Recovery Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botanical Name: LEAFY PLANT
LEAFY PLANT LIST Botanical Name: Common Name: Abelia 'Edward Goucher' Glossy Pink Abelia Abutilon palmeri Indian Mallow Acacia aneura Mulga Acacia constricta White-Thorn Acacia Acacia craspedocarpa Leatherleaf Acacia Acacia farnesiana (smallii) Sweet Acacia Acacia greggii Cat-Claw Acacia Acacia redolens Desert Carpet Acacia Acacia rigidula Blackbrush Acacia Acacia salicina Willow Acacia Acacia species Fern Acacia Acacia willardiana Palo Blanco Acacia Acalpha monostachya Raspberry Fuzzies Agastache pallidaflora Giant Pale Hyssop Ageratum corymbosum Blue Butterfly Mist Ageratum houstonianum Blue Floss Flower Ageratum species Blue Ageratum Aloysia gratissima Bee Bush Aloysia wrightii Wright's Bee Bush Ambrosia deltoidea Bursage Anemopsis californica Yerba Mansa Anisacanthus quadrifidus Flame Bush Anisacanthus thurberi Desert Honeysuckle Antiginon leptopus Queen's Wreath Vine Aquilegia chrysantha Golden Colmbine Aristida purpurea Purple Three Awn Grass Artemisia filifolia Sand Sage Artemisia frigida Fringed Sage Artemisia X 'Powis Castle' Powis Castle Wormwood Asclepias angustifolia Arizona Milkweed Asclepias curassavica Blood Flower Asclepias curassavica X 'Sunshine' Yellow Bloodflower Asclepias linearis Pineleaf Milkweed Asclepias subulata Desert Milkweed Asclepias tuberosa Butterfly Weed Atriplex canescens Four Wing Saltbush Atriplex lentiformis Quailbush Baileya multiradiata Desert Marigold Bauhinia lunarioides Orchid Tree Berlandiera lyrata Chocolate Flower Bignonia capreolata Crossvine Bougainvillea Sp. Bougainvillea Bouteloua gracilis -
Valley Native Plants for Birds
Quinta Mazatlan WBC 1/19/17 SB 1 TOP VALLEY NATIVE FRUITING PLANTS FOR BIRDS TALL TREES, 30 FT OR GREATER: Common Name Botanical Name Height Width Full Shade/ Full Evergreen Bloom Bloom Fruit Notes (ft) (ft) Sun Sun Shade Color Period Color Anacua, Ehretia anacua 20-50 40-60 X X X White Summer- Yellow- Leaves feel like sandpaper; Sandpaper Tree, Fall Orange fragrant flowers. Mature trunk has Sugarberry characteristic outgrowth which resembles cylinders put together to form it. Edible fruit. Butterfly nectar plant. Sugar Hackberry, Celtis laevigata 30-50 50 X X X Greenish, Spring Red Fast-growing, short-lived tree, with Palo Blanco tiny an ornamental grey, warty bark. Shallow rooted and prone to fungus; should be planted away from structures. Caterpillar host plant. SMALL TREES (LESS THAN 30 FT): Common Name Botanical Name Height Width Full Shade/ Full Evergreen Bloom Bloom Fruit Notes (ft) (ft) Sun Sun Shade Color Period Color Brasil, Condalia hookeri 12-15 15 X X X Greenish- Spring- Black Branches end in thorns; shiny Capul Negro, yellow, Summer leaves. Capulín, Bluewood small Condalia Coma, Sideroxylon 15-30 15 X X X White Summer- Blue- Very fragrant flowers; sticky, edible Chicle, celastrinum Fall, after black fruit; thorny; glossy leaves. Saffron Plum rain Granjeno, Celtis pallida 10-20 12 X X X X Greenish, Spring Orange Edible fruit; spiny; bark is mottled Spiny tiny grey. Can be small tree or shrub. Hackberry Texas Diospyros 15-30 15 X X X X White Spring Black Mottled, peeling ornamental bark; Persimmon, texana great native choice instead of the Chapote Crape Myrtle. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
Intern Plant List
Intern Plant List - 10 Plants a MG Should Know common local name / ITIS* name family light bloom season water needs drought tolerant? xeriscaping? botanical name leaves/Native H W (ft.) bloom color salt tolerance hummers? butterflies? deer resistant? heat tolerant? aromatic? ground cover, perennial Lantana, Purple Trailing / Trailing Shrubverbena Verbenaceae sun-part sun spring-fall very low Lantana montevidensis 'Purple' evergreen / S. America 2 9 purple moderate prune severly in late winter grass, perennial Muhly, Gulf Coast / Gulf Muhly Poaceae full sun fall low-medium Muhlenbergia capillaris 'Filipes' n/a / Coastal Bend 3 3 purple high one of the most beautiful ornamental grasses around palm, palm-like Palm, Mexican Fan / Washington Fan Palm Arecaceae full sun low Washingtonia robusta evergreen / Mexico 80 10 high Best not to shave trunk, thorns on petiole shrub, perennial Cenizo / Texas Barometer Bush Scrophulariacea full sun spring-fall very low Leucophyllum frutescens semi-decid. / Coastal Bend 8 5 multiple moderate Cenizo means "ashy" in Spanish. Does not like rich soil. Esperanza / Trumpetbush Bignoniaceae sun-part sun spring-fall low Tecoma stans deciduous / Texas 10 10 yellow some Orange variety also: var stans 25 ft/var Augustana 10 ft/var Gold Star 4 ft Firebush / Scarletbush Rubiaceae sun-part sun summer-fall low Hamelia patens deciduous / Florida 12 10 red some red-bronze foliage, dark fall fruits attract birds, great hummingbird plant Firecracker / Fountainbush Plantaginaceae sun-part sun year-round low Russelia equisetiformis evergreen / Mexico 5 6 red, white moderate very hardy, does well in hanging baskets, white variety also Plumbago, Blue / Cape Leadwort Plumbaginaceae sun-part sun spring-fall low Plumbago auriculata evergreen / S. -
ASHY DOGWEED (Thymophylla [=Dyssodia] Tephroleuca)
ASHY DOGWEED (Thymophylla [=Dyssodia] tephroleuca) 5-Year Review: Summary and Evaluation Photograph: Chris Best, USFWS U.S. Fish and Wildlife Service Corpus Christi Ecological Services Field Office Corpus Christi, Texas September 2011 1 FIVE YEAR REVIEW Ashy dogweed/Thymophylla tephroleuca Blake 1.0 GENERAL INFORMATION 1.1 Reviewers Lead Regional Office: Southwest Regional Office, Region 2 Susan Jacobsen, Chief, Threatened and Endangered Species, 505-248-6641 Wendy Brown, Endangered Species Recovery Coordinator, 505-248-6664 Julie McIntyre, Recovery Biologist, 505-248-6507 Lead Field Office: Corpus Christi Ecological Services Field Office Robyn Cobb, Fish and Wildlife Biologist, 361- 994-9005, ext. 241 Amber Miller, Fish and Wildlife Biologist, 361-994-9005, ext. 247 Cooperating Field Office: Austin Ecological Services Field Office Chris Best, Texas State Botanist, 512- 490-0057, ext. 225 1.2 Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service or USFWS) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species once every five years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. Our original listing as endangered or threatened is based on the species’ status considering the five threat factors described in section 4(a)(1) of the Act. -
Sabal Jan 11
The Sabal January 2011 Volume 28, number 1 In this issue: Native Plant Project January speaker below. (NPP) Board of Directors The Barretal, a Distinct Biotic Community p 2-7 President: Eleanor Mosimann Part 1. Adapted from an article by Christopher Best. Vice Pres.: Chris Hathcock LRGV Native Plant Sources p 6 Secretary: Susan Thompson Board Meeting Highlights p 7 Treasurer: Bert Wessling Sponsors p 7 Diann Ballesteros Membership Application (cover) p 8 Carol Goolsby Sue Griffin Martin Hagne Ken King Sande Martin Editor: Editorial Advisory Jann Miller Christina Mild Board: Kathy Sheldon <[email protected]> Diann Ballesteros Ann Treece Vacek Mike Heep Submissions of relevant NPP Advisory Board articles and/or photos Eleanor Mosimann Betty Perez Mike Heep are welcomed. Benito Trevino Dr. Alfred Richardson January Meeting of the Native Plant Project: “South Texas Natives Project” by Forrest Smith Tuesday, Jan. 25th at 7:30 P.M. Valley Nature Center, 301 S. Border, (in Gibson Park), Weslaco. Forrest Smith is Director of the South Texas Natives Pro- ject, part of the Caesar Kleberg Wildlife Research Insti- tute in Kingsville. He received a B.S. in Range and Wild- life Management from Texas A&M – Kingsville in 2003 and has worked for the organization in a variety of ca- pacities ever since. This talk will focus on the project’s strides in developing native seed sources, restoring prai- ries, and controlling exotic plant species. Come learn about the project’s exciting new developments aimed at conserving native plants in South Texas. The Sabal is the newsletter of the Native Plant Project. -
Essential Oil of Dyssodia Acerosa DC
3276 J. Agric. Food Chem. 1997, 45, 3276−3278 Essential Oil of Dyssodia acerosa DC. Mario R. Tellez,* Rick E. Estell, Ed L. Fredrickson, and Kris M. Havstad Jornada Experimental Range, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 30003, MSC 3JER, New Mexico State University, Las Cruces, New Mexico 88003 Samples of the suffrutescent Dyssodia acerosa DC. were collected from the Jornada Experimental Range in south-central New Mexico, and GC/MS and retention indices were used to identify 62 components from the steam-distilled oil. Chrysanthenone (34.8%), limonene (14.5%), camphor (12.3%), R-pinene (6.8%), sabinene (4.3%), camphene (3.9%), (E)-â-ocimene (2.5%), 1,8-cineole (2.2%), myrcene (2.0%), and cis-sabinene hydrate (1.6%) were the major components of the steam-distilled oil. Keywords: Dyssodia acerosa; Asteraceae; essential oil composition; chrysanthenone; limonene; camphor INTRODUCTION leorthid soils (Tencee series) formed on an old alluvial fan (Neher and Bailey, 1976; Gibbens et al., 1993). Long-term The study of diet selection by livestock in arid annual precipitation (1922-1990) at the nearest rain gauge rangelands has been a long-term research focus at the (1.7 kM from the collection site; elevation of 1585 m) is 257 U.S. Department of Agriculture, Agricultural Research mm, with 55% of the precipitation occurring in July, August, Service’s Jornada Experimental Range (JER). Recently, and September (Gibbens et al., 1993). Total precipitation we have begun to examine plant-herbivore interactions between October 1995 and September 1996 was 215 mm (73 at the biochemical level (Estell et al., 1994; Fredrickson mm in July, 20 mm in August, and 60 mm in September). -
Plants for Bats
Suggested Native Plants for Bats Nectar Plants for attracting moths:These plants are just suggestions based onfloral traits (flower color, shape, or fragrance) for attracting moths and have not been empirically tested. All information comes from The Lady Bird Johnson's Wildflower Center's plant database. Plant names with * denote species that may be especially high value for bats (based on my opinion). Availability denotes how common a species can be found within nurseries and includes 'common' (found in most nurseries, such as Rainbow Gardens), 'specialized' (only available through nurseries such as Medina Nursery, Natives of Texas, SA Botanical Gardens, or The Nectar Bar), and 'rare' (rarely for sale but can be collected from wild seeds or cuttings). All are native to TX, most are native to Bexar. Common Name Scientific Name Family Light Leaves Water Availability Notes Trees: Sabal palm * Sabal mexicana Arecaceae Sun Evergreen Moderate Common Dead fronds for yellow bats Yaupon holly Ilex vomitoria Aquifoliaceae Any Evergreen Any Common Possumhaw is equally great Desert false willow Chilopsis linearis Bignoniaceae Sun Deciduous Low Common Avoid over-watering Mexican olive Cordia boissieri Boraginaceae Sun/Part Evergreen Low Common Protect from deer Anacua, sandpaper tree * Ehretia anacua Boraginaceae Sun Evergreen Low Common Tough evergreen tree Rusty blackhaw * Viburnum rufidulum Caprifoliaceae Partial Deciduous Low Specialized Protect from deer Anacacho orchid Bauhinia lunarioides Fabaceae Partial Evergreen Low Common South Texas species -
Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment. -
Xerophytic Species Evaluated for Renewable Energy Resources1
Purchased by U.S. Department of Agriculture for Official Use Xerophytic Species Evaluated for Renewable Energy Resources 1 M. E. CARR,2 B. S. PHILLIPS,2 AND M. O. BAGBy3 Previously, the USDA Northern Regional Research Center has examined 600 plant species in 88 families for their multipurpose, energy-producing potential. About three-fourths ofthese species have been from central and southern Illinois, but only about 2% have been from arid or semiarid regions ofthe United States. For this report, 100 species collected from Arizona were evaluated, bringing the total number ofspecies evaluated at this Center to 700 in 96 families. Plant spec imens were analyzed for yields offractions referred to as "oil," "polyphenol," "hydrocarbon," and protein and were examinedfor botanical characteristics. Oil and hydrocarbon fractions of selected species were partially characterized. Ten species gave high yields ofoil and/or polyphenol. For example, Asclepias linaria yielded 8.7% oil (dl)', ash-free sample basis) + 11.7% polyphenol (1.9Q6 hydrocar bon). Rhus choriophylla yielded 7.0% oil + 20% polyphenol (0.4% hydrocarbon) and Juglans major yielded 7.0% oil + 9.4% polyphenol (0.2% hydrocarbon). Pit tosporum tobira gave the highest yield ofhydrocarbon (2.3%). Fourteen species contained at least 18% protein. In general, the percentages of species yielding substantial amounts of oil and/or polyphenol were considerably higher for the Arizona species than for those 600 species previously analyzed. Complete analyt ical data are presentedfor 38 species and are discussed in relationship to the 600 species previously reported. In recent years, there has been much interest in developing and using more effectively plants that are able to tolerate arid and semiarid areas, particularly for industrial nonfood uses (Davis et aI., 1983). -
Cattle Fever Tick Eradication on Laguna Atascosa and Lower Rio Grande Valley National Wildlife Refuges
Final Environmental Assessment Cattle Fever Tick Eradication on Laguna Atascosa and Lower Rio Grande Valley National Wildlife Refuges February 2018 Lead Agency U.S. Department of Agriculture Animal and Plant Health Inspection Service Cooperating Agency U.S. Fish and Wildlife Service National Wildlife Refuge System Southwest Region Table of Contents 1.0 PURPOSE OF AND NEED FOR PROPOSED ACTION ALTERNATIVE .......................... 1 1.1 Introduction ........................................................................................................................... 1 1.2 Action Area ........................................................................................................................... 1 1.3 Background ........................................................................................................................... 4 1.3.1 USDA-APHIS Efforts to Eradicate Cattle Fever Ticks .................................................. 4 1.3.2 FWS Efforts to Control CFT .......................................................................................... 7 1.4 Purpose and Need for the Proposed Action .......................................................................... 8 1.5 Decision to be Made .............................................................................................................. 8 1.6 Public Comments .................................................................................................................. 9 2.0 ALTERNATIVES....................................................................................................................