Onderstaande Coverage Is Berekend Over 860 Exomen, Welke Geprept Zijn Met De Agilent Sureselect XT Exome V7 Kit

Total Page:16

File Type:pdf, Size:1020Kb

Onderstaande Coverage Is Berekend Over 860 Exomen, Welke Geprept Zijn Met De Agilent Sureselect XT Exome V7 Kit Onderstaande coverage is berekend over 860 exomen, welke geprept zijn met de Agilent SureSelect XT exome v7 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 of NovaSeq6000 met een gemiddelde coverage van 100X , dekking 20x >93%. Gemiddelde Gen Coverage 20x A1BG 128 99.8 A1CF 132 99.32 A2ML1 155 99.97 A2M 148 99.72 A3GALT2 119 100 A4GALT 157 100 A4GNT 178 100 AAAS 123 100 AACS 143 97.96 AADACL2 186 99.9 AADACL3 161 100 AADACL4 170 100 AADAC 160 99.98 AADAT 138 97.39 AAED1 110 84.89 AAGAB 164 99.29 AAK1 122 99.39 AAMDC 135 90 AAMP 95 98.4 AANAT 86 99.85 AAR2 120 98.41 AARD 75 99.06 AARS2 123 99.89 AARSD1 115 94.24 AARS 134 100 AASDHPPT 157 99.75 AASDH 135 99.29 AASS 143 99.67 AATF 156 99.95 AATK 79 92.71 ABAT 136 99.16 ABCA1 149 100 ABCA2 123 96.52 ABCA3 132 99.27 ABCA4 137 96.03 ABCA5 101 94.3 ABCA6 131 98.41 ABCA7 102 99.12 ABCA8 146 99.26 ABCA9 140 99.34 ABCA10 126 94.11 ABCA12 159 99.8 ABCA13 159 97.2 ABCB1 160 99.58 ABCB4 142 99.43 ABCB5 151 99.76 ABCB6 149 99.98 ABCB7 128 99.81 ABCB8 100 93.36 ABCB9 124 97.14 ABCB10 136 90.97 ABCB11 158 99.22 ABCC1 141 96.65 ABCC2 150 99.71 ABCC3 108 96.16 ABCC4 134 95.97 ABCC5 130 96.14 ABCC6 96 92.85 ABCC8 136 99.83 ABCC9 141 99.75 ABCC10 90 99.35 ABCC11 117 99.93 ABCC12 153 99.93 ABCD1 74 83.58 ABCD2 143 99.92 ABCD3 122 92.63 ABCD4 122 99.84 ABCE1 141 98.18 ABCF1 90 99.42 ABCF2 128 99.93 ABCF3 159 100 ABCG1 135 99.71 ABCG2 143 99.77 ABCG4 122 99.91 De Coverage komt vanuit LAB-F0680_Exoom Coverage_v3. Pagina 1 van 294 Onderstaande coverage is berekend over 860 exomen, welke geprept zijn met de Agilent SureSelect XT exome v7 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 of NovaSeq6000 met een gemiddelde coverage van 100X , dekking 20x >93%. Gemiddelde Gen Coverage 20x ABCG5 111 94.97 ABCG8 125 99.42 ABHD1 152 100 ABHD2 137 99.97 ABHD3 133 98.85 ABHD4 120 99.84 ABHD5 136 93.74 ABHD6 166 100 ABHD8 125 89 ABHD10 142 98.31 ABHD11 106 99.54 ABHD12B 182 99.34 ABHD12 117 93.96 ABHD13 310 99.65 ABHD14A 67 82.11 ABHD14A-ACY1 113 93.23 ABHD14B 85 95.45 ABHD15 97 99.94 ABHD16A 95 98.61 ABHD16B 134 99.88 ABHD17A 65 69.33 ABHD17B 156 100 ABHD17C 156 99.96 ABI1 107 92.97 ABI2 123 99.76 ABI3BP 145 99.37 ABI3 64 93.88 ABL1 128 97.01 ABL2 147 93.13 ABLIM1 125 99.54 ABLIM2 112 89.39 ABLIM3 125 99.36 ABO 177 95.46 ABRACL 104 100 ABRA 167 100 ABR 101 93.38 ABT1 160 100 ABTB1 96 99.37 ABTB2 118 99.33 AC000003.2 1 0 AC002310.13 159 100 AC002365.1 229 100 AC002398.9 110 100 AC002451.1 3 0 AC002472.1 1 0 AC002472.13 136 99.16 AC002553.1 47 53.95 AC002985.3 86 99.96 AC003002.4 255 100 AC003002.6 151 99.76 AC003005.4 130 88.15 AC003006.7 262 100 AC003043.1 29 49.77 AC003101.1 16 5.9 AC003102.1 70 99.53 AC004017.1 1 0 AC004076.7 150 98.03 AC004076.9 157 100 AC004381.6 155 99.83 AC004466.1 80 100 AC004528.1 1 0 AC004817.1 1 0 AC004824.2 9 17.87 AC004899.1 14 19.36 AC005003.1 19 5.9 AC005008.2 9 5.9 AC005082.1 7 4.05 AC005358.1 149 99.98 AC005477.1 9 5.9 AC005481.5 16 5.9 AC005488.1 0 0 AC005493.1 3 4.09 AC005544.1 17 5.9 AC005549.3 42 50 De Coverage komt vanuit LAB-F0680_Exoom Coverage_v3. Pagina 2 van 294 Onderstaande coverage is berekend over 860 exomen, welke geprept zijn met de Agilent SureSelect XT exome v7 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 of NovaSeq6000 met een gemiddelde coverage van 100X , dekking 20x >93%. Gemiddelde Gen Coverage 20x AC005606.1 1 0 AC005609.1 54 95.4 AC005779.2 58 98.11 AC005841.1 16 5.9 AC006014.1 1 0 AC006116.20 6 2.72 AC006126.3 6 5.9 AC006156.1 0 0.33 AC006372.1 10 5.9 AC006435.1 13 5.9 AC006449.1 136 94.1 AC006455.1 0 0 AC006486.1 17 5.9 AC006486.9 116 92.23 AC006538.4 231 100 AC006547.14 81 95.34 AC006946.15 8 5.9 AC006967.1 2 0 AC007040.11 94 98.98 AC007204.1 35 70.21 AC007216.2 3 0 AC007375.1 1 0 AC007377.1 0 0 AC007382.1 0 0 AC007401.2 75 52.83 AC007421.1 1 0 AC007461.1 1 0 AC007557.1 7 5.9 AC007773.3 1 0 AC007919.2 1 0 AC007952.1 0 0 AC007952.5 151 76.13 AC007952.6 0 0 AC007956.1 34 36.13 AC007965.1 0 0 AC008060.7 5 5.9 AC008132.1 1 1.11 AC008132.13 11 10.39 AC008267.1 1 0 AC008271.1 8 5.9 AC008372.1 6 2.19 AC008387.1 2 0.06 AC008394.1 4 3.48 AC008443.1 2 0 AC008498.1 0 0 AC008686.1 88 83.55 AC008914.1 80 94.1 AC008948.1 1 0 AC008964.1 0 0 AC009041.2 3 2.95 AC009060.1 3 0 AC009065.1 87 99.84 AC009365.3 13 5.9 AC009403.2 12 5.9 AC009802.1 113 50 AC009892.10 3 2.95 AC009977.1 21 43.68 AC010327.2 45 96.22 AC010336.1 194 100 AC010368.2 0 0 AC010441.1 102 52.95 AC010536.1 19 5.9 AC010547.9 142 100 AC010642.1 144 100 AC010646.3 93 97.94 AC010760.1 1 0 AC010877.1 1 0 AC011239.1 7 5.9 AC011294.3 5 5.82 AC011298.1 0 0 AC011308.1 75 99.76 AC011366.3 12 5.9 AC011475.1 9 5.9 AC011484.1 150 100 De Coverage komt vanuit LAB-F0680_Exoom Coverage_v3. Pagina 3 van 294 Onderstaande coverage is berekend over 860 exomen, welke geprept zijn met de Agilent SureSelect XT exome v7 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 of NovaSeq6000 met een gemiddelde coverage van 100X , dekking 20x >93%. Gemiddelde Gen Coverage 20x AC011500.1 14 5.9 AC011530.4 96 99.81 AC011551.3 2 0 AC011755.1 0 0 AC011897.1 12 5.9 AC011997.1 18 26.09 AC012067.1 0 0 AC012123.1 66 52.57 AC012215.1 6 5.9 AC012313.1 62 99.53 AC012360.1 3 0 AC012360.2 1 0 AC012414.1 1 0 AC012485.1 1 0 AC012493.2 8 5.9 AC013269.5 0 0.29 AC013449.1 34 90.08 AC013468.1 4 5.79 AC013469.1 1 0 AC015660.1 1 0 AC015688.3 172 100 AC015987.2 13 7.44 AC015989.1 4 2.95 AC015989.2 74 100 AC016251.1 9 5.9 AC016559.1 1 0 AC016586.1 14 5.9 AC016745.1 3 5.9 AC016752.1 0 0 AC016757.3 10 5.9 AC016885.1 1 0 AC017028.1 79 99.88 AC017081.1 7 0.71 AC017104.2 9 5.9 AC018445.1 1 0 AC018470.1 93 99.88 AC018512.1 43 48.65 AC018630.1 15 24.79 AC018755.1 19 5.9 AC018816.3 32 29.43 AC018867.1 3 3.54 AC018867.2 61 99.88 AC019171.1 79 100 AC019206.1 3 0 AC019294.1 9 5.9 AC020629.1 2 0 AC020907.1 12 5.9 AC020922.1 16 5.9 AC020952.1 1 0 AC021218.2 137 100 AC021860.1 2 0 AC022210.1 58 93.86 AC022400.2 87 99.88 AC022431.2 111 86.68 AC022498.1 15 5.9 AC022532.1 170 100 AC022819.2 70 72.06 AC023469.1 6 5.87 AC023590.1 13 5.9 AC023632.1 7 5.9 AC024257.1 1 0 AC024580.1 12 5.84 AC024592.12 107 98.94 AC024940.1 24 5.9 AC025262.1 0 0 AC025263.3 213 99.92 AC025278.1 11 5.9 AC025287.1 13 5.9 AC026202.1 75 99.76 AC026310.1 11 7.79 AC026369.1 2 0 AC026407.1 113 100 AC026461.1 1 0 AC026703.1 7 5.9 De Coverage komt vanuit LAB-F0680_Exoom Coverage_v3. Pagina 4 van 294 Onderstaande coverage is berekend over 860 exomen, welke geprept zijn met de Agilent SureSelect XT exome v7 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 of NovaSeq6000 met een gemiddelde coverage van 100X , dekking 20x >93%. Gemiddelde Gen Coverage 20x AC026740.1 1 0 AC027228.1 1 0 AC027307.3 1 0 AC027309.1 1 0 AC027763.2 24 16.85 AC037199.1 49 50 AC037459.4 122 91.59 AC040160.1 31 34.83 AC040977.1 107 99.17 AC051642.1 1 0 AC055736.1 1 0 AC061975.10 1 0 AC061992.1 102 100 AC062017.1 11 5.9 AC064874.1 12 5.9 AC068039.1 1 0 AC068533.7 172 100 AC068620.1 3 5.9 AC068987.1 7 5.9 AC069368.3 98 86.74 AC069547.1 1 0 AC069547.2 0 0 AC073063.1 54 83.3 AC073188.1 0 0 AC073333.1 1 0 AC073342.1 271 100 AC073343.1 8 5.9 AC073528.1 0 0 AC073569.1 104 50 AC073610.5 86 99.96 AC073657.1 91 47.05 AC074091.13 9 5.9 AC074212.3 122 99.96 AC074389.6 17 5.9 AC078925.1 1 0 AC079210.1 55 99.88 AC079341.1 15 5.9 AC079354.1 101 92.51 AC079354.2 45 90.32 AC079602.1 1 0 AC079612.1 12 5.9 AC083862.1 23 25.62 AC087239.1 1 0 AC087477.1 1 0 AC087645.1 95 80 AC090186.1 13 5.9 AC090427.1 1 0 AC090574.1 1 0 AC090616.2 14 15.7 AC090673.2 2 0 AC091150.1 152 94.1 AC091801.1 7 5.9 AC091948.1 0 0 AC092291.2 2 0 AC092384.1 82 93.62 AC092675.3 9 5.9 AC092687.4 7 5.9 AC092782.1 1 0 AC092811.1 5 5.9 AC092850.1 6 5.9 AC092964.1 4 3.93 AC092964.2 1 0 AC093157.1 107 99.88 AC093323.1 1 0 AC093677.1 24 8.74 AC093802.1 14 5.9 AC096582.1 3 0 AC096644.1 6 5.83 AC096677.1 54 94.1 AC097381.1 82 100 AC099344.1 2 0 AC099552.4 12 5.9 AC102948.2 8 5.9 AC103801.2 251 100 De Coverage komt vanuit LAB-F0680_Exoom Coverage_v3.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Large Meta-Analysis of Genome-Wide Association Studies
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.01.20200659; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Large meta-analysis of genome-wide association studies expands knowledge of the genetic etiology of Alzheimer’s disease and highlights potential translational opportunities Céline Bellenguez1,*,#, Fahri Küçükali2,3,4*, Iris Jansen5,6*, Victor Andrade7,8*, Sonia Morenau- Grau9,10,*, Najaf Amin11,12, Benjamin Grenier-Boley1, Anne Boland13, Luca Kleineidam7,8, Peter Holmans14, Pablo Garcia9,10, Rafael Campos Martin7, Adam Naj15,16, Yang Qiong17, Joshua C. Bis18, Vincent Damotte1, Sven Van der Lee5,6,19, Marcos Costa1, Julien Chapuis1, Vilmentas Giedraitis20, María Jesús Bullido10,21, Adolfo López de Munáin10,22, Jordi Pérez- Tur10,23, Pascual Sánchez-Juan10,24, Raquel Sánchez-Valle25, Victoria Álvarez26, Pau Pastor27, Miguel Medina10,28, Jasper Van Dongen2,3,4, Christine Van Broeckhoven2,3,4, Rik Vandenberghe29,30, Sebastiaan Engelborghs31,32, Gael Nicolas33, Florence Pasquier34, Olivier Hanon35, Carole Dufouil36, Claudine Berr37, Stéphanie Debette36, Jean-François Dartigues36, Gianfranco Spalletta38, Benedetta Nacmias39,40, Vincenzo Solfrezzi41, Barbara Borroni42, Lucio Tremolizzo43, Davide Seripa44, Paolo Caffarra45, Antonio Daniele46,47, Daniela Galimberti48,49, Innocenzo Rainero50, Luisa Benussi51, Alesio Squassina52, Patrizia Mecoci53, Lucilla Parnetti54, Carlo Masullo55, Beatrice Arosio56, John Hardy57, Simon Mead58, Kevin Morgan59, Clive Holmes60, Patrick Kehoe61, Bob Woods62, EADB, Charge, ADGC, Jin Sha15,16, Yi Zhao15,63, Chien-Yueh Lee15,63, Pavel P.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Onderstaande Coverage Is Berekend Over 1000 Exomen, Welke Geprept Zijn Met De Agilent Sureselect XT Exome V6 Kit
    Onderstaande coverage is berekend over 1000 exomen, welke geprept zijn met de Agilent SureSelect XT exome v6 kit. Het sequencen is uitgevoerd op een Illumina NextSeq500 met een gemiddelde coverage van 100X , dekking 20x >95% over het gehele exoom. Gemiddelde Gen Coverage 20x A1BG 124 89,46 A1CF 123 98,03 A2ML1 120 98,19 A2M 114 95,38 A3GALT2 123 97,65 A4GALT 222 98,21 A4GNT 153 98,21 AAAS 147 98,21 AACS 139 98,20 AADACL2 118 97,73 AADACL3 139 98,21 AADACL4 156 98,21 AADAC 118 98,05 AADAT 107 89,53 AAED1 67 83,20 AAGAB 106 97,95 AAK1 115 97,79 AAMDC 101 88,39 AAMP 117 98,14 AANAT 124 98,16 AAR2 103 76,39 AARD 82 98,61 AARS2 133 98,12 AARSD1 105 84,15 AARS 123 98,17 AASDHPPT 127 97,08 AASDH 98 97,40 AASS 102 97,35 AATF 139 97,98 AATK 115 96,20 ABAT 111 94,77 ABCA1 124 97,79 ABCA2 152 97,17 ABCA3 129 98,12 ABCA4 126 98,14 ABCA5 59 88,83 ABCA6 88 95,52 ABCA7 163 98,07 ABCA8 102 96,10 ABCA9 109 97,71 ABCA10 74 85,59 ABCA12 116 97,77 ABCA13 129 96,43 ABCB1 114 97,45 ABCB4 96 96,93 ABCB5 105 97,75 ABCB6 140 98,21 ABCB7 126 99,13 ABCB8 140 98,05 ABCB9 139 98,13 ABCB10 85 89,17 ABCB11 118 97,74 ABCC1 123 92,71 ABCC2 127 98,16 ABCC3 147 97,94 ABCC4 112 96,52 ABCC5 121 92,63 ABCC6 115 91,98 ABCC8 129 98,17 ABCC9 108 97,76 ABCC10 144 97,99 ABCC11 126 98,16 ABCC12 134 98,20 ABCD1 113 72,00 ABCD2 96 97,46 ABCD3 90 91,11 ABCD4 118 98,16 ABCE1 63 86,86 ABCF1 116 98,04 Pagina 1 van 295 Onderstaande coverage is berekend over 1000 exomen, welke geprept zijn met de Agilent SureSelect XT exome v6 kit.
    [Show full text]
  • A Large-Scale Multi-Ethnic Genome-Wide Association Study of Coronary Artery Disease
    A large-scale multi-ethnic genome-wide association study of coronary artery disease Themistocles Assimes ( [email protected] ) Stanford University School of Medicine https://orcid.org/0000-0003-2349-0009 Catherine Tcheandjieu Stanford University Xiang Zhu The Pennsylvania State University https://orcid.org/0000-0003-1134-6413 Austin Hilliard VA Palo Alto Health Care System Shoa Clarke Stanford University School of Medicine https://orcid.org/0000-0002-6592-1172 Valerio Napolioni University of Camerino Shining Ma Stanford University School of Medicine Huaying Fang Stanford University School of Medicine Bryan R Gorman Massachusetts Veterans Epidemiology and Research Information Center, Veterans Affairs Boston Healthcare System Kyung Min Lee Edith Nourse Rogers Memorial Veterans Hospital https://orcid.org/0000-0001-8995-0448 Fei Chen University of Southern California Saiju Pyarajan Massachusetts Veterans Epidemiology and Research Information Center, Veterans Affairs Boston Healthcare System Rebecca Song VA Boston Healthcare System Mary Plomondon Rocky Mountain Regional VA Medical Center Thomas Maddox Washington University School of Medicine Stephen Waldo Rocky Mountain Regional VA Medical Center Nasa Sinnott-Armstrong Stanford University https://orcid.org/0000-0003-4490-0601 Yuk-Lam Ho Massachusetts Veterans Epidemiology and Research Information Center, Veterans Affairs Boston Healthcare System Genevieve Wojcik Johns Hopkins University Steven Buyske Rutgers University Charles Kooperberg Fred Hutchinson Cancer Research Center Jeffrey Haessler
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • A Common Analgesic Enhances the Anti-Tumour Activity of 5-Aza-2’- Deoxycytidine Through Induction of Oxidative Stress
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.31.017947; this version posted April 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A common analgesic enhances the anti-tumour activity of 5-aza-2’- deoxycytidine through induction of oxidative stress Hannah J. Gleneadie1,10, Amy H. Baker1, Nikolaos Batis2, Jennifer Bryant2, Yao Jiang3, Samuel J.H. Clokie4, Hisham Mehanna2, Paloma Garcia5, Deena M.A. Gendoo6, Sally Roberts5, Alfredo A. Molinolo7, J. Silvio Gutkind8, Ben A. Scheven1, Paul R. Cooper1, Farhat L. Khanim9 and Malgorzata Wiench1, 5,*. 1School of Dentistry, Institute of Clinical Studies, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B5 7EG, UK; 2Institute of Head and Neck Studies and Education (InHANSE), The University of Birmingham, Birmingham, B15 2TT, UK; 3School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK; 4West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital, Birmingham, B15 2TG, UK; 5Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK; 6Centre for Computational Biology, Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, B15 2TT, UK; 7Moores Cancer Center and Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; 8Department of Pharmacology and Moores Cancer
    [Show full text]
  • An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors
    Ecology and Evolutionary Biology 2021; 6(3): 53-77 http://www.sciencepublishinggroup.com/j/eeb doi: 10.11648/j.eeb.20210603.11 ISSN: 2575-3789 (Print); ISSN: 2575-3762 (Online) An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors Miguel Angel Fuertes*, Carlos Alonso Department of Microbiology, Centre for Molecular Biology “Severo Ochoa”, Spanish National Research Council and Autonomous University, Madrid, Spain Email address: *Corresponding author To cite this article: Miguel Angel Fuertes, Carlos Alonso. An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecology and Evolutionary Biology. Vol. 6, No. 3, 2021, pp. 53-77. doi: 10.11648/j.eeb.20210603.11 Received: April 24, 2021; Accepted: May 11, 2021; Published: July 13, 2021 Abstract: Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events.
    [Show full text]
  • Identification of Biomarkers of Metastatic Disease in Uveal
    Identification of biomarkers of metastatic disease in uveal melanoma using proteomic analyses Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Martina Angi June 2015 To Mario, the wind beneath my wings 2 Acknowledgments First and foremost, I would like to acknowledge my primary supervisor, Prof. Sarah Coupland, for encouraging me to undergo a PhD and for supporting me in this long journey. I am truly grateful to Dr Helen Kalirai for being the person I could always turn to, for a word of advice on cell culture as much as on parenting skills. I would also like to acknowledge Prof. Bertil Damato for being an inspiration and a mentor; and Dr Sarah Lake and Dr Joseph Slupsky for their precious advice. I would like to thank Dawn, Haleh, Fidan and Fatima for becoming my family away from home, and the other members of the LOORG for the fruitful discussions and lovely cakes. I would like to acknowledge Prof. Heinrich Heimann and the clinical team at LOOC, especially Sisters Hebbar, Johnston, Hachuela and Kaye, for their admirable dedication to UM patients and for their invaluable support to clinical research. I would also like to thank the members of staff in St Paul’s theatre and Simon Biddolph and Anna Ikin in Pathology for their precious help in sample collection. I am grateful to Dr Rosalind Jenkins who guided my first steps in the mysterious word of proteomics, and to Dr Deb Simpsons and Prof. Rob Beynon for showing me its beauty.
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]