Computer Hardware
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operating System Boot from Fully Encrypted Device
MASARYK UNIVERSITY FACULTY OF INFORMATICS Operating system boot from fully encrypted device BACHELOR'S THESIS Daniel Chromik Brno, Fall 2016 Replace this page with a copy of the official signed thesis assignment and the copy of the Statement of an Author. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Daniel Chromik Advisor: ing. Milan Brož i Acknowledgement I would like to thank my advisor, Ing. Milan Brož, for his guidance and his patience of a saint. Another round of thanks I would like to send towards my family and friends for their support. ii Abstract The goal of this work is description of existing solutions for boot• ing Linux and Windows from fully encrypted devices with Secure Boot. Before that, though, early boot process and bootloaders are de• scribed. A simple Linux distribution is then set up to boot from a fully encrypted device. And lastly, existing Windows encryption solutions are described. iii Keywords boot process, Linux, Windows, disk encryption, GRUB 2, LUKS iv Contents 1 Introduction 1 1.1 Thesis goals 1 1.2 Thesis structure 2 2 Boot Process Description 3 2.1 Early Boot Process 3 2.2 Firmware interfaces 4 2.2.1 BIOS - Basic Input/Output System 4 2.2.2 UEFI - Unified Extended Firmware Interface . 5 2.3 Partitioning tables 5 2.3.1 MBR - Master Boot Record 5 2.3.2 GPT - GUID Partition Table 7 2.4 -
Partition Wizard About Minitool Partition Wizard Minitool Partition Wizard Is an Easy-To-Use Partitioning Software with High Security and Efficiency
MiniTool Partition Wizard About MiniTool Partition Wizard MiniTool Partition Wizard is an easy-to-use partitioning software with high security and efficiency. Due of its simple user interface, you can create, delete, format, move, and resize partitions with ease. What’s more, your data will always be protected when using MiniTool Partition Wizard to move and resize partitions. Main Functions of MiniTool Partition Wizard: Resize/ Move partitions Merge Partitions Create partitions Delete partitions Change Partition Label Delete all partitions Format partitions Change Cluster Size Convert file system Convert FAT to NTFS Convert NTFS to FAT Explore Partition Check Partitions Recovery Partition Wipe disk Wipe partition Copy partition Copy disks Initialize to MBR disk Initialize to GPT disk Align All Partitions Align Partition Convert MBR Disk to GPT Disk Convert GPT Disk to MBR Disk Dynamic Disk Create volume Delete Volume Format Volume Move/Resize Volume Wipe Volume Explore Volume Check File System Change Volume Label Change Volume Letter Change Volume Cluster Size Volume Properties MiniTool Partition Wizard Staring MiniTool Partition Wizard You can start MiniTool Partition Wizard from the Start menu in Windows Click Start menu > All Programs > MiniTool Partition Wizard xxx Edition > MiniTool Partition Wizard xxx Edition Xxx is your present edition of MiniTool Partition Wizard, Such as Home, Professional, Server, and Enterprise MiniTool Partition Wizard Hardware Requirements Minimum Hardware requirements: 500 MHz x86 or compatible CPU. 256mb RAM memory. Mouse and Keyboard. Recommended Hardware requirements: 1 GHz x86 or compatible CPU. 512mb RAM memory. Mouse and Keyboard. MiniTool Partition Wizard System Requirements Note: you should have access to administration while using Partition Wizard. -
CIS 4360 Secure Computer Systems Attacks Against Boot And
CIS 4360 Secure Computer Systems Attacks against Boot and RAM Professor Qiang Zeng Spring 2017 Previous Class • BIOS-MBR: Generation I system boot – What BIOS and MBR are? – How does it boot the system? // Jumping to MBR – How does multi-boot work? // Chain-loading • The limitations of BIOS and MBR – Disk, memory, file system, multi-booting, security, … • UEFI-GPT: Generation II system boot – What UEFI and GPT are? – How does it boot the system? // UEFI boot manager – How does multi-boot work? // separate dirs in ESP CIS 4360 – Secure Computer Systems 2 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 3 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds of megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 4 Previous Class How does dual-boo-ng of Linux and Windows work in UEFI-GPT? Each vendor has a separate directory storing its own boot loader code and configuraon files in the ESP (EFI System Par--on). -
Acronis® Disk Director® 12 User's Guide
User Guide Copyright Statement Copyright © Acronis International GmbH, 2002-2015. All rights reserved. "Acronis", "Acronis Compute with Confidence", "Acronis Recovery Manager", "Acronis Secure Zone", Acronis True Image, Acronis Try&Decide, and the Acronis logo are trademarks of Acronis International GmbH. Linux is a registered trademark of Linus Torvalds. VMware and VMware Ready are trademarks and/or registered trademarks of VMware, Inc. in the United States and/or other jurisdictions. Windows and MS-DOS are registered trademarks of Microsoft Corporation. All other trademarks and copyrights referred to are the property of their respective owners. Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. Distribution of this work or derivative work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Third party code may be provided with the Software and/or Service. The license terms for such third-parties are detailed in the license.txt file located in the root installation directory. You can always find the latest up-to-date list of the third party code and the associated license terms used with the Software and/or Service at http://kb.acronis.com/content/7696 Acronis patented technologies Technologies, used in this product, are covered and protected by one or more U.S. -
Wikipedia: Design of the FAT File System
Design of the FAT file system A FAT file system is a specific type of computer file system architecture and FAT a family of industry-standard file systems utilizing it. Developer(s) Microsoft, SCP, IBM, [3] The FAT file system is a legacy file system which is simple and robust. It Compaq, Digital offers good performance even in very light-weight implementations, but Research, Novell, cannot deliver the same performance, reliability and scalability as some Caldera modern file systems. It is, however, supported for compatibility reasons by Full name File Allocation Table: nearly all currently developed operating systems for personal computers and FAT12 (12- many home computers, mobile devices and embedded systems, and thus is a bit version), well suited format for data exchange between computers and devices of almost FAT16 (16- any type and age from 1981 through the present. bit versions), Originally designed in 1977 for use on floppy disks, FAT was soon adapted and FAT32 (32-bit version used almost universally on hard disks throughout the DOS and Windows 9x with 28 bits used), eras for two decades. Today, FAT file systems are still commonly found on exFAT (64- floppy disks, USB sticks, flash and other solid-state memory cards and bit versions) modules, and many portable and embedded devices. DCF implements FAT as Introduced 1977 (Standalone the standard file system for digital cameras since 1998.[4] FAT is also utilized Disk BASIC-80) for the EFI system partition (partition type 0xEF) in the boot stage of EFI- FAT12: August 1980 compliant computers. (SCP QDOS) FAT16: August 1984 For floppy disks, FAT has been standardized as ECMA-107[5] and (IBM PC DOS 3.0) ISO/IEC 9293:1994[6] (superseding ISO 9293:1987[7]). -
PC Partitioning and OS2 LVM
PC partitioning and OS2 LVM Jan van Wijk Principles of disk-partitioning as used on most personal computer systems, including the OS/2 Logical Volume Manager extensions Presentation contents Who am I Physical disk layout Partition-tables Primary versus Logical partitions OS/2 and eCS Logical Volume Manager Examples using DFSee ... PC partitioning principles, including OS/2 LVM © 2007 JvW Who am I ? Jan van Wijk Software Engineer, C, Rexx, Assembly Founded FSYS Software in 2001 First OS/2 experience in 1987, developing parts of OS/2 1.0 EE (Query Manager, later DB2) Used to be a systems-integration architect at a large bank, 500 servers and 7500 workstations Home page: http://www.dfsee.com PC partitioning principles, including OS/2 LVM © 2007 JvW What is ... Disk partitioning dividing the available disk space over one or more separate areas called 'partitions' that each have there own filesystem structures A Filesystem A way to organize data-structures on a disk (partition) to allow storage of file data, and retrieve that data Software (driver) to work with the filesystem PC partitioning principles, including OS/2 LVM © 2007 JvW Why use partitions ? To keep things separate, like applications and data, operating system, swap-space To have different/multiple driveletters (PC) To use the full disk-size when the filesystem is limited in size (FAT 2GiB, HPFS 64 GiB) To use more than one OS (multi boot) Because most operating systems require partitioning data, even with a single partition PC partitioning principles, including -
File Systems: Semantics & Structure What Is a File
5/15/2017 File Systems: Semantics & Structure What is a File 11A. File Semantics • a file is a named collection of information 11B. Namespace Semantics • primary roles of file system: 11C. File Representation – to store and retrieve data – to manage the media/space where data is stored 11D. Free Space Representation • typical operations: 11E. Namespace Representation – where is the first block of this file 11L. Disk Partitioning – where is the next block of this file 11F. File System Integration – where is block 35 of this file – allocate a new block to the end of this file – free all blocks associated with this file File Systems Semantics and Structure 1 File Systems Semantics and Structure 2 Data and Metadata Sequential Byte Stream Access • File systems deal with two kinds of information int infd = open(“abc”, O_RDONLY); int outfd = open(“xyz”, O_WRONLY+O_CREATE, 0666); • Data – the contents of the file if (infd >= 0 && outfd >= 0) { – e.g. instructions of the program, words in the letter int count = read(infd, buf, sizeof buf); Metadata – Information about the file • while( count > 0 ) { e.g. how many bytes are there, when was it created – write(outfd, buf, count); sometimes called attributes – count = read(infd, inbuf, BUFSIZE); • both must be persisted and protected } – stored and connected by the file system close(infd); close(outfd); } File Systems Semantics and Structure 3 File Systems Semantics and Structure 4 Random Access Consistency Model void *readSection(int fd, struct hdr *index, int section) { struct hdr *head = &hdr[section]; -
Booting and Installing the Operating System Grado En Inform´Atica2017/2018 Departamento De Computaci´On Facultad De Inform´Atica Universidad De Coru˜Na
Booting and Installing the Operating System Grado en Inform´atica2017/2018 Departamento de Computaci´on Facultad de Inform´atica Universidad de Coru~na Antonio Y´a~nezIzquierdo Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 1 / 85 ContentsI 1 Selecting and preparing installation media installing an O.S. installation media preparing the media 2 The boot process booting booting steps 3 Preparing the disks. Basic disk partitioning disks partitions 4 Sharing disks among O.S.s sharing disks among O.S.s 5 Boot loaders lilo grub Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 2 / 85 ContentsII elilo syslinux using removable media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 3 / 85 Selecting and preparing installation media Selecting and preparing installation media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 4 / 85 Selecting and preparing installation media installing an O.S. Selecting and preparing installation media !installing an O.S. Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 5 / 85 Selecting and preparing installation media installing an O.S. Installing an O.S. the most common use of O.S.s is having them \installed" onto computers, and being run from the computer's storage devices there are also some \live" O.S.s that don't require installation but usually have limitations concerning what users can do and what software can be added installing is the process by which we put the O.S. files in one (or more) of the storage units of the system, thus allowing the system to execute the OS directly Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 6 / 85 Selecting and preparing installation media installing an O.S. -
Chapter 20 ADVANCED AUTOMATED DISK
Chapter 20 ADVANCED AUTOMATED DISK INVESTIGATION TOOLKIT Umit Karabiyik and Sudhir Aggarwal Abstract Open source software tools designed for disk analysis play a critical role in digital forensic investigations. The tools typically are onerous to use and rely on expertise in investigative techniques and disk struc- tures. Previous research presented the design and initial development of a toolkit that can be used as an automated assistant in forensic in- vestigations. This chapter builds on the previous work and presents an advanced automated disk investigation toolkit (AUDIT) that leverages a dynamic knowledge base and database. AUDIT has new reporting and inference functionality. It facilitates the investigative process by han- dling core information technology expertise, including the choice and operational sequence of tools and their configurations. The ability of AUDIT to serve as an intelligent digital assistant is evaluated using a series of tests that compare it against standard benchmark disk images and examine the support it provides to human investigators. Keywords: Digital forensics, disk investigation toolkit, expert systems 1. Introduction Forensic investigations of disks are challenging because of the wide va- riety of available tools. Existing commercial and open source tools must be considered and new tools are constantly being released. Investigators are expected to know how to use and configure these tools and they are required to have a fair degree of information technology expertise. They must also have considerable knowledge about the technical details of each new disk type, filesystem and the locations on the disk where information could be hidden. This chapter builds on previous work on tool development [10] and presents an advanced automated disk investigation toolkit (AUDIT) that has been substantially improved and that leverages a dynamic knowl- c IFIP International Federation for Information Processing 2016 Published by Springer International Publishing AG 2016. -
Partition Manager™ 14 Special Edition for XP
PARAGON Software GmbH Heinrich-von-Stephan-Str. 5c 79100 Freiburg, Germany Tel. +49 (0) 761 59018201 Fax +49 (0) 761 59018130 Internet www.paragon-software.com Email [email protected] Partition Manager™ 14 Special Edition for XP User Manual Copyright© 1994-2014 Paragon Software GmbH. All rights reserved. 2 Contents Introduction .......................................................................................................................... 5 What’s New in Partition Manager 14 ........................................................................................................... 5 Product Components ............................................................................................................. 6 Features Overview ................................................................................................................. 6 Features ..................................................................................................................................................... 6 User Friendly Fault Minimizing Interface ................................................................................................................................ 6 Backup Facilities ...................................................................................................................................................................... 6 Restore Facilities .................................................................................................................................................................... -
Chapter 8: Disks and Filesystems
8 D I S K S A N D F I L ESYSTEMS Oh, my head hurts bad. Rings of ones and zeros, ouch! Filesystems hide them. Proper data management is perhaps a sys- tems administrator’s most vital duty. You can replace almost every computer compo- nent, but the data on your disk is irreplace- able. Perhaps that data isn’t important or it’s backed up, but losing files will ruin your day. As a sysadmin, you must protect important data by carefully manag- ing your disks and filesystems. We covered the basics of disklabels and MBR partitions in Chapter 2, but OpenBSD lets you use and abuse disks and filesystems in any number of ways. You’ll learn how in this chapter. !"#$%&'()*+(,-./0)1,2)(23'3$,) 415670)839:;(%)<=)>&9;# Device Nodes A device node is a file that provides a logical interface to a piece of hardware. By reading from a device node, sending data to it, or using a command on it, you’re telling the operating system to perform an action on a piece of hardware or, in some cases, a logical device. Different devices behave differently when data is sent to them. For example, writing to the console makes text appear on the screen or termi- nal, while writing to a disk device puts data on that disk. (OpenBSD puts device nodes in /dev and disallows device nodes on other filesystems.) Many disk management programs expect to be given a device name as an argument. Unfortunately, device node names are frequently cryptic and vary widely among operating systems—even on closely related operat- ing systems that run on the same hardware. -
Exploration of Windows Vista Advanced Forensic Topics – Day 1
Windows Vista and NTFS File System Internals Exploration of Windows Vista Advanced Forensic Topics – Day 1 LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Windows Client Forensics (Windows Vista Advanced Topics) Transactional NTFS and Registry Explained LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved New Features Important Changes of Interest LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Vista includes a “self-healing” function which can correct certain errors in the system • Vista maintains a list of hashes of known files and checks the hashes periodically • On non-system files Vista will validate the file metadata • Files whose hashes do not match or metadata is not valid will be replaced the next time the system is rebooted LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Equivalent to Chkdsk and defrag processes constantly running in the background • This has the potential to decrease the usefulness of the free space and slack space on the disk as well as limit the ability to recover deleted files LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Healed files can be identified by an examination of the event