CIS 4360 Secure Computer Systems System Boot

Total Page:16

File Type:pdf, Size:1020Kb

CIS 4360 Secure Computer Systems System Boot CIS 4360 Secure Computer Systems System Boot Professor Qiang Zeng Spring 2017 Previous Class • What a TPM is: – Hardware protected keys • Endorsement key: for signing (PCR values) • Storage root key: for encrypting storage keys – Crypto-processor • RSA • HMAC • SHA-1 (SHA-2 in TPM 2.0) – PCR • What the TPM can do – Attestation – Sealed storage CIS 4360 – Secure Computer Systems 2 TPM-Based Attestation Example [Gasser et al. ‘89], [Arbaugh et al. ‘97], [Sailer et al. ‘04], [Marchesini et al. ‘04] Module Module Module App Module App App BIOS Bootloader OS PCRs TPM KPriv 3 Establishing Trust via a TPM [Gasser et al. ‘89], [Arbaugh et al. ‘97], [Sailer et al. ‘04], [Marchesini et al. ‘04] Guarantees randomModule # Accurate! Module freshness Module A Module Module A Module p App Module p A Module App p p p App K OS Pu p BIOS Bootloader Guarantees BIOS Bootloader b OS Module A real TPM Module A Module p Module p A p p p OS p BIOS Bootloader Sign ( random # ) Kpriv PCRs Guarantees actual TPM logs TPM KPriv 4 BitLocker • At system boot (before OS boot) – Optional: BIOS requests PIN or USB key from user – TPM unseals VMK, if PCR and PIN are correct • PIN is to derive the keyAuth (recall TPM_SEAL) • TPM defends against dictionary attack on PIN • Many options for VMK recovery in certain cases – Disk, USB, paper (all encrypted with password) – Recovery needed after legitimate system change: • Moving disk to a new computer • Replacing system board containing TPM • Clearing TPM CIS 4360 – Secure Computer Systems 5 Previous Class What is Measured Boot? At each stage of system booIng, the code and configuraon for the next stage is scanned and the hash value is recorded in TPM (by extending a specified PCR) CIS 4360 – Secure Computer Systems 6 Previous Class What aacks can you do if you have extracted the private key from a TPM A soSware module can claim itself as a TPM. It can (1) Sign arbitrary PCR values it wants; and (2) Steal the storage keys originally sealed by the hacked TPM CIS 4360 – Secure Computer Systems 7 Previous Class What knowledge should an IT service have for aestaon over a laptop of the company? Remote aestaon is great as it stops potenIally malicious computers from connecIng to the company network. But it also requires extra work from the IT department, as they have to first know what PCR values are good; in other words, they have to know the set of legiImate firmware, bootloader, OS and applicaons. CIS 4360 – Secure Computer Systems 8 Outline • How does a system boot? – BIOS-MBR (generation 1) – UEFI-GPT (generation 2) CIS 4360 – Secure Computer Systems 9 Have you encountered such errors? • “Operating System not found” • “DISK BOOT FAILURE – INSERT SYSTEM DISK AND PRESS ENTER” • Your installed operating system is missing CIS 4360 – Secure Computer Systems 10 Terms • BIOS and UEFI are both firmware (for h/w initialization and loading boot loaders) – UEFI is to replace BIOS • MBR and GPT are both disk partitioning scheme – GPT is to supersede MBR • GRUB and Bootmgr are both boot loaders – GRUB is for linux/unix – Bootmgr is for Windows (since Windows 7) • Don’t worry; we will introduce each in detail CIS 4360 – Secure Computer Systems 11 What is System Boot? • Boot is short for bootstrap • System boot is to initialize a computer system typically until an OS is loaded and initialized • Two big steps: – The computer firmware initializes the h/w and locates, loads, and executes the boot loader – The boot loader loads and executes the OS CIS 4360 – Secure Computer Systems 12 Why is System Boot complicated? • Little intelligence upon power on – There is no concept of file system; only raw disk read in the beginning • Many h/w and s/w standards are involved – From BIOS to UEFI – From MBR to GPT – “Blind” boot, trusted boot, secure boot • Multiple OSes may be installed on one disk – Dual boot, triple boot, … – Chain loading: a boot loader calls another boot loader; e.g., GRUB loads bootmgr (a windows-specific boot loader) to start Windows 10 CIS 4360 – Secure Computer Systems 13 BIOS • BIOS: Basic Input-Output System • What does it do? – Power-on self-test (POST): test and initialize h/w, such as RAM, interrupts, keyboard, etc. – Execute extension ROM: some disk controllers and video cards include their own BIOS extension – Locate, load and execute the boot loader from a bootable device CIS 4360 – Secure Computer Systems 14 Questions to be explored • How does BIOS recognize a bootable device? • How does BIOS locate the boot loader? • Hint: BIOS is dumb and it solves the problems above by following some hard-wired flags and addresses • Let’s continue… CIS 4360 – Secure Computer Systems 15 MBR (Master Boot Record) • Sector 0 (512 bytes) on a disk: – 440 bytes: primary boot loader code – 4 bytes: disk signature; 2 bytes NULLs – 16 x 4 for partition table: so at most 4 primary partitions – 2 bytes magic: 0xAA55 indicates a valid MBR CIS 4360 – Secure Computer Systems 16 AcIve ParIIon: its entry in the parIIon table starts with 0x80. This parIIon contains some other boot loader code, used by windows boot loader Flag of mbr (liQle endian)CIS 4360 – Secure Computer Systems 17 BIOS-MBR • How does BIOS recognize a bootable device? • How does BIOS locate the boot loader? • After POST, BIOS loads the first sector (512 bytes) of the current device (say HDD1->HDD2->USB; the order can be configured in BIOS) into memory • Check if the 511th and 512th bytes are 0x55 and 0xAA, respectively. – If not, go back to step 1 and try the next device, or give up if there aren't any more. – If yes, execute the boot loader code from the MBR sector, thus passing control to (hopefully) a boot loader • Who knows? It may be just some virus CIS 4360 – Secure Computer Systems 18 Case study: Grub2 with BIOS-MBR • Grub2 (GRand Unified Bootloader) is a popular boot loader in Linux/Unix. Its boot setting is stored in / boot/grub/grub.cfg (GRUB2) • MBR stores Stage 1 of the boot loader: boot.img • The empty space between MBR and the first partition store Stage 1.5: core.img, which contains file system drivers • The final part (stage 2) loads the config file (accessed through file names rather than raw disk read) and displays the menu of installed OSes to users CIS 4360 – Secure Computer Systems 19 CIS 4360 – Secure Computer Systems 20 Case study: Bootmgr with BIOS-MBR This sector is also called a Volume Boot Record (VBR) or ParIIon Boot Sector CIS 4360 – Secure Computer Systems 21 Question Dual-boot with BIOS-MBR is awkward. E.g., aer installing Windows on a Linux-preinstalled machine, your Linux will “disappear”. Why? MBR code previously for GRUB is overwriQen with Window’s boot loader code, and Windows is so arrogant that it does not bother to perform chain loading (Tips: the tool EasyBCD can fix the situaon). More essenIal reason: MBR can store only one boot loader CIS 4360 – Secure Computer Systems 22 If you want to install both Linux and Windows on a machine with BIOS firmware, install Windows first and then Linux When Linux is installed on a Windows-preinstalled machine, the entry for Windows is displayed on the Grub menu, as Grub does extra work to detect windows and create an entry in Grub’s config file CIS 4360 – Secure Computer Systems 23 How Chain Loading works • Chain loading: one boot loader hands over the control to another boot loader. • E.g., Grub can chain load Windows’s boot loader by invoking the Windows’ boot loader code in the specified location // in grub.config menuentry "Windows 7 BIOS MBR" { insmod part_msdos insmod ntldr insmod ns ntldr (hd0,msdos1)/bootmgr } CIS 4360 – Secure Computer Systems 24 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 25 Say Goodbye to BIOS! CIS 4360 – Secure Computer Systems 26 Say Hello to UEFI! CIS 4360 – Secure Computer Systems 27 UEFI (to replace BIOS) • UEFI: Unified Extensible Firmware Interface • Successor to BIOS • The effort to resolve the limitations of BIOS CIS 4360 – Secure Computer Systems 28 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 29 EFI System Partition • UEFI specification considers a dedicated boot partition, called EFI System Partition (ESP), which is OS independent – Hundreds of megabytes (recall that MBR has 512 bytes) – FAT file system (UEFI contains driver for the file system) • It contains – boot manager (after h/w initialization, UEFI passes control to it) – all the installed boot loaders (Recall that in BIOS-MBR only one boot loader can be stored in MBR) – necessary utilities and drivers to load OSes • The ESP partition has a unique GUID in the GPT partition table, so it can be easily located CIS 4360 – Secure Computer Systems 30 Boot partition: EFI System Partition CIS 4360 – Secure Computer Systems 31 EFI System Partition CIS 4360 – Secure Computer Systems 32 What OS vendors (should) do? • Each vendor should create a separate directory in the ESP partition, such that vendors would not step over each other – \EFI\$vendor\$bootloader.efi – E.g., \EFI\redhat\grub.efi and \EFI\Microsoft\Boot\Bootmgfw.efi • E.g., Debian installs grub-efi for its EFI bootloader, as: Architecture Path amd64 \EFI\debian\grubx64.efi I386 \EFI\debian\grubia32.efi arm64 \EFI\debian\grubaa64.efi – Each *.efi file contains code and configuration for loading the OSes by that vendor CIS 4360 – Secure Computer Systems 33 Question When you install Windows on a Linux-preinstalled machine with UEFI, will your Linux disappear? No.
Recommended publications
  • Uefi وبعض أنظمة Bios Uefi واجهة الربنامج الثابت املوحدة والقابلة للتمديد
    - جدول أقسامGUID GUID Partition Table جدول أقسام )أو تقسيم( يستخدم املعرفات الفريدة العميمة "! G % تعري. و-يي, ا+قسام *( ال)'ي& املقسم % أ$#مة !0/ و2ع1 أ$#مة 45!3 UEFI واج=ة ال>$ا;: ال9ا82 امل)7دة والقا62ة ل6تمديد مس جد? % ;<رم ّو@B @AA دة 'Cتمرب/أي6)ل DE@F2 " F جدول أقسام GUID *باIة *H تخGيط )أو تقسيم( جدول أقسام ;عياJI *( أج=,ة التخ,يH الفي,ياKيةM9; L ا+قراN الثا2تةL أو أقراN الحالة الC6OةPQ Lا التخGيط يستخدم املعرR الفريد العميم U@TS % متيي, ا+قسام وأ$)ا*هاL وXIم أ$W ج,H; V ;عياI واج=ة ال>نا;: الثا82 امل)حدة والقا62ة ل6تمديد !U ZD S YL /0 )املق^[ ;H ;\تد] h _`abc /0! 0defgبديM ل6\ظام التق6يدJ 45!3( $ظام Hlm GPj ا'تخدا;W أيضا % 2ع1 أ$#مة 45!3 بسnC ;حدو?ية جدول أقسام Lo3p الذJ يستخدم 82qTD فقط % تخ,يH ;ع6)مات ال<rم و*ناويr7 v; us3t Hم القGاw التق6يدqx@D Jبايu8 ;ع#م أ$#مة التشyيM تد*م P\; LGPj العام LDE@E 2ع1 ا+$#مة ;M9 ما{ أوu|} ومايكرو')ف8 ويندو~ )x86( تد*م فقط اإلقالH; w أقسام GPj % أ$#مة !L /0!B/0 2ي\ام ;ع#م ت)~يعات لي\lس و ت)~يعات 2ريhيل ي)$lس ;M9 فرJ يب |} ?lm J\ها اإلقالH; w أقسام GPj % أج=,ة 45!3 أو أج=,ة !u /0 6A TD % ا+قراN الثا2تة التي تستخدم r7م القطاw املعياx@D JI بايL8 ال<rم ا+قىص ل6قرN با'تخدام DuD (Q o3p ترياباي8 أو ) x@D × D بايuU @ S )8 2ي\ام ال<rم ا+قىص ل6قرN با'تخدام GPj 'يك)ن FuA ~يتاباي8 أو ) x@D × D بايU T S U @ S )8 والسnC % ذلك ا'تخدام H; 82 6A أجM *ناويH الكتM امل\Gقية % جدول أقسام u GPj تاIيخياL رشhة |$تي LM كا$8 وIاV تG)ير LGPj أواخر التسعينات )L)DEEE الذJ أصCح ج,H; V ;)اصفة !U D S Y /0 % عام DE@E وت<8 |?اIة Qيئة خاصة تد*ى !P\; u _`abc /0 عام uDEEF قطاعات GPT % عام LDE@E *ندما بدأ ;\تr)ن ا+قراN الثا2تة الت<)ل |ىل ت)ظي.
    [Show full text]
  • Partition Wizard About Minitool Partition Wizard Minitool Partition Wizard Is an Easy-To-Use Partitioning Software with High Security and Efficiency
    MiniTool Partition Wizard About MiniTool Partition Wizard MiniTool Partition Wizard is an easy-to-use partitioning software with high security and efficiency. Due of its simple user interface, you can create, delete, format, move, and resize partitions with ease. What’s more, your data will always be protected when using MiniTool Partition Wizard to move and resize partitions. Main Functions of MiniTool Partition Wizard: Resize/ Move partitions Merge Partitions Create partitions Delete partitions Change Partition Label Delete all partitions Format partitions Change Cluster Size Convert file system Convert FAT to NTFS Convert NTFS to FAT Explore Partition Check Partitions Recovery Partition Wipe disk Wipe partition Copy partition Copy disks Initialize to MBR disk Initialize to GPT disk Align All Partitions Align Partition Convert MBR Disk to GPT Disk Convert GPT Disk to MBR Disk Dynamic Disk Create volume Delete Volume Format Volume Move/Resize Volume Wipe Volume Explore Volume Check File System Change Volume Label Change Volume Letter Change Volume Cluster Size Volume Properties MiniTool Partition Wizard Staring MiniTool Partition Wizard You can start MiniTool Partition Wizard from the Start menu in Windows Click Start menu > All Programs > MiniTool Partition Wizard xxx Edition > MiniTool Partition Wizard xxx Edition Xxx is your present edition of MiniTool Partition Wizard, Such as Home, Professional, Server, and Enterprise MiniTool Partition Wizard Hardware Requirements Minimum Hardware requirements: 500 MHz x86 or compatible CPU. 256mb RAM memory. Mouse and Keyboard. Recommended Hardware requirements: 1 GHz x86 or compatible CPU. 512mb RAM memory. Mouse and Keyboard. MiniTool Partition Wizard System Requirements Note: you should have access to administration while using Partition Wizard.
    [Show full text]
  • Computer Hardware
    Chapter Computer Hardware ENCE EXAM TOPICS COVERED IN 1 THIS CHAPTER: ✓ Computer hardware components ✓ The boot process ✓ Partitions ✓ File systems COPYRIGHTED MATERIAL Computer forensics examiners deal most often with the media on which evidentiary data is stored. This includes, but is not lim- ited to, hard drives, CDs, DVDs, fl ash memory devices, smart phones, tablets, and even legacy fl oppies and tapes. Although these devices might be the bane of the examiner’s existence, media devices don’t exist in a void, and knowledge of a computer’s various components and functions is a must for the competent examiner. As an examiner, you may be called upon to explain how a computer functions to a jury. Doing so requires you know a computer’s function from a technical standpoint and that you can translate those technical concepts into real-world, easy-to-understand terms. As an examiner, you may also be subjected to a voir dire examination by opposing coun- sel to challenge your competence to testify. Acronyms are hardly in short supply in the fi eld of computing—some well-known and meaningful, others more obscure. Imagine being asked during such an examination to explain several of the common acronyms used with computers, such as RAM, CMOS, SCSI, BIOS, and POST. If you were to draw a blank on some obscure or even common acronym, picture its impact on your credibility. Some acronyms are difficult to remember because their meaning is often obscure or meaningless. A good example is TWAIN, which stands for T ech- nology W ithout a n I nteresting N ame.
    [Show full text]
  • CIS 4360 Secure Computer Systems Attacks Against Boot And
    CIS 4360 Secure Computer Systems Attacks against Boot and RAM Professor Qiang Zeng Spring 2017 Previous Class • BIOS-MBR: Generation I system boot – What BIOS and MBR are? – How does it boot the system? // Jumping to MBR – How does multi-boot work? // Chain-loading • The limitations of BIOS and MBR – Disk, memory, file system, multi-booting, security, … • UEFI-GPT: Generation II system boot – What UEFI and GPT are? – How does it boot the system? // UEFI boot manager – How does multi-boot work? // separate dirs in ESP CIS 4360 – Secure Computer Systems 2 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 3 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds of megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 4 Previous Class How does dual-boo-ng of Linux and Windows work in UEFI-GPT? Each vendor has a separate directory storing its own boot loader code and configuraon files in the ESP (EFI System Par--on).
    [Show full text]
  • Deploying UEFI‐Aware Operating Systems on Dell™ Poweredge™
    Deploying UEFI‐Aware Operating Systems on Dell™ PowerEdge™ Servers By Anand Joshi, Bill Munger, Mark Shutt, Thomas Cantwell, and John Sieber THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND. © 2009 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell. Dell, the DELL logo, and the DELL badge, and PowerEdge are trademarks of Dell Inc. Microsoft, Windows, Windows Server, and Active Directory are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.; SUSE is a registered trademark of Novell, Inc., in the United States and other countries. Page ii Table of Contents History ........................................................................................................................................................................... 2 What is UEFI? ................................................................................................................................................................. 2 What UEFI has to Offer .................................................................................................................................................. 3 How is Dell’s UEFI implemented? .................................................................................................................................
    [Show full text]
  • Acronis® Disk Director® 12 User's Guide
    User Guide Copyright Statement Copyright © Acronis International GmbH, 2002-2015. All rights reserved. "Acronis", "Acronis Compute with Confidence", "Acronis Recovery Manager", "Acronis Secure Zone", Acronis True Image, Acronis Try&Decide, and the Acronis logo are trademarks of Acronis International GmbH. Linux is a registered trademark of Linus Torvalds. VMware and VMware Ready are trademarks and/or registered trademarks of VMware, Inc. in the United States and/or other jurisdictions. Windows and MS-DOS are registered trademarks of Microsoft Corporation. All other trademarks and copyrights referred to are the property of their respective owners. Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. Distribution of this work or derivative work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Third party code may be provided with the Software and/or Service. The license terms for such third-parties are detailed in the license.txt file located in the root installation directory. You can always find the latest up-to-date list of the third party code and the associated license terms used with the Software and/or Service at http://kb.acronis.com/content/7696 Acronis patented technologies Technologies, used in this product, are covered and protected by one or more U.S.
    [Show full text]
  • Ada User Journal
    ADA Volume 38 USER Number 2 June 2017 JOURNAL Contents Page Editorial Policy for Ada User Journal 66 Editorial 67 Quarterly News Digest 68 Conference Calendar 87 Forthcoming Events 92 Community Input for the Maintenance and Revision of the Ada Programming Language 96 Ada-Europe 2017 Panel E. Ploerederer and J. Garrido “Panel Session Summary: The Future of Safety-Minded Languages” 97 Articles B. I. Sandén “Protocol Monitors: a Control-System Structuring Concept” 99 A. Ghorbel, N. Ben Amor and M. Jallouli “Towards a Power Adaptation Strategy in Multi-core Embedded Devices. A Case Study: a HMI for Wheelchair Command Technique” 105 Ada-Europe Associate Members (National Ada Organizations) 112 Ada-Europe Sponsors Inside Back Cover Ada User Journal Volume 38, Number 2, June 2017 66 Editorial Policy for Ada User Journal Publication Original Papers a wider audience. This includes papers Ada User Journal — The Journal for Manuscripts should be submitted in published in North America that are the international Ada Community — is accordance with the submission not easily available in Europe. published by Ada-Europe. It appears guidelines (below). We have a reciprocal approach in four times a year, on the last days of granting permission for other March, June, September and All original technical contributions are submitted to refereeing by at least two publications to reprint papers originally December. Copy date is the last day of published in Ada User Journal. the month of publication. people. Names of referees will be kept confidential, but their comments will Commentaries Aims be relayed to the authors at the discretion of the Editor.
    [Show full text]
  • PC Partitioning and OS2 LVM
    PC partitioning and OS2 LVM Jan van Wijk Principles of disk-partitioning as used on most personal computer systems, including the OS/2 Logical Volume Manager extensions Presentation contents Who am I Physical disk layout Partition-tables Primary versus Logical partitions OS/2 and eCS Logical Volume Manager Examples using DFSee ... PC partitioning principles, including OS/2 LVM © 2007 JvW Who am I ? Jan van Wijk Software Engineer, C, Rexx, Assembly Founded FSYS Software in 2001 First OS/2 experience in 1987, developing parts of OS/2 1.0 EE (Query Manager, later DB2) Used to be a systems-integration architect at a large bank, 500 servers and 7500 workstations Home page: http://www.dfsee.com PC partitioning principles, including OS/2 LVM © 2007 JvW What is ... Disk partitioning dividing the available disk space over one or more separate areas called 'partitions' that each have there own filesystem structures A Filesystem A way to organize data-structures on a disk (partition) to allow storage of file data, and retrieve that data Software (driver) to work with the filesystem PC partitioning principles, including OS/2 LVM © 2007 JvW Why use partitions ? To keep things separate, like applications and data, operating system, swap-space To have different/multiple driveletters (PC) To use the full disk-size when the filesystem is limited in size (FAT 2GiB, HPFS 64 GiB) To use more than one OS (multi boot) Because most operating systems require partitioning data, even with a single partition PC partitioning principles, including
    [Show full text]
  • Multiboot Guide Booting Fedora and Other Operating Systems
    Fedora 23 Multiboot Guide Booting Fedora and other operating systems. Fedora Documentation Project Copyright © 2013 Fedora Project Contributors. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries. All other trademarks are the property of their respective owners.
    [Show full text]
  • Booting and Installing the Operating System Grado En Inform´Atica2017/2018 Departamento De Computaci´On Facultad De Inform´Atica Universidad De Coru˜Na
    Booting and Installing the Operating System Grado en Inform´atica2017/2018 Departamento de Computaci´on Facultad de Inform´atica Universidad de Coru~na Antonio Y´a~nezIzquierdo Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 1 / 85 ContentsI 1 Selecting and preparing installation media installing an O.S. installation media preparing the media 2 The boot process booting booting steps 3 Preparing the disks. Basic disk partitioning disks partitions 4 Sharing disks among O.S.s sharing disks among O.S.s 5 Boot loaders lilo grub Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 2 / 85 ContentsII elilo syslinux using removable media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 3 / 85 Selecting and preparing installation media Selecting and preparing installation media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 4 / 85 Selecting and preparing installation media installing an O.S. Selecting and preparing installation media !installing an O.S. Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 5 / 85 Selecting and preparing installation media installing an O.S. Installing an O.S. the most common use of O.S.s is having them \installed" onto computers, and being run from the computer's storage devices there are also some \live" O.S.s that don't require installation but usually have limitations concerning what users can do and what software can be added installing is the process by which we put the O.S. files in one (or more) of the storage units of the system, thus allowing the system to execute the OS directly Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 6 / 85 Selecting and preparing installation media installing an O.S.
    [Show full text]
  • Veritas System Recovery Disk Help
    Veritas System Recovery Disk Help About recovering a computer If Windows fails to start or does not run normally, you can still recover your computer. You can use the Veritas System Recovery Disk and an available recovery point or a virtual disk that you created from a recovery point. Note: If you can start Windows and the drive that you want to restore is a non-operating system drive, you can restore the drive within Windows. The Veritas System Recovery Disk lets you run a recovery environment that provides temporary access to Veritas System Recovery 21 recovery features. For example, you can access the recovery features of Veritas System Recovery 21 to restart the computer into its previous, usable state. About recovering a Unified Extensible Firmware Interface (UEFI)-based computer Veritas System Recovery Disk lets you recover the computers that use the Unified Extensible Firmware Interface (UEFI) standard. However, consider the following points when you recover UEFI-based computers: • You must start UEFI-based computers using the 64-bit version of Veritas System Recovery Disk. • When you boot a UEFI-based computer, ensure that the system drive and the boot drive are located on a GPT disk. Similarly, when you boot a BIOS-based computer, your system drive and boot drive must be located on an MBR disk. • You cannot restore backups of the boot partition and the system partition of UEFI-based computers to BIOS-based computers. Backups of UEFI-based computers must be restored to GPT disks. Similarly, you cannot restore backups of the boot partition and the system partition of BIOS-based computers to UEFI-based computers.
    [Show full text]
  • UEFI, Booting & Partition Management
    UEFI, Booting & Partition Management Kelvin Cording July 2018 Unified Extendible Interface (UEFI) • Modern computer and Windows are moving away from the traditional MBR based boot- up processes to hardware and software using UEFI • Win 8 introduced UEFI • If Windows 8 is already installed using Legacy BIOS, it can't be converted to UEFI. A new OS installation is required. Understanding a computer boot up process When you hit the power button of your PC, an execution begins that will eventually load the Operating System into memory. This first execution depends on the partition structure of your hard disk. We have two types of partition structures (or formats): MBR and GPT. The partition structure on a drive defines three things: • The structure of data on the drive. • The code used during startup if a partition is bootable. • Where a partition begins and ends. MBR -Master Boot Record GPT Globally Unique Identifier Partition Table = GUID Partition A comparison of GPT and MBR partition structures A comparison of GPT and MBR partition structures (2) Max partition size in MBR is ~2TB whereas in UEFI it is ~9 ZetaBytes One zettabyte (1021) is approximately equal to a thousand exabytes or a billion terabytes. MBR can have at max 4 primary partition whereas GPT can have 128. MBR can store only one bootloader whereas GPT has a separate dedicated EFI System Partition(ESP) for storing multiple bootloaders. The MBR Boot Process Before the BIOS can detect the boot device, it goes through a sequence of system configuration functions starting with: • Power-on-self-test. • Detecting and initializing the video card.
    [Show full text]