The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/Mtor/Rac1 Signaling in Podocytes

Total Page:16

File Type:pdf, Size:1020Kb

The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/Mtor/Rac1 Signaling in Podocytes BASIC RESEARCH www.jasn.org The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/mTOR/Rac1 Signaling in Podocytes Gentzon Hall,1,2,3 Brandon M. Lane,1,2 Kamal Khan ,4 Igor Pediaditakis,4 Jianqiu Xiao,4 Guanghong Wu,1,3 Liming Wang,3 Maria E. Kovalik,1,2,3 Megan Chryst-Stangl,1,2 Erica E. Davis,1,4 Robert F. Spurney,3 and Rasheed A. Gbadegesin 1,2,3 Departments of 1Pediatrics and 3Medicine, Duke University School of Medicine, Durham, North Carolina; 2Duke Molecular Physiology Institute, Durham, North Carolina; and 4Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina ABSTRACT Background We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypoth- esized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. Methods We conducted in vivo complementation assays in zebrafish to determine the effect of the pre- viously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT)orANLNR431C. Results Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C-expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C-expressing podocytes. Inhibition of mTOR, GSK-3b, Rac1, or calcineurin ameliorated the effects of ANLNR431C. Additionally, inhibition of the calcineurin/NFAT pathway reduced the expres- sion of endogenous ANLN and mTOR. Conclusions The ANLNR431C mutation causes multiple derangements in podocyte function through hyper- activation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calci- neurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes. J Am Soc Nephrol 29: 2110–2122, 2018. doi: https://doi.org/10.1681/ASN.2017121338 Received December 29, 2017. Accepted May 31, 2018. FSGS is the most common primary glomerular G.H. and B.M.L. contributed equally to this work. 1 disorder causing ESKD in the United States. De- Published online ahead of print. Publication date available at spite current therapies, approximately 50% of pa- www.jasn.org. tients with nephrotic FSGS develop ESKD within Correspondence: Dr. Rasheed A. Gbadegesin, Department of 2 10 years of initial diagnosis. It is, therefore, critical Pediatrics, Duke University Medical Center, Duke University, T- to improve our understanding of the pathobiology Level RM0909 CHC, BOX 3959, Durham, NC 27710. Email: of the disease to devise more effective treatment [email protected] strategies. Copyright © 2018 by the American Society of Nephrology 2110 ISSN : 1046-6673/2908-2110 JAmSocNephrol29: 2110–2122, 2018 www.jasn.org BASIC RESEARCH Studies of familial forms of FSGS suggest that disease results Significance Statement from injury or loss of glomerular epithelial cells (i.e.,podo- cytes).3 Podocytes are terminally differentiated cells that The authors previously reported that mutations in ANLN can cause maintain the structural integrity of the glomerular filtration familial FSGS. Anillin is an F-actin binding protein that modulates barrier. This function is highly dependent on the dynamic cell motility and signaling through the phosphoinositide 3-kinase (PI3K) pathway. This study examines its signaling through the PI3K regulation of the podocyte actin cytoskeleton. The phosphoi- pathway in podocytes to understand its role in the pathobiology nositide 3-kinase (PI3K)/AKTsignaling pathway is an essen- of FSGS. Mutant anillin induced hypermotility and apoptosis, tial regulator of podocyte actin cytoskeletal dynamics that has enhanced cellular proliferation, and activated PI3K/AKT/mTOR/ been shown to participate in slit diaphragm signaling through Rac1 signaling. Aberrant podocyte phenotypes induced by the interactions with proteins, such as CD2-associated protein mutation were ameliorated by inhibition of downstream effectors of PI3K and calcineurin phosphatase, and calcineurin inhibition 4 (CD2AP),nephrin,andpodocin. Pathogenic mutations in ameliorates ANLNR431C-induced podocyte apoptosis and down- CD2AP cause FSGS through mechanisms that involve the dis- regulates endogenous mTOR and ANLN expression. Drugs tar- ruption of PI3K/AKT signaling, highlighting the importance geting these pathways may be useful in the treatment of some of this pathway in the pathobiology of podocyte dysfunction forms of FSGS. in FSGS.5 fi We previously identi ed disease-causing muta- suppression experiment as described in Supplemental Mate- . tions (c.1852G T: p.Gly618Cys[G618C] and c.1291C T: rial. We validated the transient suppression experiment using p.Arg431Cys[R431C]) in familial FSGS, the latter of which is CRISPR/Cas9 genome editing of the anln locus in zebrafish in the F-actin binding domain of anillin (ANLN). ANLNR431C (Supplemental Material). induced hypermotility in podocytes and disrupted the crit- ical interaction between ANLN and CD2AP. To gain a better Conditionally Immortalized Human Podocyte Culture understanding of the role of ANLNR431C and ANLNG618C in Conditionally immortalized human podocytes were cultured the development of FSGS, we examined the effects of this and harvested as described.6 mutation in vivo through mRNA rescue experiments in anln- fi fi de cient zebra sh embryos and established that both Lentiviral Constructs and Infection mutations cause a loss of function during development. In Standard molecular cloning methods were used for stable complimentary in vitro studies, we showed that ANLNR431C transfection of all cell lines (Supplemental Material).7 overexpression hyperactivates AKT, mTOR, p70S6 Kinase, and Rac1 signaling in podocytes and that pharmacologic in- Immunofluorescence hibition of mTOR and Rac1 attenuates ANLNR431C-induced Conditionally immortalized human podocytes were differen- hypermotility and hyperproliferation. Additionally, we tiated and stained using standard protocols (Supplemental showed that ANLNR431C-induced hyperactivation of mTOR Material). induces endoplasmic reticulum (ER) stress and podocyte apoptosis and that this effect was attenuated by pharmaco- Rac1 and RhoA Activity Assay logic inhibition of mTOR, glycogen synthase kinase 3b GTP-bound Rac1 and RhoA were analyzed using PAK and (GSK-3b), and calcineurin phosphatase (Cn). Finally, we Rhotekin-Rho binding domain bead assays (Supplemental determined that endogenous ANLN and mTOR protein Material). expressions are downregulated by the Cn/NFAT pathway. Together, these findings suggest that ANLNR431C disrupts Targeted Inhibition podocyte cytoskeletal dynamics and promotes podocyte ap- For inhibition experiments, stock inhibitors were made in optosis through dysregulation of the PI3K/AKT/mTOR/ DMSO, and dilution was carried out as described in Supple- p70S6/Rac1 pathway. Furthermore, we identify the Cn/ mental Material. NFAT signaling pathway as a regulator of endogenous mTOR and ANLN expression and provide novel mechanistic Migration Assay insights into the beneficial clinical effects of Cn inhibitors in Scratch wound assays were used as described in Supplemental some forms of FSGS. Material. Proliferation Assay METHODS A cell counting colorimetric assay was used for the cell pro- liferation studies as described in Supplemental Material. Transient Suppression of anln and In Vivo Complementation Assays in Zebrafish Apoptosis Assay We designed a splice blocking morpholino (MO) targeting Serum starvation method was used to induce apoptosis in the donor site of exon 5 of the anln ortholog in zebrafish experimental podocyte lines as described in Supplemental (Supplemental Figure 1A) and performed a transient Material. J Am Soc Nephrol 29: 2110–2122, 2018 ANLN R431C, mTOR, and Rac1 in FSGS 2111 BASIC RESEARCH www.jasn.org In Silico Modeling embryos (3, 6, and 9 ng); we observed disruption of mRNA The ANLNR431C variant wasassessedforitseffectsonthe splicing in anln e5i5 morphants (Supplemental Figure 1, B and secondary structure of the protein. The in silico prediction C). Furthermore, we observed a dose-dependent response of program I-TASSER (http://zhanglab.ccmb.med.umich.edu/ e5i5 MO; larval batches scored live at 4 days postfertilization I-TASSER/) was used to generate the ANLNWTand ANLNR431C displayed ocular and pericardial edema (P,0.001 versus con- images.8 trols; n=63–81 per batch, repeated) (Supplemental Figure 1D). Next, we coinjected 3 ng MO with 150 pg of human Actin Bundling/Polymerization Assay ANLNWT mRNA and scored larval batches for edema pheno- HEK 293T cellsweregrown in DMEM + 5% FBSin T75flasksat types in three phenotypic classes. Whereas 92% of e5i5 mor- 37°C until 85% confluency and transfected using Lipofecta- phant larvae displayed edema phenotypes, an equivalent dose mine 2000 with plasmids containing
Recommended publications
  • Anillin Is a Prognostic Factor and Is Correlated with Genovariation in Pancreatic Cancer Based on Databases Analysis
    ONCOLOGY LETTERS 21: 107, 2021 Anillin is a prognostic factor and is correlated with genovariation in pancreatic cancer based on databases analysis YUANHUA NIE, ZHIQIANG ZHAO, MINXUE CHEN, FULIN MA, YONG FAN, YINGXIN KANG, BOXIONG KANG and CHEN WANG Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China Received March 12, 2020; Accepted October 8, 2020 DOI: 10.3892/ol.2020.12368 Abstract. Pancreatic cancer has a low survival rate globally. PC pathways were associated with low expression of ANLN. Anillin (ANLN) is involved in the pathogenesis of pancreatic Overall, ANLN is more highly expressed in PC compared cancer (PC). The present study used databases and reverse with in normal tissue, and is associated with poor differen‑ transcription‑quantitative PCR to investigate the association tiation. The expression of ANLN may be a novel prognostic between ANLN expression, clinical variables and the survival marker of poor survival. Finally, ANLN exert its functions in rate of patients with pancreatic cancer. Gene expression PC through the p53, cell cycle, DNA replication, mismatch of ANLN in normal and cancer tissues was analyzed using repair and nucleotide excision repair and pathways. data from The Cancer Genome Atlas, Oncomine and Gene Expression database of Normal and Tumor tissues 2 and Introduction ANOVA, and the association between ANLN mRNA expres‑ sion and ANLN genovariation was analyzed using cBioPortal. Pancreatic cancer (PC) is a major public health problem The association between ANLN expression and the survival, and is the eleventh most common cancer in the world, with clinical, pathological and prognostic characteristics of PC 458,918 new cases and 432,242 deaths in 2018 (1).
    [Show full text]
  • Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
    Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Genetic Interactions Between ANLN and KDR Are Prognostic for Breast Cancer Survival
    ONCOLOGY REPORTS 42: 2255-2266, 2019 Genetic interactions between ANLN and KDR are prognostic for breast cancer survival XIAOFENG DAI1*, XIAO CHEN2*, OLIVIER HAKIZIMANA2 and YI MEI2 1Wuxi School of Medicine, 2School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China Received April 3, 2019; Accepted August 7, 2019 DOI: 10.3892/or.2019.7332 Abstract. Single nucleotide polymorphisms (SNPs) are the of ~627,000 annually estimated in 2018 (2). Uncontrolled most common genetic variation in mammalian cells with proliferative growth and angiogenesis are two basic cancer prognostic potential. Anillin-actin binding protein (ANLN) hallmarks governing the critical transitions towards malig- has been identified as being involved in PI3K/PTEN signaling, nancy during carcinogenesis (3). PI3K/PTEN signaling, which is critical in cell life/death control, and kinase insert frequently altered in breast carcinoma (4), confers a survival domain receptor (KDR) encodes a key receptor mediating advantage to tumor cells (5). Anillin, encoded by anillin the cancer angiogenesis/metastasis switch. Knowledge of actin-binding protein (ANLN), is an actin-binding protein, the intrinsic connections between PI3K/PTEN and KDR which has been identified as being involved in the PI3K/PTEN signaling, which represent two critical transitions in carcino- pathway (6,7). It is an F‑actin binding protein, which maintains genesis, led the present study to investigate the effects of the podocyte cytoskeletal dynamics, cell motility and signaling potential synergy between ANLN and KDR on breast cancer through its interaction with CD2-associated protein, which outcome and identify relevant SNPs driving such a synergy stimulates the phosphorylation of AKT at serine 473 (6,8).
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Identification of Molecular Targets in Head and Neck Squamous Cell Carcinomas Based on Genome-Wide Gene Expression Profiling
    1489-1497 7/11/07 18:41 Page 1489 ONCOLOGY REPORTS 18: 1489-1497, 2007 Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling SATOYA SHIMIZU1,2, NAOHIKO SEKI2, TAKASHI SUGIMOTO2, SHIGETOSHI HORIGUCHI1, HIDEKI TANZAWA3, TOYOYUKI HANAZAWA1 and YOSHITAKA OKAMOTO1 Departments of 1Otorhinolaryngology, 2Functional Genomics and 3Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received May 21, 2007; Accepted June 28, 2007 Abstract. DNA amplifications activate oncogenes and are patients and metastases develop in 15-25% of patients (1). hallmarks of nearly all advanced cancers including head and Many factors, such as TNM stage, pathological grade and neck squamous cell carcinoma (HNSCC). Some oncogenes tumor site, influence the prognosis of HNSCC but are not show both DNA copy number gain and mRNA overexpression. sufficient to predict outcome. In addition, treatment often Chromosomal comparative genomic hybridization and oligo- results in impairment of functions such as speech and nucleotide microarrays were used to examine 8 HNSCC cell swallowing, cosmetic disfiguration and mental pain. These lines and a plot of gene expression levels relative to their inflictions significantly erode quality of life. To overcome this position on the chromosome was produced. Three highly situation, there is a need to find novel biomarkers that classify up-regulated genes, NT5C3, ANLN and INHBA, were patients into prognostic groups, to aid identification of high- identified on chromosome 7p14. These genes were subjected risk patients who may benefit from different treatments. to quantitative real-time RT-PCR on cDNA and genomic Comparative genomic hybridization (CGH) has facilitated DNA derived from 8 HNSCC cell lines.
    [Show full text]
  • Deciphering the Molecular Profile of Plaques, Memory Decline And
    ORIGINAL RESEARCH ARTICLE published: 16 April 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00075 Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing Yvonne Bouter 1†,Tim Kacprowski 2,3†, Robert Weissmann4, Katharina Dietrich1, Henning Borgers 1, Andreas Brauß1, Christian Sperling 4, Oliver Wirths 1, Mario Albrecht 2,5, Lars R. Jensen4, Andreas W. Kuss 4* andThomas A. Bayer 1* 1 Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Goettingen, Germany 2 Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany 3 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany 4 Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 5 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria Edited by: One of the central research questions on the etiology of Alzheimer’s disease (AD) is the Isidro Ferrer, University of Barcelona, elucidation of the molecular signatures triggered by the amyloid cascade of pathological Spain events. Next-generation sequencing allows the identification of genes involved in disease Reviewed by: Isidro Ferrer, University of Barcelona, processes in an unbiased manner. We have combined this technique with the analysis of Spain two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu- Dietmar R. Thal, University of Ulm, ronal Ab aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses Germany N-truncated Ab4–42 and develops neuron loss and behavioral deficits albeit without plaque *Correspondence: formation.
    [Show full text]
  • Identification of Novel Biomarkers in Hepatocellular Carcinoma By
    Identication of Novel Biomarkers in Hepatocellular Carcinoma by Integrated Bioinformatical Analysis and Experimental Validation Chen Liao Yunnan University of Traditional Chinese Medicine Lanlan Wang Shaanxi University of Chinese Medicine Xiaoqiang Li Fourth Military Medical University Department of Social Sciences: Air Force Medical University Jinyu Bai Yunnan University of Traditional Chinese Medicine Jieqiong Wu Shaanxi University of Chinese Medicine Wei Zhang Shaanxi University of Chinese Medicine Hailong Shi Shaanxi University of Chinese Medicine Xuesong Feng Shaanxi University of Chinese Medicine Xu Chao ( [email protected] ) Shaanxi University of Chinese Medicine https://orcid.org/0000-0001-5520-4834 Research Keywords: Hepatocellular carcinoma, novel biomarkers, candidate small molecules, prognosis, bioinformatics analysis Posted Date: June 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-533830/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common poorly prognosed virulent neoplasms of the digestive system. In this study, we identied novel biomarkers associated with the pathogenesis of HCC aiming to provide new diagnostic and therapeutic approaches for HCC. Methods: Gene expression proles of GSE62232, GSE84402,GSE121248 and GSE45267 were obtained in GEO database. Differential expressed genes (DEGs) between HCC and normal samples were identied using the GEO2R tool and Venn diagram software.Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to carry out enrichment analysis on gene ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes pathway (KEGG). The protein-protein interaction (PPI) network of DEGs was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING) and visualized by Cytoscape.
    [Show full text]
  • Majority of Differentially Expressed Genes Are Down-Regulated During Malignant Transformation in a Four-Stage Model
    Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model Frida Danielssona, Marie Skogsa, Mikael Hussb, Elton Rexhepaja, Gillian O’Hurleyc, Daniel Klevebringa,d, Fredrik Ponténc, Annica K. B. Gade, Mathias Uhléna, and Emma Lundberga,1 aScience for Life Laboratory, Royal Institute of Technology (KTH), SE-17121 Solna, Sweden; bScience for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-17121 Solna, Sweden; cScience for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden; dDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17111 Stockholm, Sweden; and eDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden Edited by George Klein, Karolinska Institutet, Stockholm, Sweden, and approved March 12, 2013 (received for review October 19, 2012) The transformation of normal cells to malignant, metastatic tumor with the SV40 large-T antigen, and finally made to metastasize cells is a multistep process caused by the sequential acquirement by the introduction of oncogenic H-Ras (RASG12V) (9). We of genetic changes. To identify these changes, we compared the have used this cell-line model for a genome-wide, comprehensive transcriptomes and levels and distribution of proteins in a four- analysis of the molecular mechanisms that underlie malignant stage cell model of isogenically matched normal, immortalized, transformation and metastasis, using transcriptomics and im- fl fi transformed, and metastatic human cells, using deep transcrip- muno uorescence-based protein pro ling. tome sequencing and immunofluorescence microscopy. The data Results show that ∼6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model.
    [Show full text]
  • Oligodendroglial Anillin Facilitates Septin Assembly to Prevent Myelin Outfoldings
    Oligodendroglial anillin facilitates septin assembly to prevent myelin outfoldings Dissertation for the award of the degree "Doctor rerum naturalium" (Dr. rer. nat) of the Georg-August University Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) submitted by Michelle Scarlett Erwig from Neuss, Germany Göttingen, November 2018 Members of the Examination Board: Thesis committee: PD Dr. Hauke Werner (Reviewer) Department of Neurogenetics Max Planck Institute of Experimental Medicine Prof. Dr. Siegrid Löwel (Reviewer) Department of Systems Neuroscience Georg-August University, Göttingen Further members of the Examination Board: Prof. Dr. Martin Göpfert Department of Cellular Neurobiology Schwann-Schleiden Research Centre Georg-August University, Göttingen Prof. Dr. Ralf Heinrich Department of Cellular Neurobiology Schwann-Schleiden Research Centre Georg-August University, Göttingen Prof. Dr. Dr. Hannelore Ehrenreich Department of Clinical Neuroscience Max Planck Institute of Experimental Medicine Prof. Dr. Alexander Flügel Institute for Neuroimmunology and Multiple Sclerosis Research University Medical Center Göttingen Date of oral examination: January 28th, 2019 Declaration I hereby declare that the Ph.D. thesis entitled “Oligodendroglial anillin facilitates septin assembly to prevent myelin outfoldings”, has been written independently and with no other sources and aids than quoted. Göttingen, November 27th, 2018 __________________ Michelle Erwig Danksagung Ich möchte Prof. Klaus-Armin Nave Ph.D. danken, dass ich in seiner Abteilung arbeiten konnte. Danke für wissenschaftliche Diskussionen und eine Arbeitsatmosphäre in der alle auf einem Level diskutieren können. Ein großer Dank geht an PD Dr. Hauke Werner. Danke für die Betreuung der Arbeit und die Zusammenarbeit. Die wissenschaftlichen Diskussionen sowie die familiäre Arbeitsatmosphäre aber auch das Ermutigen, sich weiter zu entwickeln, werden mir immer in guter Erinnerung bleiben.
    [Show full text]
  • ANLN Promotes Carcinogenesis in Oral Cancer by Regulating PI3K/Mtor Signaling Pathway
    ANLN promotes carcinogenesis in oral cancer by regulating PI3K/mTOR signaling pathway Bing Wang Xinjiang Medical University Aliated First Hospital Xiaoli Zhang People's hospital of Xinjiang Uygur autonomous region Chenxi Li University Hospital Hamburg-Eppendorf (UKE) Ningning Liu Xinjiang medical university alliated rst hospital Min Hu Urumqi Myour dental clinic Zhongcheng Gong ( [email protected] ) Xinjiang Medical University Aliated First Hospital Research Keywords: ANLN, Oral cancer,; mTOR, PI3K/AKT signaling Posted Date: August 3rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-51660/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: Oral cancer is a malignant disease threatening human’s life and severely reduces human’s life-quality. Gene ANLN was reported to promote progression in cancer. This study aims at investigating the role of ANLN and molecular mechanism in oral cancer. Methods: ANLN was down-regulated by RNAi technology. The effect of ANLN on cell behaviors including proliferation, cycle distribution, invasion, and apoptosis was detected. Western blotting analysis was used to disclose the mechanism of ANLN in oral cancer. Results: ANLN was shown to express signicantly higher in tumor tissues compared to the normal control tissues based on TCGA data. Patients with higher expression of ANLN displayed worse survival rate. Then ANLN was shown to express abundantly in cancer cell lines CA127 and HN30. When ANLN was reduced in CA127 and HN30 cells, cell proliferation and colony formation ability was inhibited. Cell invasion ability was suppressed. But cell apoptosis was induced reversely.
    [Show full text]
  • Cell Cycle Arrest Through Indirect Transcriptional Repression by P53: I Have a DREAM
    Cell Death and Differentiation (2018) 25, 114–132 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Review Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Kurt Engeland1 Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV.Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia.
    [Show full text]