity, Glucocorticoid resistance, HIV, HPA axis, Vpr INTRODUCTION peptide that plays a central role in coordinating the HPA axis and the systemic response to stress,3 act- HPA axis ing as the main physiologic ACTH stimulus.4 ACTH The HPA axis and the systemic sympathetic/ad- leads to secretion of cortisol (F) and other adrenal renomedullary (sympathoadrenal) system are the steroids, such as dehydroepiandrosterone (DHEA) peripheral branches of the stress system, whose main and aldosterone.5 function is to maintain basal and stress-related ho- meostasis.1 Biologic, physical or psychologic stimuli The HPA axis and the immune-inflammatory activate the stress system, including the HPA axis. -
Endocrinology and Reproduction
Endocrinology and Reproduction Elisabet Stener-Victorin, Professor, PhD Reproductive Endocrinology and Metabolism (REM) group Department of Physiology and Pharmacology Karolinska Institutet, Stockholm, Sweden [email protected] General Consepts of Endocrine Control Hormone – Greek hormaein = ”excite” . Autocrine signalling e.g. interleukin-1 in lymphocytes . Paracrine signalling e.g. growth and clotting factors . Endocrine signalling all circulating hormones Classical Endocrine Organs Other ”non-classical” hormone glands e.g. CNS . Kidney . Stomach . Small intestine . Skin . Heart . Lung . Placenta Katch et al Essentials of Exercise Physiol. Figure 12.1 Hormones Controls and Regulates . Reproduction including gamete production, fertilization, nourishment of the embryo and fetus . Growth and development . Regulates ion and water balance . Regulates cellular metabolism and energy balance . Mobilize the immun system by responding to infection, trauma, and emotional stress Homeostasis . Maintance of steady states by coordinated physiological mechanisms . Contributes to homeostasis by controlling availablity of substrates and metabolism . Regulating body fluid and ion balance Homeostasis – like thermostat in the room Body temperature ~ 37ºC Blood glucose 4.4 – 6.1 mM Ca2+ 4.1 – 5.2 mg/dL Phosphate 0.8 – 1.5 mM How is homestasis achived? Endocrine system : 1. Gland 2. Hormone - receptor 3. Target organ - response Katch et al Essentials of Exercise Physiol. Figure 12.2 Principles for Feed-back Negative Positive (rare) Endocrine Endocrine cell cell A A Target Target Endocrine Endocrine cell cell B B Biological effect Biological effect Principles for Feed-back and Biorythm Complex multilevel . Long feedback loop Hypo- thalamus . Active hormone regulates the hypothalamus Releasing . Short feedback loop hormone . Active hormone regulates pituitary Anterior pituitary Target hormone Target Biorytm - Pulsatile release Endocrine . -
The Endocrine Physiology 2 Inputs That Control Hormone Secretion • Control by Plasma Concentrations of Mineral Ions Or Organic Molecules
The Endocrine Physiology 2 Inputs that Control Hormone Secretion • Control by Plasma Concentrations of mineral Ions or Organic molecules. For example, absorption of I- iodine ion increase output of thyroxine hormone by thyroid glands. • Control by Neurons – Nervous system can control hormone secretion in 4 ways. 1) Autonomic NS stimulates adrenal medulla to secrete epinephrine 2) Autonomic NS can stimulate or inhibit secretion of a hormone by an endocrine gland 3) neurohormones secreted by hypothalamus pass through blood to anterior pituitary body and influence the secretion of hormones by it. 4) Axons of some neurons of hypothalamus end in posterior pituitary lobe and release their hormones in it. • Control by Other Hormones – when the secretion of a hormone (thyroid stimulating hormone) causes the secretion of another hormone (triodothyronine), the 1st hormone is called a tropic hormone (thyrotropin). Most of these hormones also cause growth of gland (thyroid) secreting the hormone. For this action a tropic hormone is called a trophic hormone. I gave examples in parentheses. Types of Endocrine disorders • Hyposecretion is too little hormone. Primary hyposecretion can be due to partial damage of gland or enzyme deficiency or lack of nutrient in diet or infection etc. Secondary hyposecretion is caused due to deficiency of the tropic hormone though gland is in good condition. • Hypersecretion is too much hormone. It can also be primary or secondary on similar pattern to hyposecretion. • Hyporesponsiveness is reduced responsiveness of target cells to hormone. Most common type of Diabetes mellitus type 2 is caused due to hyporesponsiveness of target cells (muscle cells and adipose tissue). -
UNIT 14 (OPTION) Alterations in Endocrine Function
UNIT 14 (OPTION) Alterations in Endocrine Function Lorraine Anderson, Ph.D. Rankin, Reimer & Then. © 2000 revised edition. NURS 461 Pathophysiology, University of Calgary Unit 16 Alterations in Endocrine Function 1 Unit 16 Table of Contents Overview....................................................................................................4 Aim ....................................................................................................... 4 Objectives ................................................................................................ 4 Resources................................................................................................. 5 Web Links................................................................................................ 5 Section 1: Mechanisms of Hormone Regulation ....................................................6 Learning Activity #1 ................................................................................... 6 Regulation of Hormone Action ....................................................................... 6 Learning Activity #2 ................................................................................... 7 Hormone Transport .................................................................................... 7 Cellular Mechanisms of Hormone Release ......................................................... 7 Structure and Function of Endocrine Glands....................................................... 9 Hypothalamic Trophic Hormones ................................................................ -
Lec . 2 Dr. Shaimaa Munther
Lec . 2 Dr. Shaimaa Munther • The anterior pituitary ( adenohypophysis) is derived embryonically from glandular tissue, as an invagination of the pharynx called (rathke's pouch). • It then migrates toward the embryonic nervous tissue destined to form the neurohypophysis. • When these two tissues come into contact, the pituitary gland is formed. • Unlike the neurohypophysis, which releases hormones originally synthesized in the hypothalamus, the adenohypophysis synthesizes its own hormones in specialized groups of cells. • Similar to the neurohypophysis, however, the release of these hormones into the blood is regulated by the hypothalamus • The anterior pituitary secretes: 1. Thyroid-stimulating Hormone (TSH, Thyrotropin), 2. Adrenocorticotropic Hormone (ACTH, or called Adrenocorticotropin,or Corticotropin ) 3. Gonadotropines ( Luteinizing Hormone (LH), & Follicle-Stimulating Hormone (FSH)) 4. Prolactin (Lacto tropes) 5. Growth hormone (Somatotropin) • Of the listed hormones, prolactin acts on the breast. the remaining are tropic hormones ; that is, they stimulate secretion of hormonally active substances by other endocrine glands. • Thyroid-stimulating hormone (TSH or Thyrotropin) 1. Regulates the growth and metabolism of the thyroid gland. 2. Stimulates synthesis and release of the thyroid hormones, T3 and T4. • Adrenocorticotropic hormone (ACTH) 1. Stimulates growth of the adrenal cortex 2. Stimulates steroid hormones production in the adrenal cortex. specifically, it stimulates secretion of cortisol and other corticosteroids. • Growth hormone (GH, Somatotropin) 1. Is one of the few hormones that exerts its effects on organs and tissues throughout the body. 2. It is essential for normal growth and development of the skeleton as well as visceral, or soft, tissues from birth until young adulthood. 3. Growth of the skeleton involves : a. -
The Adrenal Cortex and Life Gavin P
The Adrenal Cortex and Life Gavin P. Vinson To cite this version: Gavin P. Vinson. The Adrenal Cortex and Life. Molecular and Cellular Endocrinology, Elsevier, 2009, 300 (1-2), pp.2. 10.1016/j.mce.2008.09.008. hal-00532077 HAL Id: hal-00532077 https://hal.archives-ouvertes.fr/hal-00532077 Submitted on 4 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: The Adrenal Cortex and Life Author: Gavin P. Vinson PII: S0303-7207(08)00405-X DOI: doi:10.1016/j.mce.2008.09.008 Reference: MCE 6977 To appear in: Molecular and Cellular Endocrinology Received date: 29-7-2008 Revised date: 4-9-2008 Accepted date: 5-9-2008 Please cite this article as: Vinson, G.P., The Adrenal Cortex and Life, Molecular and Cellular Endocrinology (2008), doi:10.1016/j.mce.2008.09.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. -
01 Introduction to Endocrine System.Pdf
ENDOCRINE BLOCK PHYSIOLOGY TEAM 431 Done by : Rand AL-haweal & Abdulaziz Al-Hamad Revised by : Nour Al-Khawajah & Mohammed Asiri Endocrinology (Introduction) Learning objectives: Endocrine vs exocrine gland Transport and clearance Chemical messengers Mechanism of action Hormone Receptors, down-regulation and up-regulation Definition Intracellular signaling Chemical structure Second messenger (cAMP, IP3) Paracrine & autocrine Endocrine vs exocrine gland EXOCRINE GLANDS ENDOCRINE GLANDS Ducts + lumen and surface Chemical messengers + bloodstream Their secretions are released through Their secretions are released directly ducts onto an organ's lumen and surface. into the bloodstream rather than through a duct. Endocrine gland :- ductless, classical gland e.g hypothalamus Endocrine tissue :- tissue secreting hormone e.g skin Chemical messengers The activities of cells, tissues and organs are coordinated by chemical messengers Neurotransmitters Endocrine hormones Neuroendocrine hormones Paracrines :-gland produce affect on local tissue Autocrines Cytokines Juxtacrine :- part of hormone receptor on one cell and other part on other cell. Endocrine glands: Adrenal Pituitary Pancreas Thyroid Ovaries Parathyroid Testes The multiple hormone systems play a key role in regulating almost all body functions: Metabolism Reproduction Growth and development Behavior Water and electrolyte balance Definition: Hormone is a chemical substance released by group of cells to control the function of other type of cells. (It is secreted directly to the blood stream in response to stimulus to cause physiological response at the target tissues.) Types of hormones Affect many different types of cells (eg. GH and Thyroxin) Affect only specific target cells (eg. ACTH and estrogen) What are target cells? Target cells refer to cells that contain specific receptors (binding sites) for a particular hormone. -
ENDOCRINE SYSTEM Hormones •Are Secreted by a Cell Or Group of Cells
ENDOCRINE SYSTEM Hormones •are secreted by a cell or group of cells. •are secreted into the blood •are transported to a distant target. •exert their effect at very low concentrations •act by binding receptors. •action must be terminated. Peptide Hormone Synthesis, Packaging, and Release Messenger RNA on the ribosomes binds amino acids into a peptide chain called a preprohormone. The chain is directed into the ER lumen by a signal sequence of amino acids. Enzymes in the ER chop off the signal sequence, creating an inactiveprohormone. The prohormone passes from the ER through the Golgi complex. Secretory vesicles containing enzymes and prohormone bud off the Golgi. The enzymes chop the prohormone into one or more active peptides plus additional peptide fragments. The secretory vesicle releases its contents by exocytosis into the extracellular space. The hormone moves into the circulation for transport to its target. Steroid hormones are derived from cholesterol They have similar structure. They are made in only a few organs. Adrenal cortex Gonads Skin Placenta Steroids are lipophilic and diffuse easily across membranes, so cells can not store hormones in vesicles. They synthesize as needed. Steroid hormone receptors are in the cytoplasm or in the nucleus. Ultimate destination is nucleus where the complex acts as a transcription factor, binding to DNA and by activationg or repressing one or more genes. Activated genes create mRNA that directs synthesis of new proteins. Any hormone that alters gene activity is said to have a genomic effect on the target cell. When hormones activates genes to direct production of new proteins, there is usually a lag time between hormone-receptor binding and the first biological effects. -
The Role of Hormones and Trophic Factors As Components of Preservation Solutions in Protection of Renal Function Before Transplantation: a Review of the Literature
molecules Review The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature Aneta Ostró˙zka-Cie´slik 1,* and Barbara Doli ´nska 1,2 1 Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland; [email protected] 2 “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland * Correspondence: [email protected] Academic Editor: Seyed Khosrow Tayebati Received: 16 March 2020; Accepted: 5 May 2020; Published: 7 May 2020 Abstract: Transplantation is currently a routine method for treating end-stage organ failure. In recent years, there has been some progress in the development of an optimal composition of organ preservation solutions, improving the vital functions of the organ and allowing to extend its storage period until implantation into the recipient. Optimizations are mostly based on commercial solutions, routinely used to store grafts intended for transplantation. The paper reviews hormones with a potential nephroprotective effect, which were used to modify the composition of renal perfusion and preservation solutions. Their effectiveness as ingredients of preservation solutions was analysed based on a literature review. Hormones and trophic factors are innovative preservation solution supplements. They have a pleiotropic effect and affect normal renal function. The expression of receptors for melatonin, prolactin, thyrotropin, corticotropin, prostaglandin E1 and trophic factors was confirmed in the kidneys, which suggests that they are a promising therapeutic target for renal IR (ischemia-reperfusion) injury. They can have anti-inflammatory, antioxidant and anti-apoptotic effects, limiting IR injury. -
Endocrine Glands
ENDOCRINE GLANDS The different activities of the body are regulated by 2 main systems:- 1. The nervous system. 2. The endocrine system. The nervous system: is concerned with regulation of metabolic activities and secretions of glands. It is a rapid control system. The endocrine system: is concerned with regulation of metabolic functions. It is a slow control system. What is meant by the endocrine system? It is a system of ductless glands, which differs from other types of glands such as the salivary glands in that their secretions which are called hormones enter the blood stream directly which carries them to different tissues to produce their effects. What is a hormone ? It is a chemical substance secreted into the blood stream by endocrine glands to act on distant organs called effector organs. Properties of hormones: They are secreted in very small amounts. So, their blood and tissue concentrations are very low. They do not act on the organs secreting them (endocrine glands) but act on distant organs (effector organs). Hormones may act on a specific effector organ e.g. thyrotrophic hormone (TSH) of the anterior pituitary acts specifically on the thyroid gland, or hormones may act on the body as a whole e. g. growth hormone (GH) of the anterior pituitary. Hormones act on the target organ by changing the rate of biochemical reactions in that organ. This effect persists for a longer period even after the hormone which produced it becomes inactivated. Difference between a hormone and an enzyme: Hormone Enzyme Some hormones are All enzymes are proteins. proteins, some are amino acids and some are steroids.