Holmes OHA 2017

Total Page:16

File Type:pdf, Size:1020Kb

Holmes OHA 2017 Redefining the Virosphere: Metagenomics & Disease Emergence Eddie Holmes Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Australia Understanding Disease Emergence Infectious disease emergence is often due to host-jumping of pathogens Questions • How do viruses adapt to and spread in new hosts? • How large is the virosphere and how is it structured? • What determines virus diversity and abundance? ‘Fault lines’ in Emergence We characterize virus biodiversity and evolution, especially in locations where humans and animals interact PUUV 1.00/100 SA14 SANGV SA22 1.00/100 1.00/100 Slo/Af-BER DOBV Tracking Viral Emergence DOBV/Ano-Poroia/Af19/1999 1.00/100 Saaremaa-160V SAAV 0.73/100 Aa1854 SK/Aa 1.00/100 Jurong TJK/06(RT49) SERV THAIV-741 THAIV 80-39 0.99/100 1.00/100 L99 XXA001 SEOV BjHD01 1.00/100 Z37 1.00/100 YongjiaRf45 YongjiaRn14 Gou3 1.00/100 ZJ5 1.00/100 LongquanRn-08-72 LongquanHu-201005 1.00/100 LongquanRn-08-101 LongquanRn-09-642 GOUV 0.97/100 LongquanRn-08-712 LongquanRn-09-132 LongquanRn-09-92 LongquanRf-11-163 LongquanRn-11-230 LongquanRn-11-212 LongquanRf-11-122 LongquanRn-11-1 LongquanRn-11-220 1.00/100 NC167 DBSV Wencheng-Nc-427 1.00/100 JilinAP06 ASV 1.00/100 SC1 76-118 1.00/100 Bao14 1.00/100 CGAa1011 ZLS-12 0.87/100 A9 1.00/100 CGRn5310 84FLi 0.74/100 Q32 Z5 0.99/100 Hantaviruses LongquanHu-200938 HTNV 1.00/100 LongquanHu-201123 Frequent spillover from LongquanAa-08-150 1.00/100 LongquanHu-201010 rodents to humans but no LongquanHu-201039 LongquanAa-09-24 LongquanAa-09-698 onward human-to-human LongquanAa-08-196 LongquanAa-08-492 transmission (evolutionary LongquanMf-09-8 LongquanAa-09-238 LongquanMf-09-473 dead-end) LongquanAa-10-101 LongquanAa-10-393 0.01 LongquanAa-10-74 Meta-Transcriptomics (Bulk RNA-Seq) • Sample processing • Homogenize samples from representative tissue • Extract total RNA • Pool samples • Library preparation • Deplete ribosomal RNA (rRNA) • Prepare cDNA library • High-throughput sequencing on Illumina platform • Target ~50 millions reads per library • Sequencing all ‘non-ribosomal’ RNA in sample • Confirmation by PCR and Sanger sequencing Transcriptome Data Analysis Pipeline • Remove host data by mapping against reference (optional) • De novo assemble transcriptome – Trinity or any decent assembler – Estimate abundance/frequency of transcripts • Compare contigs against sequence databases using BLAST – Blastn: simple and fast for known pathogens – Blastx: slower but better for novel pathogens – CD search: find gene homologs • Refine assembly and annotate hits Mang Shi, J-S Eden – Phylogenetic analysis (using the RdRp as a marker) • These data provide an unbiased view of the virome/pathogen discovery Sample quality is critical, including rapid storage at -80ºc. redefining the virosphere Picorna Hepe- Nido Reo -Calici Virga Extraordinary RNA Nidovirales Virus Diversity in Narna- Levi Reoviridae Invertebrates Bunya-Arena Virgaviridae, Bromoviridae, Closteroviridae, Togaviridae, • Collaboration with the Chinese Endornaviridae, Tymovirales, Hepeviridae, Alphatetraviridae CDC, Beijing Tombus- Ourmiavirus, • Examined >220 species across 9 Noda Narnaviridae, Leviviridae invertebrate phyla Partiti- Picobirna • Huge data (>100 libraries, >3 Tbp) • Overall ~1500 newly discovered Bunyaviridae, Tenuiviurs, Arenaviridae, Emaravirus Mono-Chu viruses in diverse invertebrate hosts (new genera, families, orders) • Invertebrate viruses often ancestral Partitiviridae, Picobirnaviridae to vertebrate viruses Tombusviridae, Umbravirus, Toti-Chryso Luteoviridae (Luteovirus), • Fills in ‘gaps’ in phylogenetic Nodaviridae Luteo- diversity – taxonomic implications Sobemo • Combination of virus-host co- divergence and cross-species virus Mononegavirales, Chuvirus, Ophiovirus, New -ve viruses transmission Totiviridae, Chrysoviridae, Quadriviridae Orthomyxo Permutotetra • Red = newly described here Grey = known viruses Picornavirales Luteoviridae (Polerovirus & Caliciviridae Emanovirus), Sobemovirus Permutotetraviridae Orthomyxoviridae “Orthomyxo-Like” Virus Phylogenetic Diversity 100 AJG39090 Wuhan Louse Fly Virus 4 [CC63432] (ref) 0.5 99 #AJG39089 Wuhan Louse Fly Virus 3 [CC56639] (ref) 87 AJG39084 Jingshan Fly Virus 1 [fly116939] (ref) AJG39088 Shuangao Insect Virus 4 [insectZJ68168] (ref) 97 #AJG39086 Sanxia Water Strider Virus 3 [SXSSP2554] (ref) AJG39091 Wuhan Mosquito Virus 3 [mosHB230396] (ref) 99 99 AJG39093 Wuhan Mosquito Virus 5 [mosHB231210] (ref) AJG39094 Wuhan Mosquito Virus 6 [mosHB234098] (ref) 99 #AJG39092 Wuhan Mosquito Virus 4 [mosHB231166, etc] (ref) 84 ##Hubei earwig virus 1 [GCM19162, WGML148351] 99 98 Hubei orthomyxo-like virus 1 [SCM47652] AJG39096 Wuhan Mothfly Virus [WHCCII12658] (ref) ACY56282 Quaranfil virus (ref) 100 Quaranjavirus ACY56284 Johnston Atoll virus (ref) 100 Beihai orthomyxo-like virus 1 [BHTSS17872] 92 AJG39087 Shayang Spider Virus 3 [spider138973] (ref) 100 AJG39085 Jiujie Fly Virus [horsefly38597] (ref) Hubei orthomyxo-like virus 2 [QTM27225] 99 AJG39095 Wuhan Mosquito Virus 7 [mosHB235925] (ref) 92 95 AAC25959 Thogoto virus (ref) 100 AED98371 Jos virus (ref) Thogotovirus 100 AAA42968 Dhori virus (ref) Hubei orthomyxo-like virus 3 [ZCM21154] Hubei orthomyxo-like virus 4 [SCM51211] PB1 Phylogeny 100 NP 056657 Influenza B virus (ref) NP 040985 Influenza A virus (ref) 94 Influenza virus 100 AGS48810 Influenza D virus (ref) YP 089653 Influenza C virus (ref) AJG39097 Wuchang Cockroach Virus 2 [ZL8541] ADR77506 Infectious salmon anemia virus (ref) Hubei orthomyxo-like virus 5 [WHBL85127] 88 Beihai orthomyxo-like virus 2 [BHHQ71863] #Changping earthworm virus 2 [CPQY18140] Red: Phylum Arthropoda, Class Insecta EVE vertebrates Highly abundant (> 1% non-rRNA reads) Light blue: Phylum Arthropoda, Subphylum Crustacea EVE arthropods Purple: Phylum Arthropoda, Subphylum Myriapoda EVE nematods Yellow: Phylum Arthropoda, Subphylum Chelicerata Abundant Orange: Phylum Nematoda EVE protists (0.1% ~ 1% non-rRNA reads) Brown: Phylum Annelida EVE flatworms Dark blue: Phylum Mollusca and Sipuncula Black: Subphylum Vertebrata EVE plants Still scratching the surface of virus biodiversity: Grey: other hosts or undertermined EVE fungi may be ~100 million viruses in eukaryotes Diverse, Diverse, Abundant Abundant Chelicerata Annelida & Insecta Crustacea Myriapoda Nematoda Sipuncula Mollusca Platyhelminthes Cnidaria • • Echinodermata ) Tunicata s d a M e 100% M C be confirmed) be highly viruses invertebrate Some type host to clues provides Abundance M r C Y Invertebrate RNA Viruses RNA Invertebrate T G H Q A 90% s p W u M P N l m Retrotransposons C S p i e 80% R r Z S o r c r h X - c I S Q RNA viruses (with RdRp) n i S I n 70% J a M C M L o M C 1 Z d C W 0 n H G 60% H X n S C C F f W C W u S S B W Z o J b S 50% F H L W C T C C B n S I B A M I L S H X abundant (although this needs to to needs this (although abundant o H F C J G H B 40% X i y T S X S l t 9 B W W f X G Z H X H r n 0 e C R X Y X Y X B X B u B 2 W 30% s o C G W X o X X J r Y Z L 0 r X R s C C L X H L N X H X u J Z S e L S N Z p o H H X o Z Z X C X H H S C L S d X H H Z B X W X L T W i C W C H B S C o H x N F Z C C B W m L C J 20% W X Y M i S W i C K W X B B P Z H H H p x F r C R Z H H Z Z 3 H J S Q H H i L p Z C C C H Q S S J M U H J L S S m Z H H S J B J W W Y W B n H i H B P W J L S W S P m H Z H C Y H Y O W y W H ( a S e B B H l C 10% B H M H C Z G C S B Y B B Q H y W F B J i W B S H S W l T l otal otal o 10 s o e p i c 20 e e h t p s 30 n i RNA with with host RNA s s u High abundance viruses r e 40 i i v c (> 0.1% non-rRNA reads) f e 50 o p Low abundance viruses s r e t (< 0.1% non-rRNA reads) s b 60 o m h u r 70 N e p 80 appear to appear rRNA excluded be RdRp Viral methyltransferase Coat protein (S domain) Coat protein (Peptidase A21) Coat protein (Picorna-like) Segmented 10kbp A Helicase 3C-like protease Coat protein (TMV-like) Coat protein (Peptidase A6) Coat protein (CBPV-like) * Viruses Hepe-Virga Tombus-Noda Picorna-Calici Complex Genome * Organizations and * * * Evolution * * * Astro Permutotetra Remarkable Genome Fluidity * * • Frequent recombination, lateral gene * Luteo-Sobemo Narna-Levi Toti-Chryso transfer (inc. with hosts), genome * * reorganization, change in segment * numbers, gene gain and gene loss * * Nido Partit-Picobirna * * RdRp Phylogenies Capsid Phylogenies * New +ve/ds RNA virus (Weivirus) Alvernavirus-like coat protein * Narna-Levi Astro * Viral coat protein Hepe-Virga (Peptidase A21 domain, pfam03566) Mono-Chu, Ophio, Bunya-Arena B and new viruses NG L L G N Viral coat protein NG L G Permutotetra L G * N N: Nucleoprotein (Peptidase A6 domain, pfam01829) N L G: Glycoprotein * GL L N L: Polymerase L L * NGL * L N Luteo-Sobemo 10kbp G N G L * L G N N GG L * L G * N G L Viral coat protein * (S domain, VNN, N L L G * pfam00729) G L L N G L * L G N N L * Tombus-Noda L G LN * L G N L N N * L G N * L G * L G N Orthomyxo L * GL L G N G GG L * L L GG L * * * Recombination of functional modules Novel Mosquito Viruses in Australia LocC Culex australicus 0.05 85 LocA Culex australicus 76 LocA Culex globocoxitus Culex LocD Culex australicus australicus/globocoxitus 95 LocC Culex globocoxitus 100 LocD Culex globocoxitus LocD Culex quinquefasciatus LocA Aedes camptorhynchus LocB Aedes camptorhynchus 100 Aedes camptorhynchus LocD Aedes camptorhynchus LocC Aedes camptorhynchus LocD Aedes alboannulatus Perth LocD: South Guildford LocB: Leschenault Peninsula LocA: Point Douro LocC: Siesta Park 0 100 200km 23 RNA viruses identified, 19 novel Virome Division by Mosquito Genus Mosquito by Division Aedes alboannulatus Aedes camptorhynchus Culex globocoxitus Culex australicus Culex quinquefasciatus A B CDD A C D ACD D Location Keys 12 A: Point Douro s e Low abundance viruses s 10 B: Freshwater larval site u r i High abundance viruses v 8 C: Radio Tower Wetland f o 6 D: Wilkie street r e b 4 m u 2 N 0 r o Toti-Chryso ) 100 Nido j s a A r e N m Reo d Narna R r 80 h l o c / a a s r Partiti i Negev e e v i 60 f l i l o a m t Other negative sense n a o f t o 40 i t f s r o Orthomyxo u o r i p % 20 v o ( r Mononega P 0 Bunya ) y s r e a • • s r u b i r l i 16 v e h A t China) (e.g.
Recommended publications
  • (LRV1) Pathogenicity Factor
    Antiviral screening identifies adenosine analogs PNAS PLUS targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor F. Matthew Kuhlmanna,b, John I. Robinsona, Gregory R. Bluemlingc, Catherine Ronetd, Nicolas Faseld, and Stephen M. Beverleya,1 aDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cEmory Institute for Drug Development, Emory University, Atlanta, GA 30329; and dDepartment of Biochemistry, University of Lausanne, 1066 Lausanne, Switzerland Contributed by Stephen M. Beverley, December 19, 2016 (sent for review November 21, 2016; reviewed by Buddy Ullman and C. C. Wang) + + The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus macrophages infected in vitro with LRV1 L. guyanensis or LRV2 (LRV1) has been implicated as a pathogenicity factor for leishmaniasis Leishmania aethiopica release higher levels of cytokines, which are in rodent models and human disease, and associated with drug-treat- dependent on Toll-like receptor 3 (7, 10). Recently, methods for ment failures in Leishmania braziliensis and Leishmania guyanensis systematically eliminating LRV1 by RNA interference have been − infections. Thus, methods targeting LRV1 could have therapeutic ben- developed, enabling the generation of isogenic LRV1 lines and efit. Here we screened a panel of antivirals for parasite and LRV1 allowing the extension of the LRV1-dependent virulence paradigm inhibition, focusing on nucleoside analogs to capitalize on the highly to L. braziliensis (12). active salvage pathways of Leishmania, which are purine auxo- A key question is the relevancy of the studies carried out in trophs.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • Mosquito-Borne Viruses, Insect-Specific
    FULL PAPER Virology Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes SUPRIYONO1), Ryusei KUWATA1,2), Shun TORII1), Hiroshi SHIMODA1), Keita ISHIJIMA3), Kenzo YONEMITSU1), Shohei MINAMI1), Yudai KURODA3), Kango TATEMOTO3), Ngo Thuy Bao TRAN1), Ai TAKANO1), Tsutomu OMATSU4), Tetsuya MIZUTANI4), Kentaro ITOKAWA5), Haruhiko ISAWA6), Kyoko SAWABE6), Tomohiko TAKASAKI7), Dewi Maria YULIANI8), Dimas ABIYOGA9), Upik Kesumawati HADI10), Agus SETIYONO10), Eiichi HONDO11), Srihadi AGUNGPRIYONO10) and Ken MAEDA1,3)* 1)Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan 2)Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan 3)Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4)Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan 5)Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 6)Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1
    [Show full text]
  • A Proposed New Family of Polycistronic Picorna-Like RNA Viruses
    RESEARCH ARTICLE Olendraite et al., Journal of General Virology 2017;98:2368–2378 DOI 10.1099/jgv.0.000902 Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses Ingrida Olendraite,1† Nina I. Lukhovitskaya,1† Sanford D. Porter,2 Steven M. Valles2 and Andrew E. Firth1,* Abstract Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four open reading frames in its 5¢ third, three of which encode proteins with homology to picornavirus-like jelly-roll fold capsid proteins. These are followed by an intergenic region, and then a single long open reading frame that covers the 3¢ two-thirds of the genome. The polypeptide translation of this 3¢ open reading frame contains motifs characteristic of picornavirus-like helicase, protease and RNA-dependent RNA polymerase domains. An inspection of public transcriptome shotgun assembly sequences revealed five related apparently nearly complete virus genomes isolated from ant species and one from a dipteran insect. By high-throughput sequencing and in silico assembly of RNA isolated from Solenopsis invicta and four other ant species, followed by targeted Sanger sequencing, we obtained nearly complete genomes for four further viruses in the group. Four further sequences were obtained from a recent large-scale invertebrate virus study. The 15 sequences are highly divergent (pairwise amino acid identities of as low as 17 % in the non-structural polyprotein), but possess the same overall polycistronic genome structure, which is distinct from all other characterized picorna-like viruses. Consequently, we propose the formation of a new virus family, Polycipiviridae, to classify this clade of arthropod-infecting polycistronic picorna-like viruses.
    [Show full text]
  • Metatranscriptomic Reconstruction Reveals RNA Viruses with the Potential to Shape Carbon Cycling in Soil
    Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil Evan P. Starra, Erin E. Nucciob, Jennifer Pett-Ridgeb, Jillian F. Banfieldc,d,e,f,g,1, and Mary K. Firestoned,e,1 aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720; bPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; eDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720; fChan Zuckerberg Biohub, San Francisco, CA 94158; and gInnovative Genomics Institute, Berkeley, CA 94720 Contributed by Mary K. Firestone, October 25, 2019 (sent for review May 16, 2019; reviewed by Steven W. Wilhelm and Kurt E. Williamson) Viruses impact nearly all organisms on Earth, with ripples of influ- trophic levels (18). This phenomenon, termed “the viral shunt” (18, ence in agriculture, health, and biogeochemical processes. However, 19), is thought to sustain up to 55% of heterotrophic bacterial very little is known about RNA viruses in an environmental context, production in marine systems (20). However, some organic parti- and even less is known about their diversity and ecology in soil, 1 of cles released through viral lysis aggregate and sink to the deep the most complex microbial systems. Here, we assembled 48 indi- ocean, where they are sequestered from the atmosphere (21). Most vidual metatranscriptomes from 4 habitats within a planted soil studies investigating viral impactsoncarboncyclinghavefocused sampled over a 22-d time series: Rhizosphere alone, detritosphere on DNA phages, while the extent and contribution of RNA viruses alone, rhizosphere with added root detritus, and unamended soil (4 on carbon cycling remains unclear in most ecosystems.
    [Show full text]
  • Downloaded from Genbank
    bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Characterisation of the faecal virome of captive and wild Tasmanian 2 devils using virus-like particles metagenomics and meta- 3 transcriptomics 4 5 6 Rowena Chong1, Mang Shi2,3,, Catherine E Grueber1,4, Edward C Holmes2,3,, Carolyn 7 Hogg1, Katherine Belov1 and Vanessa R Barrs2,5* 8 9 10 1School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. 11 2Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, 12 University of Sydney, NSW 2006, Australia. 13 3School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins 14 Centre, University of Sydney, NSW 2006, Australia. 15 4San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA. 16 5Sydney School of Veterinary Science, University of Sydney, NSW 2006, Australia. 17 18 *Correspondence: [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Background: The Tasmanian devil is an endangered carnivorous marsupial threatened by devil 22 facial tumour disease (DFTD).
    [Show full text]
  • Structure Unveils Relationships Between RNA Virus Polymerases
    viruses Article Structure Unveils Relationships between RNA Virus Polymerases Heli A. M. Mönttinen † , Janne J. Ravantti * and Minna M. Poranen * Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56 (Viikinkaari 9), 00014 Helsinki, Finland; heli.monttinen@helsinki.fi * Correspondence: janne.ravantti@helsinki.fi (J.J.R.); minna.poranen@helsinki.fi (M.M.P.); Tel.: +358-2941-59110 (M.M.P.) † Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, P.O. Box 56 (Viikinkaari 5), 00014 Helsinki, Finland. Abstract: RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure- based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism.
    [Show full text]
  • Viral Metagenomic Profiling of Croatian Bat Population Reveals Sample and Habitat Dependent Diversity
    viruses Article Viral Metagenomic Profiling of Croatian Bat Population Reveals Sample and Habitat Dependent Diversity 1, 2, 1, 1 2 Ivana Šimi´c y, Tomaž Mark Zorec y , Ivana Lojki´c * , Nina Kreši´c , Mario Poljak , Florence Cliquet 3 , Evelyne Picard-Meyer 3, Marine Wasniewski 3 , Vida Zrnˇci´c 4, Andela¯ Cukuši´c´ 4 and Tomislav Bedekovi´c 1 1 Laboratory for Rabies and General Virology, Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; [email protected] (I.Š.); [email protected] (N.K.); [email protected] (T.B.) 2 Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] (T.M.Z.); [email protected] (M.P.) 3 Nancy Laboratory for Rabies and Wildlife, ANSES, 51220 Malzéville, France; fl[email protected] (F.C.); [email protected] (E.P.-M.); [email protected] (M.W.) 4 Croatian Biospeleological Society, 10000 Zagreb, Croatia; [email protected] (V.Z.); [email protected] (A.C.)´ * Correspondence: [email protected] These authors contributed equally to this work. y Received: 21 July 2020; Accepted: 11 August 2020; Published: 14 August 2020 Abstract: To date, the microbiome, as well as the virome of the Croatian populations of bats, was unknown. Here, we present the results of the first viral metagenomic analysis of guano, feces and saliva (oral swabs) of seven bat species (Myotis myotis, Miniopterus schreibersii, Rhinolophus ferrumequinum, Eptesicus serotinus, Myotis blythii, Myotis nattereri and Myotis emarginatus) conducted in Mediterranean and continental Croatia. Viral nucleic acids were extracted from sample pools, and analyzed using Illumina sequencing.
    [Show full text]
  • Libro De Abstract
    SPECIAL THANKS EMPRESAS COLABORADORAS SEV VI R O L O G Í A Publicación Oficial de la Sociedad Española de Virología 13th Spanish National Congress Of Virology Madrid 2015 CONGRESO NACIONAL DE Volumen 18 Número 1/2015 EXTRAORDINARIO VIROLOGÍA . PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE VIROLOGÍA 13th Spanish National Congress Of Virology Madrid 2015 Del 7 al 10 de junio de 2015 Auditorio de la Fábrica Nacional de Moneda y Timbre Real Casa de la Moneda de Madrid Volumen 18 Madrid 2015 Número 1/2015 EXTRAORDINARIO Edición y Coordinación: M Angeles Muñoz-Fernández &M. Dolores García-Alonso Diseño y Maquetación: DM&VCH.events.S.L. Diseño Portada: M. Dolores García-Alonso Impresión: Fragma: Servicios de impresión digital en Madrid ISSN (versión digital): 2172-6523 SEV – Sociedad Española de Virología Centro de Biología Molecular “Severo Ochoa” C/ Nicolás Cabrera, 1 28049 Cantoblanco – Madrid [email protected] Página web del congreso: www.congresonacionalvirologia2015.com La responsabilidad del contenido de las colaboraciones publicadas corresponderá a sus autores, quienes autorizan la reproducción de sus artículos a la SEV exclusivamente para esta edición. La SEV no hace necesariamente suyas las opiniones o los criterios expresados por sus colaboradores. Virología. Publicación Oficial de la Sociedad Española de Virología XIII CONGRESO NACIONAL DE VIROLOGÍA B I E N V E N I D A El Comité Organizador del XIII Congreso Nacional de Virología (XIII CNV) tiene el placer de comunicaros que éste se celebrará en Madrid, del 7 al 10 de junio de 2015. En el XIII CNV participan conjuntamente la Sociedad Española de Virología (SEV) y la Sociedad Italiana de Virología (SIV), y estará abierto13th a Spanish la participación National de virólogos de Latinoamérica.
    [Show full text]
  • Multipartite Viruses: Organization, Emergence and Evolution
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA MOLECULAR MULTIPARTITE VIRUSES: ORGANIZATION, EMERGENCE AND EVOLUTION TESIS DOCTORAL Adriana Lucía Sanz García Madrid, 2019 MULTIPARTITE VIRUSES Organization, emergence and evolution TESIS DOCTORAL Memoria presentada por Adriana Luc´ıa Sanz Garc´ıa Licenciada en Bioqu´ımica por la Universidad Autonoma´ de Madrid Supervisada por Dra. Susanna Manrubia Cuevas Centro Nacional de Biotecnolog´ıa (CSIC) Memoria presentada para optar al grado de Doctor en Biociencias Moleculares Facultad de Ciencias Departamento de Biolog´ıa Molecular Universidad Autonoma´ de Madrid Madrid, 2019 Tesis doctoral Multipartite viruses: Organization, emergence and evolution, 2019, Madrid, Espana. Memoria presentada por Adriana Luc´ıa-Sanz, licenciada en Bioqumica´ y con un master´ en Biof´ısica en la Universidad Autonoma´ de Madrid para optar al grado de doctor en Biociencias Moleculares del departamento de Biolog´ıa Molecular en la facultad de Ciencias de la Universidad Autonoma´ de Madrid Supervisora de tesis: Dr. Susanna Manrubia Cuevas. Investigadora Cient´ıfica en el Centro Nacional de Biotecnolog´ıa (CSIC), C/ Darwin 3, 28049 Madrid, Espana. to the reader CONTENTS Acknowledgments xi Resumen xiii Abstract xv Introduction xvii I.1 What is a virus? xvii I.2 What is a multipartite virus? xix I.3 The multipartite lifecycle xx I.4 Overview of this thesis xxv PART I OBJECTIVES PART II METHODOLOGY 0.5 Database management for constructing the multipartite and segmented datasets 3 0.6 Analytical
    [Show full text]
  • University of Groningen the Ecology and Evolution of Bacteriophages Of
    University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A. (2018). The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Chapter 1 General Introduction Akbar Adjie Pratama and Jan Dirk van Elsas Partly published in Book chapter: The viruses in soil – potential roles, activities and impacts.
    [Show full text]