INDUCTION HARDENING of STEELS COMPANY PROFILE /// Cyprium Induction

Total Page:16

File Type:pdf, Size:1020Kb

INDUCTION HARDENING of STEELS COMPANY PROFILE /// Cyprium Induction Technologies and Processes for the Advancement of Materials ISSUE FOCUS /// HEAT TREAT EXPO PREVIEW TROUBLESHOOTING CRACKING IN INDUCTION HARDENING OF STEELS COMPANY PROFILE /// Cyprium Induction SEPTEMBER 2019 thermalprocessing.com 830 CORRECTED.pdf 1 8/16/18 10:14 AM ATTENDEE INFO WHY DETROIT? PAID Non-profit ATTENDEES REPRESENT THE Postage US ASM International th HEAT TREATING SOCIETY FOLLOWING COMPANIES* 1. Technology 30 CONFERENCE & EXPOSITION From automotive to aviation to defense, Detroit is changing the AAM Chevron Honeywell Praxair way the world moves. Their unmatched automotive research, Advanced HT Chrysler Hyundai Rolls-Royce design and advanced manufacturing resources make this Air Products Cummins Intel Siemens region the leader in next-generation mobility and technology Visit us at Booth 808 Alcoa Dana John Deere Solar Turbines development. Detroit’s culture of innovation is ready to help Allison Transmission Dow Chemical Joy Global Timken Alstom Eaton Lockheed Martin United Technologies your business grow! Annealing Ford Motor Magna Powertrain US Steel Bluewater Thermal FPM Metal Improvement Woodworth HT 2. Automobile Capital of the Word Borg Warner General Dynamics Nexteer XTEK Detroit is second largest source of architectural and engineering Bodycote General Electric NSK ZF job opportunities in the U.S., with the domestic auto industry Boeing General Motors Northrop Grumman *Partial listing primarily headquartered in Metro Detroit. October 15-17, 2019 Carpenter Gerdau Oerlikon Caterpillar Honda Parker Hannifin 3. Global Detroit, Michigan ATTENDEES Why do 1,300 firms from 38 countries call the Detroit region ANNUAL BOOTH home? Detroit is the perfect location when you’re looking to COBO Center INCREASE BY STATE (TOP 10) access U.S. and Canadian markets. Home to one of the world’s most valuable border crossings and Detroit Metro Airport – with 350 nonstop flights to more than 160 destinations – they’ll get your 2% 39% 3% 300 business where it needs to go. 3% 250 4% 4.Sustainability 200 4% Michigan’s business climate is stronger than ever. Nearly two- 4% thirds of Michigan businesses surveyed describe the state as 150 Organized By: having a positive business climate and would promote Michigan 100 10% as a place to work, start and conduct business. 50 2011 2017 2015 2013 23% 0 11% MI OH PA IL NY IN WI ON MA NJ www.asminternational.org/web/heat-treat-2019 ASM World Headquarters 9639 Kinsman Road OH 44073-0002 Park, Materials 2019 Treat Heat 15-17, 2019 October Center COBO USA Detroit, Michigan, IH09184Cust.indd 2 8/16/18 10:19 AM Surface® Furnace Solutions For Aluminum Automotive/CQI-9 Aerospace/Nadcap High Pressure Die Casting (HPDC) Fixtureless T5/T6 Lines Automated Quick Quench Batch Lines Drop Bottom Furnaces H-13 Die Casting & Extrusion Dies • Nitriding (Gas or Ion) Surface Treatment • Vacuum Heat Treatment Surface® Combustion has earned a trusted reputation over 100 years of providing rugged, reliable thermal processing equipment and advanced technology backed by strong technical solutions. Surface applies this solutions orientation to a variety of physical materials needs including the manufacturing of processing equipment and systems for aluminum materials. Surface’s customers include the most well known aluminum companies in the world including highly respected automotive and aerospace component manufacturers. Whatever aluminum or non-ferrous heat processing Engineered to Perform. Built to Last. technologies are needed, Surface has the equipment and engineering [email protected] expertise to achieve the optimum solution yielding excellent product quality 1-800-537-8980 while maintaining the highest levels of production. Let us show you the Value of Surface. surfacecombustion.com CONTENTS /// 26 TROUBLESHOOTING AND PREVENTION OF CRACKING IN INDUCTION HARDENING OF STEELS: LESSONS LEARNED — PART 1 For real-world needs, producers of IH equipment should have the experience and analysis necessary to help heat-treat practitioners with specific problems. INTELLIGENT GAS CARBURIZING WITH SUPER I TM 40 An innovative new furnace design means safer processing with simple, yet advanced automation, all with the proven performance of low pressure processed parts. 34 COMPANY PROFILE /// OFFERING TURNKEY INDUCTION HEAT TREAT AND FORGING E UIPMENT With a broad range of services from coil design, coil repairs, associated tooling builds and repairs, and transformer repairs, Cyprium Induction is dedicated to do all it can to ensure its customers get the highest quality returns. 2 SEPTEMBER 2019 COVER PHOTO: SHUTTERSTOCK (2) / ILLUSTRATION BY RICK FRENNEA Our leading edge vacuum technology provides precise control and repeatability for consistently superior parts. 9001:2015 AS 9100D Vacuum Heat Treating & Brazing Services Annealing • Aging • Carburizing • Nitriding • Stress Relieving • Degassing • Brazing • Harden and Temper Sintering • Solution Treat and Age (STA) • Homogenizing • Creep Forming • Hydriding / Dehydriding Solve your toughest thermal processing challenges by utilizing our brain-trust of metallurgists, chemists and engineers. • Over 60 vacuum furnaces – lab-sized to 48 feet long • Argon, nitrogen and helium quenching up to 20 bar • Operating range of -320°F to +3,600°F • On-site metallurgical testing lab • 24/7 Operations For more information or a quote, call 1-855-WE-HEAT-IT or visit solaratm.com Eastern PA California Western PA South Carolina VACUUM PROCESSING Heat Treating • Brazing • Carburizingthermalprocessing.com • Nitriding 3 SA ThermProc General 2019 FPg.indd 1 7/12/2019 8:05:31 AM DEPARTMENTS /// SEPTEMBER 2019 VOLUME 8 / NUMBER 9 UPDATE /// Industrial Heating Equipment New Products, Trends, Services & Developments Association (IHEA) In this section, the national trade association representing the major segments of the industrial heat processing equipment industry shares news of the organization’s activities, upcoming educational events, and key developments in the industry. 20 METAL URGENCY /// Equations analyses indicate austenite carbon content is the main controlling factor in a cold treatment process while the cold treatment temperature is 8 secondary. 22 ½ Lindberg/MPH offers electrically heated box furnace. ½ Gasbarre announces powder compaction promotion. ½ SSi completes upgrades at Milacron in Mt. Orab, Ohio. Q&A /// INDUSTRY INSIDERS ATTENDING HEAT TREAT EXPO 2019 QUALITY COUNTS /// For those involved in monitoring quality as it applies to heat RESOURCES /// treating, it’s important to have a solid understanding of the full Advertiser index 47 44 process. 24 Thermal Processing is published monthly by Media Solutions, Inc., 266D Yeager Parkway Pelham, AL 35124. Phone (205) 380-1573 Fax (205) 380-1580 International subscription rates: $105.00 per year. Postage Paid at Pelham AL and at additional mailing offices. Printed in the USA. POSTMASTER: Send address changes to Thermal Processing magazine, P.O. Box 1210 Pelham AL 35124. Return undeliverable Canadian addresses to P.O. Box 503 RPO West Beaver Creek Richmond Hill, ON L4B4R6. Copyright © 2006 by Media Solutions, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage-and- retrieval system without permission in writing from the publisher. The views expressed by those not on the staff on Thermal Processing magazine, or who are not specifically employed by Media Solutions, Inc., are purely their own. All “Update” material has either been submitted by the subject company or pulled directly from their corporate website, which is assumed to be cleared for release. Comments and submissions are welcome and can be submitted to [email protected]. 4 SEPTEMBER 2019 High Tech is our Business ALD is a leader in vacuum process technology and Heat treatment services. LEADERS IN THE CONTROL OF DISTORTION ALD Thermal Treatment, Inc. + Low Pressure Carburizing + High pressure gas quenching + Gas Nitriding + Ferritic Nitro-Carburizing + Plasma Carburizing + Normalizing + Hardening + Annealing + Brazing + Cryogenic Treatments + Engineering services and process development + Prototype and trials Global Service Centers Limbach-Oberfrohna Germany Port Huron, Michigan Enrique Lopez – Sales and Marketing USA Email: [email protected] Phone +1 (810) 357-0685 Ramos Arizpe, Coahuila Mexico ALD Thermal Treatment, Inc. 2656 24th Street www.aldtt.net Port Huron, MI 48060, USA Visit us at Booth 3200 ALD is a subsidiary of AMG Advanced Metallurgical Group N.V. thermalprocessing.com 5 /// FROM THE EDITOR David C. Cooper PUBLISHER Chad Morrison ASSOCIATE PUBLISHER We’re getting excited about Heat Treat 2019 EDITORIAL hings are definitely heating up as we get closer and closer to Heat Treat 2019 in Kenneth Carter Detroit, Michigan, October 15–17. No doubt you’re all excited about connecting EDITOR T with your colleagues in the industry. Jennifer Jacobson All of the top companies and big names are expected to be there while hundreds of ASSOCIATE EDITOR heat-treat exhibitors will crowd the floor of Detroit’s Cobo Center. Joe Crowe Thermal Processing will have a booth there as well, so please drop by and introduce CONTRIBUTING EDITOR yourself. I’d love to meet you and discuss editorial opportunities with the magazine. I’m always looking for new and exciting ways to pass on important industry knowledge SALES and expertise. So, consider this issue of Thermal Processing a primer to get you in the mood, because Chad
Recommended publications
  • Pattern Formation in Wootz Damascus Steel Swords and Blades
    Indian Journal ofHistory ofScience, 42.4 (2007) 559-574 PATTERN FORMATION IN WOOTZ DAMASCUS STEEL SWORDS AND BLADES JOHN V ERHOEVEN* (Received 14 February 2007) Museum quality wootz Damascus Steel blades are famous for their beautiful surface patterns that are produced in the blades during the forging process of the wootz ingot. At an International meeting on wootz Damascus steel held in New York' in 1985 it was agreed by the experts attending that the art of making these blades had been lost sometime in nineteenth century or before. Shortly after this time the author began a collaborative study with bladesmith Alfred Pendray to tty to discover how to make ingots that could be forged into blades that would match both the surface patterns and the internal carbide banded microstructure of wootz Damascus steels. After carrying out extensive experiments over a period ofaround 10 years this work succeeded to the point where Pendray is now able to consistently make replicas of museum quality wootz Damascus blades that match both surface and internal structures. It was not until near the end of the study that the key factor in the formation of the surface pattern was discovered. It turned out to be the inclusion of vanadium impurities in the steel at amazingly low levels, as low as 0.004% by weight. This paper reviews the development of the collaborative research effort along with our analysis ofhow the low level of vanadium produces the surface patterns. Key words: Damascus steel, Steel, Wootz Damascus steel. INTRODUCTION Indian wootz steel was generally produced by melting a charge of bloomery iron along with various reducing materials in small closed crucibles.
    [Show full text]
  • Ferritic Nitrocarburizing Gears to Increase Wear Resisitance And
    Ferritic Nitrocarburizing Gears tOI Increase Wear Resistance and Reduce Distortion Loren ,JI, Epler uaHtygear manufacturing depends on controlled toler- asa gaseous territic nitrocarl:mrizillg process and patented by ances and geometry. As a re ult, ferritic nillocarburizing Lucas Industries in 1961. Lucas demonstrated that they could ha become the heat treat process of choice for many produce surface layers identical to those produced in salt bath gear manufacturers. The primary reason for this are: processes using an endothermic, ammonia-based atmosphere. The process is performed at low temperatures, i.e. less than The process was classified as a "thermochemical susfece critical treatment" that involved !he diffusion of both nitrogenand car- 2. The quench methods increase fatigue strength by up to, L25% bon into the surface of a metal at a temperature below the au tell- without distorting. Ferritlc nitrocarboriziag is used in place ite transforrnation temperature. The process would yield .3 single of carburizing and hardening, carbonitriding, nltriding or in phase epsilon layer with an atomic weight of Fep3' The ingle conjunction wi.th conventional and induction hardening. phase layer makes !:heproduct much more wear resistant than gas 3. h establishes gradient base haronesses, i.e, eliminates egg- or ionnitriding, according to Dawc and Trantner 0). shell effect on TiN, TiAlN,. ere. etc. [II 1982, lronbeund HeatTreat developed Ni.tmwear® using In addition, the process can also be applied to hobs, broaches, similar atmo pheres in a fluidized bed medium. Subsequently. drills and other cutting tools. Jack Ross, owner and founder of lronbound,. patented and HisUJry, Fenitic nitrocarburizing was first established in licensed the process to Dynamic Metal Treating.
    [Show full text]
  • The White Book of STEEL
    The white book of STEEL The white book of steel worldsteel represents approximately 170 steel producers (including 17 of the world’s 20 largest steel companies), national and regional steel industry associations and steel research institutes. worldsteel members represent around 85% of world steel production. worldsteel acts as the focal point for the steel industry, providing global leadership on all major strategic issues affecting the industry, particularly focusing on economic, environmental and social sustainability. worldsteel has taken all possible steps to check and confirm the facts contained in this book – however, some elements will inevitably be open to interpretation. worldsteel does not accept any liability for the accuracy of data, information, opinions or for any printing errors. The white book of steel © World Steel Association 2012 ISBN 978-2-930069-67-8 Design by double-id.com Copywriting by Pyramidion.be This publication is printed on MultiDesign paper. MultiDesign is certified by the Forestry Stewardship Council as environmentally-responsible paper. contEntS Steel before the 18th century 6 Amazing steel 18th to 19th centuries 12 Revolution! 20th century global expansion, 1900-1970s 20 Steel age End of 20th century, start of 21st 32 Going for growth: Innovation of scale Steel industry today & future developments 44 Sustainable steel Glossary 48 Website 50 Please refer to the glossary section on page 48 to find the definition of the words highlighted in blue throughout the book. Detail of India from Ptolemy’s world map. Iron was first found in meteorites (‘gift of the gods’) then thousands of years later was developed into steel, the discovery of which helped shape the ancient (and modern) world 6 Steel bEforE thE 18th cEntury Amazing steel Ever since our ancestors started to mine and smelt iron, they began producing steel.
    [Show full text]
  • Damascus Steel
    Damascus steel For Damascus Twist barrels, see Skelp. For the album of blades, and research now shows that carbon nanotubes the same name, see Damascus Steel (album). can be derived from plant fibers,[8] suggesting how the Damascus steel was a type of steel used in Middle East- nanotubes were formed in the steel. Some experts expect to discover such nanotubes in more relics as they are an- alyzed more closely.[6] The origin of the term Damascus steel is somewhat un- certain; it may either refer to swords made or sold in Damascus directly, or it may just refer to the aspect of the typical patterns, by comparison with Damask fabrics (which are in turn named after Damascus).[9][10] 1 History Close-up of an 18th-century Iranian forged Damascus steel sword ern swordmaking. These swords are characterized by dis- tinctive patterns of banding and mottling reminiscent of flowing water. Such blades were reputed to be tough, re- sistant to shattering and capable of being honed to a sharp, resilient edge.[1] Damascus steel was originally made from wootz steel, a steel developed in South India before the Common Era. The original method of producing Damascus steel is not known. Because of differences in raw materials and man- ufacturing techniques, modern attempts to duplicate the metal have not been entirely successful. Despite this, several individuals in modern times have claimed that they have rediscovered the methods by which the original Damascus steel was produced.[2][3] The reputation and history of Damascus steel has given rise to many legends, such as the ability to cut through a rifle barrel or to cut a hair falling across the blade,.[4] A research team in Germany published a report in 2006 re- vealing nanowires and carbon nanotubes in a blade forged A bladesmith from Damascus, ca.
    [Show full text]
  • Induction Hardening on Drive Axle Shaft and It's
    www.ierjournal.org International Engineering Research Journal (IERJ) Special Issue Page 1197-1201, June 2016, ISSN 2395-1621 Induction Hardening on Drive axle shaft and it’s FEA #1Aniket A. Deshmukh, #2Prof. D.H. Burande 1 PG student, Automotive Engineering, Mechanical Engineering Department, Savitribai Phule Pune University, Pune, Maharashtra, India. 2Associate professor, Mechanical Engineering Department, Savitribai Phule Pune University, Pune, Maharashtra, India. Abstract: This work deals with increasing strength of steel drive axle shafts by placing an extra bush support. It includes the modeling of shaft in CATIA. Drive shaft made up of MS material will be analyzed first. Stress and deformation will be the output of analysis. The meshing and boundary condition application will be carried using Hypermesh; Structural analysis of shaft will be carried out using ANSYS. Re-designing the shaft placing a bush for additional support in the length of shaft, and applying induction hardening process at the place of bush support for increasing the strength and reducing the deflection of the shaft. The design optimization also improves the performance of drive shaft. Keywords: Finite Element Analysis, Drive axle shaft, Induction hardening, Bush support. 1. INTRODUCTION Power is transmitted from engine to differential through propeller shaft, Axle shaft is connected between Hardening process is used for parts that wears while differential and wheel. It takes torque from engine. In this operating. During hardening core of the part does not get paper, drive axle shaft of Bolero automobile is thought of affected. Hardening increases wear resistance of a for the study. This axle shaft is semi-floating kind.
    [Show full text]
  • Hardening of Small Gears in Well Under a Second
    Hardening of small gears PUTTING THE SMARTER HEAT TO SMARTER USE A guide to the benefits of induction heating FD - 2011236 02/16 ENG How to reduce distortion and costs when hardening small gears Induction is the cost-cutting alternative to furnace Induction can heat precisely localized zones in gears. case hardening of small- and medium-sized Achieving the same degree of localized hardening gears. Key features of induction hardening are with carburizing can be a time- and labor-intensive fast heating cycles, accurate heating patterns and procedure. When carburizing specific zones such as cores that remain relatively cold and stable. Such the teeth areas, it is usually necessary to mask the characteristics minimize distortion and make it more rest of the gear with ‘stop off’ coatings. These masks repetitive, reducing post-heat processing such as must be applied to each and every workpiece, and grinding. This is especially true when comparing removed following the hardening process. No such induction to case carburizing. masking is necessary with induction hardening. Induction hardening also reduces pre-processing, as Induction hardening is ideal for integrating into the geometry changes are less than those caused by production lines. Such integrated hardening is carburizing. Such minimal changes mean distortion more productive than thermochemical processes. does not need to be accounted for when making Moreover, integrated hardening minimizes costs, as the gear. With gears destined for gas carburizing, the gears do not have to be removed for separate however, ‘offsets’ that represent distortion are often heat treatment. In fact, induction heating makes introduced at the design stage.
    [Show full text]
  • Induction Hardening of Gears and Critical Components
    Induction Hardening of Gears and Critical Components Dr.Valery Rudnev hypoid gears and noncircular gears are rarely heat treated by Management Summary induction. Induction hardening is a heat treating technique that Importance of Gear Material and Its Condition can be used to selectively harden portions of a gear, such Gear operating conditions, the required hardness and cost as the fl anks, roots and tips of teeth, providing improved are important factors to consider when selecting materials for hardness, wear resistance, and contact fatigue strength induction hardened gears. Plain carbon steels and low-alloy without affecting the metallurgy of the core and other steels containing 0.40 to 0.55% carbon content are commonly parts of the component that don’t require change. This article provides an overview of the process and special specifi ed (Refs. 1, 5). Examples include AISI 1045, 1552, considerations for heat treating gears. Part I covers 4140, 4150, 4340, and 5150. Depending on the application, gear materials, desired microsctructure, coil design tooth hardness after tempering is typically in the 48 to 60 HRC and tooth-by-tooth induction hardening. Part II, which range. Core hardness primarily depends upon steel chemical will appear in the next issue, covers spin hardening composition and steel condition prior to induction hardening. and various heating concepts used with it. For quenching and tempering, prior structure core hardness is usually in the 28–35 HRC range. When discussing induction hardening, it is imperative to Introduction mention the importance of having “favorable” steel conditions Over the years, gear manufacturers have gained knowledge prior to gear hardening.
    [Show full text]
  • Part No: 26109031 Rev/Chg Level: 002A Specification Name: SPEC, REQ for HT PARTS
    MATERIAL SPECIFICATION Part No: 26109031 Rev/Chg Level : 002A Specification Name: SPEC, REQ FOR HT PARTS Production Release SAFETY AND/OR GOVERNMENT REGULATED PART ☐YES ☒NO DESIGNATED CHARACTERISTICS DC SYMBOL QCL TYPE QCI TYPE REF: NEXTEER GLOBAL PROCEDURE G1331 0 LAST NO USED QS-100V SAFETY/COMPLIANCE CL1/CL2 QS-DR 0 TOTAL ON DRAWING CI-100V FIT/FUNCTION CL4/CL5 CI-DR DC NO TYPE DESCRIPTION RATIONALE ZONE SH Substances of Concern and Recycled Content per Nexteer Automotive 23000000 This document is protected by copyright and nothing in this document shall grant a license or any other rights to this document or the information conveyed therein. The reproduction, distribution, and utilization of this document or its related CAD math data, as well as communication of any content to others without express written authorization is prohibited. X-3461 June 2014 Nexteer Automotive Reference Procedure G1337 Nexteer Automotive Production Release 2 of 21 Part No: 26109031 Rev/Chg Level: 002A Specification Name: SPEC, REQ FOR HT PARTS 1. SCOPE: 1.1. The purpose of this specification is to provide the expectations and requirements for heat treated components for Nexteer Automotive. This specification is applicable to all heat treat processes being conducted on the intended component(s) at any point in the value stream. Heat treat processes governed by this standard include all of those referenced in AIAG CQI-9. Heat treaters are expected to conform to the Quality System Requirement provided in the Nexteer Automotive Global Supply Management Supplier Requirements. It assumes that quality planning, a quality manual, and continuous improvement programs are established.
    [Show full text]
  • Induction Heat Treatment
    a ...... ...... ....... ..... ...... .... ... ..... ...... .... ... ..... ...... ....... ..... ...... ....,...... ..... ...... .... ... ..... ...... ....... ..... ...... ....... ..... ...... .... ... ....I ...... ....... ..... ...... ....... ..... ...... ....... ..... ...... ....... ..... ...... .... ... ..... ...... .... ... ...... .... ... ...... .... ... ...... ....... ...... .... ... ...... ,....... ... ...... .... ... .....I .... .... ..... ... ... .....(... ....... ... ..... ... ........ ... ... ..... ...... i iG -i Publishedby the EPRl Center for MaterialsFabrication Vol. 2, No. 2, 1985Reprinted March, 1990 Using Induction Heat speed and selective heating capabil- Vol. 2, No. 1. Advantages specific to Treatment to Obtain ity, to produce quality parts cost induction heat treating are: Special Properties effectively. It will answer such ques- Speed - In heat treatment, the Cost Effectively tions as: What are the advantages higher heating rates play a central of induction heat treatment? What role in designing rapid, high- Heat treatment is often one of the heat treatments can I conduct with temperature heat treating most important stages of metal induction? What are some typical processes. Induction heat treating of processing because it determines parts and materials that are induc- steel may take as little as the final properties that enable tion heat treated? What properties 10 percent or less of the time cqmponents to perform under such can I obtain with induction heat required for furnace treatment. demanding service conditions
    [Show full text]
  • The Effects of Austempering and Induction Hardening on the Wear Properties of Camshaft Made of Ductile Cast Iron
    Vol. 131 (2017) ACTA PHYSICA POLONICA A No. 3 Special Issue of the 6th International Congress & Exhibition (APMAS2016), Maslak, Istanbul, Turkey, June 1–3, 2016 The Effects of Austempering and Induction Hardening on the Wear Properties of Camshaft Made of Ductile Cast Iron B. Karacaa;∗ and M. Ş˙ımş˙ırb aESTAŞ Eksantrik San. ve Tic. A.Ş., 58060 Sivas, Turkey bCumhuriyet University, Engineering Faculty, Department of Metallurgy and Materials Eng., 58100 Sivas, Turkey The aim of this study is to investigate the effects of heat austempering and induction hardening on the wear properties of GGG60 ductile cast iron for camshaft production. For this purpose, camshafts have been produced by sand mould casting method. Fe-Si-Mg alloy has been used for inoculation process to achieve iron nodulization. The casting has been done between 1410–1420 ◦C. The casted camshafts have been austenitized at two different temperatures (800 and 900 ◦C) and time intervals (60 and 90 min) under controlled furnace atmosphere. The austenitized camshafts have been quenched into the molten salt bath at 360 ◦C, held there for 90 min and then cooled in air. This way, austempering heat treatment has been applied. After that, surface hardening process was conducted using induction hardening machine with medium frequency. Microstructure of camshafts has been examined by optical methods and mechanical tests have been performed. Results show that austempering heat treatment increases the wear resistance of camshaft, compared to as-cast condition. Wear resistance of the camshaft increases with increasing austenitizing temperature, time and with induction hardening. The lowest weight loss of 0.62 mg has been obtained for the induction hardened camshaft austenitized at 900 ◦C for 90 min.
    [Show full text]
  • An Explanation of Possible Damascus Steel Manufacturing Based On
    INTERNATIONAL JOURNAL OF MECHANICS An Explanation of Possible Damascus Steel Manufacturing Based on Duration of Transient Nucleate Boiling Process and Prediction of the Future of Controlled Continuous Casting NIKOLAI KOBASKO Intensive Technologies Ltd, Kyiv, Ukraine and IQ Technologies Inc, Akron, USA Abstract - In the paper the new explanation in cementite microstructure were also found in the manufacturing of Damascus steel, based on discovered archeological items from Pol'tse, a settlement at Amur the specific characteristics of transient nucleate boiling river, V-IV century B.C. Raw materials and Damascus processes, is provided. Also, the future of continuous steel crafting instruction are not longer available. Details casting in the paper is discussed. According to of technology, which was used by the capable discovered characteristics, duration of transient nucleate metallurgists from Pol'tse, is not known [8]. The ancient boiling process is directly proportional to squared size of technique reached modern - day Turkmenistan and a steel part and inversely proportional to thermal Uzbekistan around 900 A.D., and then the Middle East diffusivity of material, depends on configuration and circa 1000 A.D. There are numerous publications where initial temperature of component, thermal properties of this matter is widely discussed [9 - 16]. It is underlined liquid. The surface temperature of steel part during that India has been reputed for its iron and steel since transient nucleate boiling process maintains at the level ancient times, the time of Alexander the Great (356 B.C. of boiling point of liquid and cannot be below it. Based - 323 B.C.) [5] . When Alexander the Great got to India on these characteristics, the new hypothesis regarding he ordered to be delivered to him “100 talents of Indian manufacturing of Damascus steel is proposed according steel” [5].
    [Show full text]
  • Hardness and Case Depth Analysis Through Optimization Techniques in Surface Hardening Processes K
    38 The Open Materials Science Journal, 2010, 4, 38-63 Open Access Hardness and Case Depth Analysis Through Optimization Techniques in Surface Hardening Processes K. Palaniradja*, N. Alagumurthi and V. Soundararajan Department of Mechanical Engineering, Pondicherry Engineering College, Pondicherry – 605 014, India Abstract: Surface engineering and surface engineered materials find wide applications in engineering industries in recent years. Inconsistency in hardness and case depth has resulted in the further optimization of the process variables involved in surface hardening. In the present study, the following operating parameters viz. preheating, carbon potential, holding position, furnace temperature, carburising time, quenching medium, quenching temperature, quenching time, tempering temperature and tempering time were taken for optimization using the Taguchi and Factorial design of experiment concepts. From the experiments and optimization analysis conducted on EN29 and EN34 materials it was observed that furnace temperature and quenching time had equal influence in obtaining a better surface integrity of the case hardened components using gas carburizing. Preheating before gas carburizing further enhanced the surface hardness and the depth of hardness. In the case of induction hardening process, power potential played a vital role in optimizing the surface hardness and the depth of hardness. Keywords: Pinion, hardness, case depth, taguchi techniques, optimization, process variables. 1. INTRODUCTION In this study, Taguchi’s Design of Experiment concept has been used for the optimization of the process variables of Changing demands of dynamic market place have Gas Carburizing process and Factorial design of Experiment improved and increased the commitment to quality for the optimization of process variables of Induction consciousness. All over the world, companies are developing Hardening process.
    [Show full text]