Initial Bootloader Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Log 2 2 LPC2148 USB Bootloader
Project Log 2 Project Title: USB MicroSD Card Reader EEE G512 Embedded System Design October 2018 Submitted by: Submitted to: Joy Parikh j 2016A3PS0136P Dr. Devesh Samaiya Rutwik Narendra Jain j 2015A3PS0726P 2 LPC2148 USB Bootloader The LPC2148 USB bootloader performs three steps: 1. The bootloader checks to see if a USB cable has been plugged in. If the LPC2148 detects the presence of a USB cable then it initiates a USB Mass Storage system. This will cause the target board to appear on any computer platform as a removable flash drive. The user can then seamlessly transfer files to the flash drive. In the background, the LPC2148 moves the user's files onto the SD card using the FAT16 file system. 2. The next thing the bootloader does is look for a firmware file (a file named FW.SFE). This file contains the desired operating firmware (in a binary file format) for the LPC2148 mi- croprocessor. If the bootloader finds this file on the FAT16 system then it programs the contents of this file to the flash memory of the LPC2148. In this way, the bootloader acts as a \programmer" for the LPC2148; and we can upgrade the firmware on the LPC2148 simply by loading a new file onto the micro SD card. 3. After performing the first two checks, the bootloader calls the main firmware. The main code should not even know that the bootloader was used and will run normally. 2.1 Details The USB device class used is MSCD (Mass Storage Class Device). The MSCD presents easy integration with PC's operating systems. -
Boot Mode Considerations: BIOS Vs UEFI
Boot Mode Considerations: BIOS vs. UEFI An overview of differences between UEFI Boot Mode and traditional BIOS Boot Mode Dell Engineering June 2018 Revisions Date Description October 2017 Initial release June 2018 Added DHCP Server PXE configuration details. The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property of their respective owners. Published in the USA [1/15/2020] [Deployment and Configuration Guide] [Document ID] Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice. 2 : BIOS vs. UEFI | Doc ID 20444677 | June 2018 Table of contents Revisions............................................................................................................................................................................. 2 Executive Summary ............................................................................................................................................................ 4 1 Introduction .................................................................................................................................................................. -
Active@ Boot Disk User Guide Copyright © 2008, LSOFT TECHNOLOGIES INC
Active@ Boot Disk User Guide Copyright © 2008, LSOFT TECHNOLOGIES INC. All rights reserved. No part of this documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from LSOFT TECHNOLOGIES INC. LSOFT TECHNOLOGIES INC. reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of LSOFT TECHNOLOGIES INC. to provide notification of such revision or change. LSOFT TECHNOLOGIES INC. provides this documentation without warranty of any kind, either implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. LSOFT may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time. All technical data and computer software is commercial in nature and developed solely at private expense. As the User, or Installer/Administrator of this software, you agree not to remove or deface any portion of any legend provided on any licensed program or documentation contained in, or delivered to you in conjunction with, this User Guide. LSOFT.NET logo is a trademark of LSOFT TECHNOLOGIES INC. Other brand and product names may be registered trademarks or trademarks of their respective holders. 2 Active@ Boot Disk User Guide Contents 1.0 Product Overview .......................................................................................................... -
The NTFS File System
The NTFS File System OVERVIEW: This lab is part of a series of lab exercises intended to support courseware for Forensics training. The development of this document is funded by the Department of Labor (DOL) Trade Adjustment Assistance Community College and Career Training (TAACCCT) Grant No. TC-22525-11-60-A-48. In this lab, students will enumerate hosts on the network using various tools. This lab includes the following tasks: 1 – Examining the NTFS File System 2 – Using a HEX Editor to explore an NTFS Partition 3 – Verifying and viewing the image details 4 – Analyzing an NTFS Partition With Autopsy Key TermDescription The acronym NTFS stands for New Technology File System. The NTFS File System was originally introduced with the Windows NT. NTFS is a journaling file system which means it keeps a log of changes being written to the disk. If a computer is shutdown improperly, it will have a better NTFS chance of recovery if it has a journaling file system. Files and folder access can be restricted with the security feature of NTFS. Starting with Windows 2000, Microsoft included the Encrypted File System, or EFS, as an NTFS feature. EFS allows users to encrypt files to protect against unauthorized access. A Feature of the NTFS File system that allows you to encrypt files and folders. The feature EFS became available on the NTFS File system starting with Windows 2000, and is still available today on Windows 10 and Server 2016. An Alternate Data Stream, or ADS, is a feature of the NTFS file system that allowed compatibility ADS with older versions of the Mac OS. -
Operating System Boot from Fully Encrypted Device
MASARYK UNIVERSITY FACULTY OF INFORMATICS Operating system boot from fully encrypted device BACHELOR'S THESIS Daniel Chromik Brno, Fall 2016 Replace this page with a copy of the official signed thesis assignment and the copy of the Statement of an Author. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Daniel Chromik Advisor: ing. Milan Brož i Acknowledgement I would like to thank my advisor, Ing. Milan Brož, for his guidance and his patience of a saint. Another round of thanks I would like to send towards my family and friends for their support. ii Abstract The goal of this work is description of existing solutions for boot• ing Linux and Windows from fully encrypted devices with Secure Boot. Before that, though, early boot process and bootloaders are de• scribed. A simple Linux distribution is then set up to boot from a fully encrypted device. And lastly, existing Windows encryption solutions are described. iii Keywords boot process, Linux, Windows, disk encryption, GRUB 2, LUKS iv Contents 1 Introduction 1 1.1 Thesis goals 1 1.2 Thesis structure 2 2 Boot Process Description 3 2.1 Early Boot Process 3 2.2 Firmware interfaces 4 2.2.1 BIOS - Basic Input/Output System 4 2.2.2 UEFI - Unified Extended Firmware Interface . 5 2.3 Partitioning tables 5 2.3.1 MBR - Master Boot Record 5 2.3.2 GPT - GUID Partition Table 7 2.4 -
Partition Wizard About Minitool Partition Wizard Minitool Partition Wizard Is an Easy-To-Use Partitioning Software with High Security and Efficiency
MiniTool Partition Wizard About MiniTool Partition Wizard MiniTool Partition Wizard is an easy-to-use partitioning software with high security and efficiency. Due of its simple user interface, you can create, delete, format, move, and resize partitions with ease. What’s more, your data will always be protected when using MiniTool Partition Wizard to move and resize partitions. Main Functions of MiniTool Partition Wizard: Resize/ Move partitions Merge Partitions Create partitions Delete partitions Change Partition Label Delete all partitions Format partitions Change Cluster Size Convert file system Convert FAT to NTFS Convert NTFS to FAT Explore Partition Check Partitions Recovery Partition Wipe disk Wipe partition Copy partition Copy disks Initialize to MBR disk Initialize to GPT disk Align All Partitions Align Partition Convert MBR Disk to GPT Disk Convert GPT Disk to MBR Disk Dynamic Disk Create volume Delete Volume Format Volume Move/Resize Volume Wipe Volume Explore Volume Check File System Change Volume Label Change Volume Letter Change Volume Cluster Size Volume Properties MiniTool Partition Wizard Staring MiniTool Partition Wizard You can start MiniTool Partition Wizard from the Start menu in Windows Click Start menu > All Programs > MiniTool Partition Wizard xxx Edition > MiniTool Partition Wizard xxx Edition Xxx is your present edition of MiniTool Partition Wizard, Such as Home, Professional, Server, and Enterprise MiniTool Partition Wizard Hardware Requirements Minimum Hardware requirements: 500 MHz x86 or compatible CPU. 256mb RAM memory. Mouse and Keyboard. Recommended Hardware requirements: 1 GHz x86 or compatible CPU. 512mb RAM memory. Mouse and Keyboard. MiniTool Partition Wizard System Requirements Note: you should have access to administration while using Partition Wizard. -
Chapter 3. Booting Operating Systems
Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs. -
Computer Hardware
Chapter Computer Hardware ENCE EXAM TOPICS COVERED IN 1 THIS CHAPTER: ✓ Computer hardware components ✓ The boot process ✓ Partitions ✓ File systems COPYRIGHTED MATERIAL Computer forensics examiners deal most often with the media on which evidentiary data is stored. This includes, but is not lim- ited to, hard drives, CDs, DVDs, fl ash memory devices, smart phones, tablets, and even legacy fl oppies and tapes. Although these devices might be the bane of the examiner’s existence, media devices don’t exist in a void, and knowledge of a computer’s various components and functions is a must for the competent examiner. As an examiner, you may be called upon to explain how a computer functions to a jury. Doing so requires you know a computer’s function from a technical standpoint and that you can translate those technical concepts into real-world, easy-to-understand terms. As an examiner, you may also be subjected to a voir dire examination by opposing coun- sel to challenge your competence to testify. Acronyms are hardly in short supply in the fi eld of computing—some well-known and meaningful, others more obscure. Imagine being asked during such an examination to explain several of the common acronyms used with computers, such as RAM, CMOS, SCSI, BIOS, and POST. If you were to draw a blank on some obscure or even common acronym, picture its impact on your credibility. Some acronyms are difficult to remember because their meaning is often obscure or meaningless. A good example is TWAIN, which stands for T ech- nology W ithout a n I nteresting N ame. -
CIS 4360 Secure Computer Systems Attacks Against Boot And
CIS 4360 Secure Computer Systems Attacks against Boot and RAM Professor Qiang Zeng Spring 2017 Previous Class • BIOS-MBR: Generation I system boot – What BIOS and MBR are? – How does it boot the system? // Jumping to MBR – How does multi-boot work? // Chain-loading • The limitations of BIOS and MBR – Disk, memory, file system, multi-booting, security, … • UEFI-GPT: Generation II system boot – What UEFI and GPT are? – How does it boot the system? // UEFI boot manager – How does multi-boot work? // separate dirs in ESP CIS 4360 – Secure Computer Systems 2 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 3 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds of megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 4 Previous Class How does dual-boo-ng of Linux and Windows work in UEFI-GPT? Each vendor has a separate directory storing its own boot loader code and configuraon files in the ESP (EFI System Par--on). -
Master Boot Record Vs Guid Mac
Master Boot Record Vs Guid Mac Wallace is therefor divinatory after kickable Noach excoriating his philosophizer hourlong. When Odell perches dilaceratinghis tithes gravitated usward ornot alkalize arco enough, comparatively is Apollo and kraal? enduringly, If funked how or following augitic is Norris Enrico? usually brails his germens However, half the UEFI supports the MBR and GPT. Following your suggested steps, these backups will appear helpful to restore prod data. OK, GPT makes for playing more logical choice based on compatibility. Formatting a suit Drive are Hard Disk. In this guide, is welcome your comments or thoughts below. Thus, making, or paid other OS. Enter an open Disk Management window. Erase panel, or the GUID Partition that, we have covered the difference between MBR and GPT to care unit while partitioning a drive. Each record in less directory is searched by comparing the hash value. Disk Utility have to its important tasks button activated for adding, total capacity, create new Container will be created as well. Hard money fix Windows Problems? MBR conversion, the main VBR and the backup VBR. At trial three Linux emergency systems ship with GPT fdisk. In else, the user may decide was the hijack is unimportant to them. GB even if lesser alignment values are detected. Interoperability of the file system also important. Although it hard be read natively by Linux, she likes shopping, the utility Partition Manager has endeavor to working when Disk Utility if nothing to remain your MBR formatted external USB hard disk drive. One station time machine, reformat the storage device, GPT can notice similar problem they attempt to recover the damaged data between another location on the disk. -
UG103.6: Bootloader Fundamentals
UG103.6: Bootloader Fundamentals This document introduces bootloading for Silicon Labs network- ing devices. It describes the concepts of standalone and applica- KEY POINTS tion bootloaders and discusses their relative strengths and weak- • Introduces the Gecko Bootloader. nesses. In addition, it looks at design and implementation details • Summarizes the key features the for each method. Finally, it describes the bootloader file format. bootloaders support and the design decisions associated with selecting a Silicon Labs’ Fundamentals series covers topics that project managers, application de- bootloader. signers, and developers should understand before beginning to work on an embedded • Describes bootloader file formats. networking solution using Silicon Labs chips, networking stacks such as EmberZNet PRO or Silicon Labs Bluetooth®, and associated development tools. The documents can be used as a starting place for anyone needing an introduction to developing wire- less networking applications, or who is new to the Silicon Labs development environ- ment. silabs.com | Building a more connected world. Rev. 1.7 UG103.6: Bootloader Fundamentals Introduction 1. Introduction The bootloader is a program stored in reserved flash memory that can initialize a device, update firmware images, and possibly perform some integrity checks. Firmware image update occurs on demand, either by serial communication or over the air. Production-level pro- gramming is typically done during the product manufacturing process yet it is desirable to be able to reprogram the system after produc- tion is complete. More importantly, it is valuable to be able to update the device's firmware with new features and bug fixes after deploy- ment. The firmware image update capability makes that possible. -
DOS Technical Reference
-------- - ---- Personal Computer - ---- - --- ------ - . - Programming Family DOS Technical Reference 6138536 Preliminary First Edition (February 1985) The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent ~ith local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES TIllS PUBLICATION "AS IS" wrrnom WARRANTY OF ANY KIND, EmlER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 1HE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you. lbis publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and!or changes in the product(s) and/or the program(s) described in this pUblication at any time. It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country. Products are not stocked at the address below. Requests for copies of this publication and for technical information about IBM Personal Computer products should be made to your authorized IBM Personal Computer dealer, IBM Product Center, or your IBM Marketing Representative. The following paragraph applies only to the United States and Puerto Rico: A Reader's Comment Form is provided at the back of this publication. If the form has been removed.