The Palmar Aponeurosis and the Central Spaces of the Hand

Total Page:16

File Type:pdf, Size:1020Kb

The Palmar Aponeurosis and the Central Spaces of the Hand J. Anat. (1974), 117, 1, pp. 55-68 55 With 1O figures Printed in Great Britain The palmar aponeurosis and the central spaces of the hand F. BOJSEN-MOLLER AND L. SCHMIDT Anatomy Department C, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen 0, Denmark (Accepted 10 October 1973) INTRODUCTION Extending between the pretendinous bands of the palmar aponeurosis and the deep fasciae of the hand are a number of sagittal septa which subdivide the distal part of the central compartment into eight narrow, secondary compartments. Four of these contain the flexor tendons to the four ulnar fingers, while the other four contain the lumbrical muscles and accompanying digital vessels and nerves (Grapow, 1887; Legueu & Juvara, 1892; Poirier, 1901; Grodinsky & Holyoke, 1941; Jamieson, 1950). These sagittal septa, and the fact that they divide the central compartment, are not mentioned by Kanavel (1934), whose description of the spaces of the hand provides the basis for the description in many textbooks of anatomy (Gardner, Gray & O'Rahilly, 1963; Hollinshead, 1964; Cunningham, 1972; Last, 1972; Gray, 1973). According to Kanavel (1934), there are in the palm two preformed spaces, which he calls the middle palmar space and the thenar space. Kanavel states that the two spaces are situated under the layer of the flexor tendons, being completely separated by a middle palmar septum which extends from the third metacarpal bone to the flexor tendons of the index finger. The septum, which is described as very firm, was found to form an effective barrier to the spread of infections from one space to the other. According to Kaplan (1965), the central palmar compartment is divided only by an attachment of the ulnar bursa to the third metacarpal bone. Kaplan notes that the longitudinal septa which he had previously described in the normal palm are in fact found only in hands affected by Dupuytren's contracture. In other surgical works (Hueston, 1963; Flynn, 1966; Bunnell, 1970) the sagittal paratendinous septa are mentioned as normal features, but a full description is not given. According to Skoog (1948, 1967), the paratendinous septa, together with the transverse fibres of the palmar aponeurosis, form a fibrous tunnel system which he regards as a separate anatomical structure, partly because he has never found it (in contrast to the longi- tudinal fibres) to be the site of the pathological tissue changes characteristic of Dupuytren's contracture. These conceptions are incompatible, and adequate demonstrations of the spaces and septa are lacking. Our attention was drawn to the problem because in the avail- able literature the structures in question are illustrated only by means of drawings. 56 F. BOJSEN-M0LLER AND L. SCHMIDT The aim of the present investigation has been to reinvestigate the palmar aponeurosis and its deep attachments and to show the relationship between these and the spaces of the hand. MATERIALS AND METHODS The description is based on the dissection of 22 hands fixed in formalin or phenol and of 3 fresh specimens, all derived from normal adults. Four unfixed hands were deep-frozen and cut on a band-saw into transverse sections about i cm thick. In order to study the course of the fibres in the aponeurosis and ligaments, hands from 6 fetuses aged 5-6 months were fixed in Lillie's neutral formalin and examined histologically. The hands were decalcified in 5 % nitric acid with the aid of ultra- sound for a total of 3 hours, embedded in paraffin wax, sectioned, and stained in haematoxylin-eosin, Mallory's PTAH or Gomori's trichrome. OBSERVATIONS The palmar aponeurosis, along with the palmar interosseous fascia, the deep transverse metacarpal ligament and the fascia covering the adductor pollicis muscle (adductor fascia), bound the central compartment of the hand. The aponeurosis is connected to the deep structures by means of nine sagittal septa (two marginal and seven intermediate). Eight of these are paratendinous in location, situated one on each side of the long flexor tendons to the four ulnar fingers, while one is situated on the radial side of the first lumbrical (Figs. 1-4). The seven intermediate septa are rectangular, each with a superficial margin attached to the palmar aponeurosis, a deep margin attached to the deep fasciae in the hand, a proximal free falciform edge, and a distal limit where the septum continues into the fasciae of the fingers (Figs. 2, 10). Proximally, the intermediate septa extend into the acute angle between the flexor tendons and the origin of the lumbrical muscles. Septa are short where the lumbrical muscle originates distally on the flexor profundus tendons and long where the origin is more proximal (Figs. 1, 4). Thus there are short septa on the radial sides of the tendons of the index and middle fingers. On the ulnar side of the flexor profundus tendon to the index finger there is no lumbrical origin, and the septum extends proximally almost to the superficial palmar arch. The lumbrical muscle between the tendons of the middle and ring fingers is asymmetrical in its origin, originating more proximally on the middle finger's tendon than on the tendon of the ring finger. The septum between the muscle and tendons ofthe middle finger is correspondingly longer than the septum between the muscle and the tendons to the ring finger. The septa are composed of strong collagen fibres, emanating from both the longi- tudinal and the transverse fibres in the palmar aponeurosis, and anchored deep in the hand to the bony skeleton. The thickest of the fibres converge in the septa towards the deep transverse metacarpal ligament and are attached by means of the latter to the heads of the metacarpal bones (Figs. 5, 6, 7). Proximal to the ligament, the fibres in the five ulnar septa are attached to the palmar interosseous fascia and, via the three sagittal septa of this structure, are connected to the shafts of the third, fourth Palmar aponeurosis and spaces ofhand 57 Fig. 1. Dissection of left hand. The palmar aponeurosis and the contents of the central compart- ment have been removed. The two marginal (ms) and the seven intermediate (is) septa remain. A little of the palmar aponeurosis has been left attached to the intermediate septa, to allow the length of the individual septa to be appreciated. The radial marginal septum passes over the adductor fascia (af), and distal to it forms the palmar and radial boundaries ofthe lumbrical canal (Iu) ofthe index finger. The central compartment is seen to consist proximally ofa single space and distally of narrow compartments (cf. Fig. 4). dt: deep transverse metacarpal ligament; f: fat body in the floor of the central compartment; fr: flexor retinaculum; fs: fibrous flexor sheaths; n: nerve to thenar muscles; st: superficial transverse metacarpal ligament. 58 F. BOJSEN-MOLLER AND L. SCHMIDT ,~~~~~~~~~~~~~~~~~~1i., _-;:#am_af Fig. 2. Radial aspect of the hand shown in Fig. 1, illustrating the shape and extent of the seven intermediate septa. Note their proximal falciform edges. Abbreviations as in Fig. 1. and fifth metacarpal bones (Fig. 8). Distal to the ligament, the collagenous fibres are, with the fibrous flexor sheaths, attached to the articular capsules and margins of the proximal phalanges. Radial to the third metacarpal bone the septa are attached to the adductor fascia, and the deep transverse metacarpal ligament. The marginal septa separate the central compartment from the thenar and hypo- thenar compartments. Proximally, they begin as an extension of the side walls of the carpal canal. The radial marginal septum extends from this point over the fascia covering the adductor pollicis and first dorsal interosseous muscles and out over the proximal phalanx, forming the volar and radial limits of the lumbrical canal to the index finger (Fig. 1). The septum is pierced distal to the carpal canal by the flexor Palmar aponeurosis and spaces of hand 59 pollicis longus tendon, and then by the motor branch of the median nerve to the thenar eminence, the branch from the radial artery to the superficial palmar arch, and vessels and nerves to the thumb (Fig. 10). The artery and nerve to the radial side of the index finger are embedded in the septum. The ulnar marginal septum is attached to the shaft of the fifth metacarpal bone. Distal to the carpal canal, it is pierced by a digital branch from the ulnar nerve and by the ulnar artery where it enters the superficial palmar arch. The palmar aponeurosis consists of longitudinal, mainly superficial fibres, and transverse, mainly deep fibres. I T Fig. 3 Fig. 4 Fig. 3. Drawing of left hand showing the course of the fibres in the palmar aponeurosis. The position of the two marginal and the seven intermediate septa is marked with broken lines. Fig. 4. Drawing of left hand. The palmar aponeurosis and the contents of the central compart- ment have been removed to show the paratendinous septa and their individual extent. The distal part of the central compartment is divided into four compartments containing the long flexor tendons, four containing the lumbrical muscles, and three containing the interdigital vessels and nerves. The longitudinal fibres form four bands extending towards the four ulnar fingers. At the level of the fenestrae in the distal part of the palm, a large number of these fibres pass up to insert into the skin, others turn aside and continue in the superficial transverse metacarpal ligament, while a smaller number continue distally onto the fingers where they terminate in the skin and in the fibrous flexor sheaths above the proximal phalanx. From about the middle of the palm the fibres that participate in the formation of the paratendinous septa are given off (Fig. 3).
Recommended publications
  • A Study on the Absence of Palmaris Longus in a Multi-Racial Population
    108472 NV-OA7 pg26-28.qxd 11/05/2007 05:02 PM Page 26 (Black plate) Malaysian Orthopaedic Journal 2007 Vol 1 No 1 SA Roohi, etal A Study on the Absence of Palmaris Longus in a Multi- racial Population SA Roohi, MS (Ortho) (UKM), L Choon-Sian, MD (UKM), A Shalimar, MS (Ortho) (UKM), GH Tan, MS (Ortho) (UKM), AS Naicker, M Med Rehab (UM) Hospital Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia ABSTRACT Most standard textbooks of hand surgery quote the prevalence of absence of palmaris longus at around 15%3-5. Palmaris longus is a dispensable muscle with a long tendon However, this figure varies considerably in different ethnic which is very useful in reconstructive surgery. It is absent groups. A study by Thompson et al6 on 300 Caucasian 2.8 to 24% of the population depending on the race/ethnicity subjects found that palmaris longus was absent unilaterally in studied. Four hundred and fifty healthy subjects (equally 16%, and bilaterally in 9% of the study sample for an overall distributed among Malaysia’s 3 major ethnic groups) were prevalence of absence of 24%. Similarly, George7 noted on clinically examined for the presence or absence of palmaris 276 cadavers of European descent that its absence was 13% longus. This tendon was found to be absent unilaterally in unilaterally, 8.7% bilaterally for an overall absence of 15.2%. 6.4% of study subjects, and bilaterally in 2.9% of study Another cadaveric study by Vanderhooft8 in Seattle, USA participants. Malays have a high prevalence of palmaris reported its overall absence to be 12%.
    [Show full text]
  • Ultrasonograpic Assessment of Relationship Between the Palmaris Longus Tendon and the Flexor Retinacular Ligament and the Palmar Aponeurosis of the Hand
    Original Article Ultrasonograpic Assessment of Relationship Between the Palmaris Longus Tendon and the Flexor Retinacular Ligament and the Palmar Aponeurosis of the Hand Kadir Ertem1, Ahmet Sığırcı2, Salih Karaca1, Aykut Sığırcı3, Yunus Karakoç4, Saim Yoloğlu5 İnonu University, Faculty of Medicine, ABSTRACT Departments of Orthopedics and Trauma- tology1, Radioloy2, Physiology4 and Biosta- Aim: This study aimed to evaluate the presence of the Palmaris Longus tistics5, Malatya, Turkey Tendon (PLT) and the relationship between the Flexor Retinacular Ligament (FRL) and the Palmar Aponeurosis (PA) of the hand. 319 Mayıs University, Faculty of Medicine, Departments of Orthopaedics and Trauma- Method: 62 voluntary subjects (31 female, 31 male students and per- tology, Samsun, Turkey sonnel from the Inonu University, at the average age 28.38 ± 6.86 years ranging from 19 to 48 years) took part in this study using ultrasound. Eur J Gen Med 2010;7(2):161-166 Received: 16.05.2009 Result: Significant differences were found in the PA p-m-d diameters of subjects between with and without PLT bilaterally, on the right Accepted: 06.07.2009 and the left hand (p<0.05), whereas there was no meaningful differ- ence considering FRL diameters (p>0.05). Furthermore, this ultraso- nographic assessment revealed the continuity of collagen bunches of the PL tendon up to FRL, but not PA. Conclusion: Although not demonstrated by ultrasonography here, the increased thickness of the PA in subjects with a PLT supports the find- ings in the literature in which the structural
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Anatomy and Physiology II
    Anatomy and Physiology II Review Bones of the Upper Extremities Muscles of the Upper Extremities Anatomy and Physiology II Review Bones of the Upper Extremities Questions From Shoulder Girdle Lecture • Can you name the following structures? A – F • Acromion F – B B • Spine of the Scapula G – C • Medial (Vertebral) Border H – E C • Lateral (Axillary) Border – A • Superior Angle E I – D • Inferior Angle – G • Head of the Humerus D – H • Greater Tubercle of Humerus – I • Deltoid Tuberosity Questions From Shoulder Girdle Lecture • Would you be able to find the many of the same landmarks on this view (angles, borders, etc)? A • Can you name the following? – D • Coracoid process of scapula C – C D B • Lesser Tubercle – A • Greater Tubercle – B • Bicipital Groove (Intertubercular groove) Questions From Upper Extremities Lecture • Can you name the following structures? – B • Lateral epicondyle – A • Medial epicondyle A B Questions From Upper Extremities Lecture • Can you name the following landmarks? – C • Olecranon process – A • Head of the radius – B D • Medial epicondyle B A – D C • Lateral epicondyle Questions From Upper Extremities Lecture • Can you name the following bones and landmarks? – Which bone is A pointing to? • Ulna – Which bone is B pointing A to? • Radius E – C B • Styloid process of the ulna – D • Styloid process of the radius C – E D • Interosseous membrane of forearm Questions From Upper Extremities Lecture • Can you name the following bony landmarks? – Which landmark is A pointing to? • Lateral epicondyle of humerus – Which
    [Show full text]
  • Muscles of the Upper Limb.Pdf
    11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles of the Upper Limb Pectoralis minor ORIGIN: INNERVATION: anterior surface of pectoral nerves ribs 3 – 5 ACTION: INSERTION: protracts / depresses scapula coracoid process (scapula) (Anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Serratus anterior Subclavius ORIGIN: INNERVATION: ORIGIN: INNERVATION: ribs 1 - 8 long thoracic nerve rib 1 ---------------- INSERTION: ACTION: INSERTION: ACTION: medial border of scapula rotates scapula laterally inferior surface of scapula stabilizes / depresses pectoral girdle (Lateral view) (anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Trapezius Levator scapulae ORIGIN: INNERVATION: ORIGIN: INNERVATION: occipital bone / spinous accessory nerve transverse processes of C1 – C4 dorsal scapular nerve processes of C7 – T12 ACTION: INSERTION: ACTION: INSERTION: stabilizes / elevates / retracts / upper medial border of scapula elevates / adducts scapula acromion / spine of scapula; rotates scapula lateral third of clavicle (Posterior view) (Posterior view) 1 11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles Moving Arm Rhomboids Pectoralis major (major / minor) ORIGIN: INNERVATION: ORIGIN: INNERVATION: spinous processes of C7 – T5 dorsal scapular nerve sternum / clavicle / ribs 1 – 6 dorsal scapular nerve INSERTION: ACTION: INSERTION: ACTION: medial border of scapula adducts / rotates scapula intertubucular sulcus / greater tubercle flexes / medially rotates / (humerus) adducts
    [Show full text]
  • The Impact of Palmaris Longus Muscle on Function in Sports: an Explorative Study in Elite Tennis Players and Recreational Athletes
    Journal of Functional Morphology and Kinesiology Article The Impact of Palmaris Longus Muscle on Function in Sports: An Explorative Study in Elite Tennis Players and Recreational Athletes Julie Vercruyssen 1,*, Aldo Scafoglieri 2 and Erik Cattrysse 2 1 Faculty of Physical Education and Physiotherapy, Master of Science in Manual therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium 2 Faculty of Physical Education and Physiotherapy, Department of Experimental Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] (A.S.); [email protected] (E.C.) * Correspondence: [email protected]; Tel.: +32-472-741-808 Academic Editor: Giuseppe Musumeci Received: 21 February 2016; Accepted: 24 March 2016; Published: 13 April 2016 Abstract: The Palmaris longus muscle can be absent unilateral or bilateral in about 22.4% of human beings. The aim of this study is to investigate whether the presence of the Palmaris longus muscle is associated with an advantage to handgrip in elite tennis players compared to recreational athletes. Sixty people participated in this study, thirty elite tennis players and thirty recreational athletes. The presence of the Palmaris longus muscle was first assessed using different tests. Grip strength and fatigue resistance were measured by an electronic hand dynamometer. Proprioception was registered by the Flock of Birds electromagnetic tracking system. Three tests were set up for measuring proprioception: joint position sense, kinesthesia, and joint motion sense. Several hand movements were conducted with the aim to correctly reposition the joint angle. Results demonstrate a higher presence of the Palmaris longus muscle in elite tennis players, but this was not significant.
    [Show full text]
  • Bilateral Reversed Palmaris Longus Muscle: a Rare Anatomical Variation
    Folia Morphol. Vol. 71, No. 1, pp. 52–55 Copyright © 2012 Via Medica C A S E R E P O R T ISSN 0015–5659 www.fm.viamedica.pl Bilateral reversed palmaris longus muscle: a rare anatomical variation G. Salgado1, M. Cantín2, O. Inzunza1, A. Muñoz1, J. Saez1, M. Macuer1 1Department of Normal Anatomy, Pontificia Universidad Católica de Chile, Faculty of Medicine, Santiago, Chile 2Department of Integral Odontology, Doctoral Program in Morphological Sciences, Faculty of Odontology, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile [Received 8 September 2011; Accepted 23 October 2011] We report a case of bilateral reversed palmaris longus muscle (PLM). The mus- cle was tendinous in its upper portion and muscular in its lower portion in both arms. This rare variation has been mentioned only once in the literature as a surgical finding. According to the literature, a reversed PLM may cause a com- partment syndrome in the wrist area, carpal tunnel, and Guyon’s syndrome. The described variation is also useful to the hand surgeon as a tendon graft, a tendon for transfer, or as an anatomical landmark for operations at this area. (Folia Morphol 2012; 71, 1: 52–55) Key words: palmaris longus muscle, reversed muscle, anatomical variation, forearm INTRODUCTION The PLM is extremely variable. Its most frequent The palmaris longus muscle (PLM) is a fusiform variation is agenesis, reported in 12.8% of the po- and thin muscle that lies medial to the flexor carpi pulation [10, 15]. Other variations include differenc- radialis (FCR) muscle. It shares a common origin with es in shape and position described as central, in- the flexor superficialis digitorum (FSD) muscle, the verted, bifid, duplicated [11], and even triplicated flexor carpi ulnaris (FCU) muscle, and the FCR, in the [7, 15].
    [Show full text]
  • Fascia, Septa, Tendon Sheaths and the Potential Spaces of the Hand These Fascial Layers Are Continuous with the Fascial Sleeve of the Forearm
    This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. Fascia, Septa, Tendon Sheaths and the Potential Spaces of the Hand These fascial layers are continuous with the fascial sleeve of the forearm. Centrally the fascia of the palm thickens in the centre, where the palmaris Palmaris Longus tendon longs tendon attaches to it, which is All merge into the also where it merges with the flexor Palmar Aponeurosis Antebrachial Fascia retinaculum. This whole thickened Flexor retinaculum area is called the palmar aponeurosis. Distally, the palmar aponeurosis divides into four bands which attach to the bases of the proximal phalanges, and there it becomes a part of the digital sheaths The Thenar Space Palmar Aponeurosis so thick and tough that any infections in the palmar spaces will actually cause the weaker DORSAL fascia to bulge out. In Dupuytren’s contracture, the palmar aponeurosis becomes nodular, Thenar fascia fibrosed, and thickened The Midpalmar Space Palmar Aponeurosis Unlike the thenar space, this one is Hypothenar fascia continuous with the anterior compartment of the forearm- it communicates with it via the carpal tunnel. Lateral fibrous septum of the palm Medial fibrous septum of Digital Synovial Sheaths which stretches from the palmar the palm which stretches from the palmar aponeurosis to the 3rd metacarpal aponeurosis to the 5th metacarpal Of the two septa, the LATERAL is the strongest The common flexor sheath continues to the th 5 digit. The other digits have their own Digital Synovial Sheaths Synovial sheath for Flexor Pollicis Longus Common flexor sheath: FDS and FDP Synovial sheath for Flexor Carpi Radialis .
    [Show full text]
  • Student Workbook Answer Pages Italicized Page Numbers After the Answers Indicate Where the Informa- Matching 5) Deep Fascia Tion Can Be Found in Trail Guide
    Student Workbook Answer Pages Italicized page numbers after the answers indicate where the informa- Matching 5) deep fascia tion can be found in Trail Guide. 1) N adipose—p. 17 6) adipose (fatty) tissue 2) F aponeurosis—p. 13 7) superficial fascia 3) D artery—p. 16 8) skin 4) H bone—p. 10 9) deep fascia Introduction 5) E bursa—p. 16 Tour Guide Tips #1, p. 1 6) B fascia—p. 14 1) bony landmarks—p. 2 7) G ligament—p. 13 2) Even though the topography, 8) I lymph node—p. 17 Navigating shape and proportion are unique, 9) A muscle—p. 11 Regions of the Body, p. 6 the body’s composition and struc- 10) J nerve—p. 17 1) pectoral tures are virtually identical on all 11) K retinaculum—p. 15 2) axillary individuals.—p. 2 12) L skin—p. 10 3) brachial 3) To examine or explore by touch- 13) M tendon—p. 13 4) cubital ing (an organ or area of the body), 14) C vein—p. 16 5) abdominal usually as a diagnostic aid—p. 4 6) inguinal 4) locating, aware, assessing—p. 4 Exploring Textures #1, p. 3 7) pubic 5) directs movement, depth.—p. 4 1) epidermis 8) femoral 6) • read the information 2) dermis 9) facial • visualize what you are trying 3) arrector pili muscle 10) mandibular to access 4) sweat gland 11) supraclavicular • verbalize to your partner what 5) hair follicle 12) antecubital you feel 6) blood vessels 13) patellar • locate the structure first 7) muscle fibers 14) crural on yourself 8) endomysium 15) cranial • read the text aloud 9) perimysium 16) cervical • be patient—p.
    [Show full text]
  • Anatomy of Forearm Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Anatomy of Forearm Doctors Notes Notes/Extra explanation Editing File Objectives • At the end of this lecture, the student should able to: 1. List the names of the Flexors Group of Forearm (superficial & deep muscles). 2. Identify the common flexor origin of flexor muscles and their innervation & movements. 3. Identify supination & pronation and list the muscles produced these 2 movements. 4. List the names of the Extensor Group of Forearm (superficial & deep muscles). 5. Identify the common extensor origin of extensor muscles and their innervation & movements. Recall what we took in foundation: The following pairs always come together (they counter each other so if one is present so is the other) Flexor & Extensor (flexor carpi ulnaris & extensor carpi ulnaris) Longus & Brevis (extensor carpi radialis longus & extensor carpi radialis brevis) Superficialis & Profundus (flexor digitorum superficialis & flexor digitorum profundus) Major & Minor (pectoralis major & pectoralis minor) The fingers: Digitorum = has 4 tendons each attached to a finger Pollicis = the thumb السبابه Indices = index finger Digiti minimi = pinkie - The radius and ulna are connected FOREARM by 3 structures: the interosseous membrane, superior radioulnar joint and inferior radioulnar joint • - The forearm extends from elbow to wrist - An interosseous membrane is a • - It posses two bones radius laterally & Ulna medially. broad and thin plane of fibrous tissue that separates many of the bones of the body. • The two bones are connected together by the interosseous membrane. This membrane: 1- allows movement of Pronation and Supination while the two bones are connected together. 2- it gives origin for the deep muscles. Fascial Compartments of the Forearm o The forearm is enclosed in a sheath of deep fascia, which is attached to the posterior border of the ulna .
    [Show full text]
  • Anatomical Study of Myofascial Continuity in the Anterior Region of the Upper Limb
    ARTICLE IN PRESS Journal of Bodywork and Movement Therapies (2009) 13,53–62 Journal of Bodywork and Movement Therapies www.intl.elsevierhealth.com/journals/jbmt HUMAN ANATOMY Anatomical study of myofascial continuity in the anterior region of the upper limb Antonio Steccoa, Veronica Macchib, Carla Steccoc, Andrea Porzionatob, Julie Ann Dayd, Vincent Delmase, Raffaele De Carob,Ã aPhysical Medicine and Rehabilitation Clinic, University of Padova, Italy bSection of Anatomy, Department of Human Anatomy and Physiology, University of Padova, Italy cSection of Orthopedics, Department of Medical Surgical Specialisations, University of Padova, Italy dPhysical Medicine and Rehabilitation Clinic, Ospedale dei Colli, Padova, Italy eInstitut d’Anatomie, Universite´ Paris Descartes, France Received 18 March 2007; received in revised form 27 April 2007; accepted 27 April 2007 KEYWORDS Summary Fifteen unembalmed cadavers were dissected in order to study the Myofascial ‘‘anatomical continuity’’ between the various muscles involved in the movement of continuity; flexion of the upper limb. This study demonstrated the existence of specific Fascia; myofascial expansions, with a nearly constant pattern, which originate from the Proprioception; flexor muscles and extend to the overlying fascia. The clavicular part of the Chaıˆnes musculaires; pectoralis major sends a myofascial expansion, with a mean length of 3.6 cm, to Meridians; the anterior region of the brachial fascia, and the costal part sends one to the Anatomy trains; medial region of the brachial fascia (mean length: 6.8 cm). The biceps brachii Sequences presents two expansions: the lacertus fibrosus, oriented medially, with a mean height of 4.7 cm and a base of 1.9 cm, and a second, less evident, longitudinal expansion (mean length: 4.5 cm, mean width: 0.7 cm).
    [Show full text]
  • Bilateral Agenesis of Palmaris Longus –A Case Report and Its Clinical Significance Anatomy Section
    DOI: 10.7860/IJARS/2019/40716:2469 Case Report Bilateral Agenesis of Palmaris Longus –A Case Report and its Clinical Significance Anatomy Section JOY A GHOSHAL1, PK SANKARAN2, TARUN PRAKASH Manrya3, VInay VISHWAKARMA4, R MANIvarshINI5, RaghavI N MALEpatI6 ABSTRACT Palmaris longus arises from the medial epicondyle of the humerus and continues as long tendon to get inserted in the apex of flexor retinaculum. The variations of the palmaris longus are common in terms of muscle bellies with additional heads or reversed or absent. This case study shows absent palmaris longus on both sides of the forearm in the cadaver during routine dissection. The agenesis of palmaris longus can be explained due to abnormal division of superficial mass of forearm muscles. The knowledge about this variation is important in terms of reconstructive surgeries utilizing palmaris longus muscle grafts. Keywords: Muscle grafts, Muscle variations, Tendon reconstruction CASE REPORT During routine Anatomy dissection in the All India Institute of Medical Sciences, Mangalagiri, in the forearm, there was a variation in the superficial muscles on both limbs. The superficial muscles like Pronator teres, Flexor carpi radialis, flexor digitorum superficialis and flexor carpi ulnaris were originating from the medial epicondyle which is the common flexor origin and inserted into carpal bones and digits without any variation. But the palmaris longus muscle was absent on both sides of the forearm. Absent Palmaris longus in the forearm is shown in [Table/Fig-1-4]. The flexor retinaculum was identified and the palmar aponeurosis was found attached to the distal border of flexor retinaculum. The palmar aponeurosis and the superficial palmar arch didn’t show any variations in both hands [Table/Fig-3]: Right palm showing palmar aponeurosis.
    [Show full text]