Ascarids & Hookworms

Total Page:16

File Type:pdf, Size:1020Kb

Ascarids & Hookworms ASCARIDS, HOOKWORMS AND As with other ascarids, eggs are excreted in feces and must develop BAYLISASCARIS PROCYONIS externally, typically in soil, to become infectious. When raccoons ingest infective eggs, larvae will hatch, enter the wall of the small (2 CE Hours) intestine and subsequently develop to adult worms in the small bowel. However, ingestion of eggs by other host animals, especially Learning objectives rodents and other small mammals, results in extraintestinal migration ! List the risk factors for ascarids, hookworms and Baylisascaris of larvae; an estimated 5-7 percent of larvae invade the brain. The procyonis infections. migration of helminth larvae through tissue in suboptimal hosts ! Explain how and where humans and animals can become is termed larva migrans and may affect the viscera (visceral larva infected. migrans [VLM]), the eye (ocular larva migrans [OLM]), or the ! Explain how to diagnose, treat and prevent hookworm infection. nervous system (neural larva migrans [NLM]). Raccoons may also ! Describe the life cycle of these parasites. become infected when they eat larvae that have become encapsulated ! List recommendations you can provide to pet owners about in the tissues of rodents and other animals. treatment and prevention. ! List the contraindications when prescribing medications for More than 90 species of wild and domesticated animals have been ascarids and hookworm. identifi ed as infected with B. procyonis larvae. Outbreaks of fatal central nervous system disease caused by B. procyonis have occurred Introduction on farms and in zoos and research animal colonies and have affected Happy and healthy animals are the goals of any veterinarian. It is commercial chickens, bobwhite quail, guinea pigs, commercial important to make sure that not only pets are protected from harm pheasants and domestic rabbits. Natural infections have also been but also that they do not pose a risk to others. Wildlife, our domestic recognized in dogs, rodents, porcupines, chinchillas, prairie dogs, pets and humans are all susceptible to contracting and spreading primates, woodchucks, emus, foxes and weasels. Experimental commonly found parasites. It is important to recognize, treat and infection of a variety of nonhuman primates has also been reported. prevent these infections so that they do not spread to a greater population. The prevalence of these infections varies with climatic conditions, but they are present in all parts of the United States and must be Common parasites viewed as a potential public health hazard. Ascarids (Toxocara canis, T. cati) and hookworms (Ancylostoma spp.) are common intestinal parasites of dogs and cats (referred to Zoonotic transmission and human disease here as pets). Not only can ascarids and hookworms cause disease The growing popularity of dogs and cats in the United States as in their respective hosts, they are also well-known causes of larva well as high rates of ascarid and hookworm infections have resulted migrans syndromes in humans, especially children. While ascarids in widespread contamination of the soil with infective eggs and and hookworms are most commonly diagnosed in puppies and larvae. Epidemiologic studies have implicated the presence of dogs, kittens, infections can occur in dogs and cats of all ages. Dogs can particularly puppies, in a household, and pica (dirt eating) as the also become infected with Baylisascaris procyonis, the common principal risk factors for human disease. Children’s play habits and raccoon ascarid, which can cause serious disease in other animals their attraction to pets put them at higher risk for infection than and humans.1 adults. Ascarids – Because of the occurrence of both transplacental and Humans become infected with ascarids (Toxocara spp., Baylisascaris transmammary transmission of T. canis, puppies are usually born spp.) through ingestion of infective eggs in the environment. When with or acquire ascarid infections early in life.2 Kittens do not a human ingests infective eggs, the eggs hatch and release larvae become infected in utero, but like puppies, can acquire ascarids that can migrate anywhere in the body, a condition known as (T. cati) through the queen’s milk.3 The tissue-migrating and early visceral larva migrans. The signs and symptoms seen in humans are intestinal stages of these worms may cause severe, sometimes determined by the tissues or organs damaged during larval migration. life-threatening, disease in the fi rst few weeks of life. Patent Organs commonly affected are the eye, brain, liver and lung, where intestinal infections can develop within the fi rst 2½-3 weeks of life. infections can cause permanent visual, neurologic or other tissue Left untreated, this can lead to widespread contamination of the damage. The common dog ascarid T. canis has long been recognized environment with infective eggs. as a cause of larva migrans syndromes in children. The cat ascarid T. cati can also cause disease in humans, although for reasons partly Hookworms – Both puppies and kittens acquire hookworm related to the defecation habits of cats, it does so less frequently. The infections (A. caninum, A. braziliense, and A. tubaeforme) through raccoon ascarid B. procyonis is increasingly being recognized as a ingestion of or skin penetration by infective larvae, or from infective cause of human disease.10 larvae passed in their dam’s milk (A. caninum).2 Hookworms suck large amounts of blood from their hosts, and while infected animals Humans can become infected with hookworms through ingestion 7 may look healthy in the fi rst week of life, they can develop a rapidly of infective larvae or through direct penetration of the skin. When severe, often fatal, anemia.4 Patent intestinal infections can occur infective larvae penetrate the skin, they undergo a prolonged as early as 2 weeks (dogs) to 3 weeks (cats) of age, leading to migration that causes a condition known as cutaneous larva migrans. environmental contamination with infective larvae.5,6 These larval migrations are characterized by the appearance of progressive, intensely pruritic, linear eruptive lesions, which are Baylisascaris procyonis, a ubiquitous roundworm infection of usually more extensive with A. braziliense infections. A. caninum raccoons (Procyon lotor), is increasingly being recognized as a larvae may also penetrate into deeper tissues and induce symptoms cause of severe human disease. B. procyonis has a widespread of visceral larva migrans, or migrate to the intestine and induce an geographic distribution, with infection rates as high as 70 percent eosinophilic enteritis.11,12 in adult raccoons and exceeding 90 percent in juvenile raccoons. Although relatively few human cases of baylisascariasis have been reported, several factors suggest that the likelihood of exposure and 1 infection may be greater than is currently recognized. Raccoons Life cycle (intestinal hookworm infection) have a widespread geographic distribution, and infection with B. procyonisis is common in raccoon populations, with typically high prevalence rates observed. An infected raccoon can harbor numerous adult worms and may excrete large numbers of eggs. A single adult female worm may produce an estimated 115,000 to 877,000 eggs per day, and an infected raccoon can shed as many as 45 million eggs daily. In light of the relatively low infectious dose of B. procyonis (estimated to be less than 5,000 eggs) and the viability of the eggs in the environment for months to years, the infection potential is not insubstantial. Raccoons have increasingly become peridomestic animals living in close proximity to human residences and are among the fastest growing wildlife populations nationwide. These animals benefi t from feeding on abundant pet food left accessible, either accidentally or intentionally, and their populations can thrive under such conditions. In one suburban area near the residence of a recent patient in northern California, the raccoon population was measured at 30 animals per quarter-acre. Areas frequented by raccoons and used for defecation were found in close proximity to human dwellings, and B. procyonis eggs are routinely recovered from these areas. Children, particularly toddlers, may be at particular risk of Eggs are passed in the stool q, and under favorable conditions exposure. (moisture, warmth, shade), larvae hatch in one to two days. The released rhabditiform larvae grow in the feces and/or the soil, and Although baylisascariasis may indeed be underdiagnosed, after 5 to 10 days (and two molts) they become fi lariform (third- asymptomatic human infection may be the typical response, and the stage) larvae that are infective e. These infective larvae can survive limited number of cases reported may indicate that an unrecognized three to four weeks in favorable environmental conditions. On immune defect is necessary for severe infection to occur. The contact with the human host, the larvae penetrate the skin and are prevalence of asymptomatic infection in human populations has yet carried through the blood vessels to the heart and then to the lungs. to be determined. They penetrate into the pulmonary alveoli, ascend the bronchial tree In an era of increasing concern about bioterrorism, certain to the pharynx and are swallowed r. The larvae reach the small characteristics of B. procyonis make it a feasible bioterrorist agent. intestine, where they reside and mature into adults. Adult worms live The organism is ubiquitous in raccoon populations and therefore in the lumen of the small intestine, where they attach to the intestinal easy to acquire. Enormous numbers of eggs can be readily obtained, wall with resultant blood loss by the host t. Most adult worms are and these eggs can survive in an infectious form for prolonged eliminated in one to two years, but the longevity may reach several periods of time. As with other ascarids, the eggs can remain viable years. in a dilute (0.5 percent-2 percent) formalin solution for an indefi nite Some A. duodenale larvae, following penetration of the host skin, period of time, and animal studies suggest that B. procyonis has a can become dormant (in the intestine or muscle).
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Combination Anthelmintic Treatment for Persistent Ancylostoma Caninum Ova Shedding in Greyhounds
    CASE SERIES Combination Anthelmintic Treatment for Persistent Ancylostoma caninum Ova Shedding in Greyhounds Lindie B. Hess, BS, Laurie M. Millward, DVM, Adam Rudinsky DVM, Emily Vincent, BS, Antoinette Marsh, PhD ABSTRACT Ancylostoma caninum is a nematode of the canine gastrointestinal tract commonly referred to as hookworm. This study involved eight privately owned adult greyhounds presenting with persistent A. caninum ova shedding despite previous deworming treatments. The dogs received a combination treatment protocol comprising topical moxidectin, followed by pyrantel/febantel/praziquantel within 24 hr. At 7–10 days posttreatment, a fecal examination monitored for parasite ova. Dogs remained on the monthly combination treatment protocol until they ceased shedding detectable ova. The dogs then received only the monthly topical moxidectin maintenance treatment. The dogs remained in the study for 5–14 mo with periodical fecal examinations performed. During the study, three dogs reverted to positive fecal ova status, with two being associated with client noncompliance. Reinstitution of the combination treatment protocol resulted in no detectable ova. Use of monthly doses of combination pyrantel, febantel and moxidectin appears to be an effective treatment for nonresponsive or persistent A. caninum ova shedding. Follow-up fecal examinations were important for verifying the presence or absence of ova shedding despite the use of anthelmintic treatment. Limitations of the current study include small sample size, inclusion of only privately owned greyhounds, and client compliance with fecal collection and animal care. (JAmAnimHospAssoc2019; 55:---–---. DOI 10.5326/ JAAHA-MS-6904) Introduction include the following: moxidectina,b, milbemycin oximec, fenben- Ancylostoma caninum is a nematode of the canine gastrointestinal dazoled, and/or pyrantel-containing productse,f.
    [Show full text]
  • Comparison Laboratory Methods for Detection of Hookworms Infection
    Advances in Health Sciences Research, volume 1 1st Public Health International Conference (PHICo 2016) Comparison Laboratory Methods for Detection of Hookworms Infection Merina Panggabean1, Lambok Siahaan2, Yoan Carolina Panggabean3 1.2.3Department of Parasitology, Faculty of Medicine, University Sumatera Utara, Indonesia [email protected] [email protected] [email protected] Abstract— Intestinal parasitic infections are globally endemic in transmitted Helminths (STH) or worms are the world. In Indonesia, intestinal parasitic infections transmitted through by the soil. They are particularly helminthes is one of the public health problems. It can cause malnutrition and anemia so can be disturbing growth transmitted by eggs present in human faeces which and development children. Intestinal parasitic infections with in turn contaminate soil [1]. STH infections belong soil-transmitted helminths (STH) such as Ascaris lumbricoides, to the neglected tropical diseases (NTDs) that affect Trichuris trichiura and hookworms (Necator americanus and Ancylostoma duodenale) diagnosed by detection of helminth eggs human populations in poorer regions of the world in stool samples. Stool samples commonly examine by using [4]. Their presence is a typical marker of poverty microscopic with conventional techniques as direct wet smear where access to sanitation and clean water is limited stain like Lugol stain, sedimentation methods like formol ether concentration (FEC). Stool examination for hookworm with and, concomitantly, standards of hygiene are low conventional techniques often miss opportunity in laboratory. [5]–[7]. There are four main species of STH; Therefore we used modified Harada Mori culture to detect namely, Ascaris lumbricoides (roundworm), hookworms infection. The objective of this study was to compare modified Harada Mori culture method and others laboratory Trichuris trichiura (whipworm) and the methods like direct wet smear Lugol stain and FEC to detect hookworms (Ancylostoma duodenale and Necator hookworm infections.
    [Show full text]
  • Hookworm (Ancylostomiasis)
    Hookworm (ancylostomiasis) Hookworm (ancylostomiasis) rev Jan 2018 BASIC EPIDEMIOLOGY Infectious Agent Hookworm is a soil transmitted helminth. Human infections are caused by the nematode parasites Necator americanus and Ancylostoma duodenale. Transmission Transmission primarily occurs via direct contact with fecal contaminated soil. Soil becomes contaminated with eggs shed in the feces of an individual infected with hookworm. The eggs must incubate in the soil for several days before they become infectious and are able to be transmitted to another person. Oral transmission can sometimes occur from consuming improperly washed food grown or exposed to fecal contaminated soil. Transmission can also occur (rarely) between a mother and her fetus/infant via infected placental or mammary tissue. Incubation Period Eggs must incubate in the soil for 5-10 days before they mature into infectious filariform larvae that can penetrate the skin. Within the first 10 days following penetration of the skin filariform larvae will migrate to the lungs and occasionally cause respiratory symptoms. Three to five weeks after skin penetration the larvae will migrate to the intestinal tract where they will mature into an adult worm. Adult worms may live in the intestine for 1-5 years depending on the species. Communicability Human to human transmission of hookworm does NOT occur because part of the worm’s life cycle must be completed in soil before becoming infectious. However, vertical transmission of dormant filariform larvae can occur between a mother and neonate via contaminated breast milk. These dormant filariform larvae can remain within in a host for months to years. Soil contamination is perpetuated by fecal contamination from infected individuals who can shed eggs in feces for several years after infection.
    [Show full text]
  • Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
    Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933.
    [Show full text]
  • February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers
    February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers Section 1 Platyhelminthes Section 2 Nematoda and Rotifera 34-1 Objectives Summarize the distinguishing characteristics of flatworms. Describe the anatomy of a planarian. Compare free-living and parasitic flatworms. Diagram the life cycle of a fluke. Describe the life cycle of a tapeworm. Structure and Function of Flatworms · The phylum Platyhelminthes includes organisms called flatworms. · They are more complex than sponges but are the simplest animals with bilateral symmetry. · Their bodies develop from three germ layers: · ectoderm · mesoderm · endoderm · They are acoelomates with dorsoventrally flattened bodies. · They exhibit cephalization. · The classification of Platyhelminthes has undergone many recent changes. Characteristics of Flatworms February 15, 2012 Class Turbellaria · The majority of species in the class Turbellaria live in the ocean. · The most familiar turbellarians are the freshwater planarians of the genus Dugesia. · Planarians have a spade-shaped anterior end and a tapered posterior end. Class Turbellaria Continued Digestion and Excretion in Planarians · Planarians feed on decaying plant or animal matter and smaller organisms. · Food is ingested through the pharynx. · Planarians eliminate excess water through a network of excretory tubules. · Each tubule is connected to several flame cells. · The water is transported through the tubules and excreted from pores on the body surface. Class Turbellaria Continued Neural Control in Planarians · The planarian nervous system is more complex than the nerve net of cnidarians. · The cerebral ganglia serve as a simple brain. · A planarian’s nervous system gives it the ability to learn. · Planarians sense light with eyespots. · Other sensory cells respond to touch, water currents, and chemicals in the environment.
    [Show full text]
  • Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
    UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA.
    [Show full text]
  • Visceral and Cutaneous Larva Migrans PAUL C
    Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.
    [Show full text]
  • Backyard Raccoon Latrines and Risk for Baylisascaris Procyonis
    LETTERS DOI: 10.3201/eid1509.090459 Backyard Raccoon Page County). Yards were selected on the basis of proximity to forest pre- References Latrines and Risk serves and willingness of homeowners for Baylisascaris to participate in the study. We located 1. Tsurumi M, Kawabata H, Sato F. Present status and epidemiological investigation procyonis latrines by systematically search- of Carios (Ornithodoros) capensis in ing yards, giving special attention to the colony of the black-footed albatross Transmission to horizontal substrates, such as piles of Diomedea nigripes on Tori-shima, Izu Humans wood and the bases of large trees (6). Islands, Japan [in Japanese]. Journal of We removed all fecal material to test the Yamashina Institute for Ornithology. To the Editor: Raccoons (Pro- 2002;10:250–6. for B. procyonis and stored it in plas- 2. Kawabata H, Ando S, Kishimoto T, Ku- cyon lotor) are abundant in urban en- tic bags at –20oC until analysis. Com- rane I, Takano A, Nogami S, et al. First vironments and carry a variety of dis- posite samples that were at least 2 g detection of Rickettsia in soft-bodied ticks eases that threaten domestic animals underwent fecal flotation in Sheather associated with seabirds, Japan. Microbiol (1) and humans (2,3). A ubiquitous Immunol. 2006;50:403–6. solution (7) (at least 1 g of every fe- 3. Sato Y, Konishi T, Hashimoto Y, Taka- parasite of raccoons, Baylisascaris cal deposit at a latrine) (n =131). We hashi H, Nakaya K, Fukunaga M, et al. procyonis causes a widely recognized identified B. procyonis eggs by mi- Rapid diagnosis of Lyme disease: flagellin emerging zoonosis, baylisascariasis croscopic examination on the basis of gene–based nested polymerase chain reac- (3).
    [Show full text]
  • Public Health Significance of Intestinal Parasitic Infections*
    Articles in the Update series Les articles de la rubrique give a concise, authoritative, Le pointfournissent un bilan and up-to-date survey of concis et fiable de la situa- the present position in the tion actuelle dans les do- Update selectedfields, coveringmany maines consideres, couvrant different aspects of the de nombreux aspects des biomedical sciences and sciences biomedicales et de la , po n t , , public health. Most of santepublique. Laplupartde the articles are written by ces articles auront donc ete acknowledged experts on the redigeis par les specialistes subject. les plus autorises. Bulletin of the World Health Organization, 65 (5): 575-588 (1987) © World Health Organization 1987 Public health significance of intestinal parasitic infections* WHO EXPERT COMMITTEE' Intestinal parasitic infections are distributed virtually throughout the world, with high prevalence rates in many regions. Amoebiasis, ascariasis, hookworm infection and trichuriasis are among the ten most common infections in the world. Other parasitic infections such as abdominal angiostrongyliasis, intestinal capil- lariasis, and strongyloidiasis are of local or regional public health concern. The prevention and control of these infections are now more feasible than ever before owing to the discovery of safe and efficacious drugs, the improvement and sim- plification of some diagnostic procedures, and advances in parasite population biology. METHODS OF ASSESSMENT The amount of harm caused by intestinal parasitic infections to the health and welfare of individuals and communities depends on: (a) the parasite species; (b) the intensity and course of the infection; (c) the nature of the interactions between the parasite species and concurrent infections; (d) the nutritional and immunological status of the population; and (e) numerous socioeconomic factors.
    [Show full text]
  • Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
    Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2.
    [Show full text]