View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIR Universita degli studi di Milano On the p-converse of the Kolyvagin-Gross-Zagier theorem Rodolfo Venerucci Universität Duisburg-Essen Fakultät für Mathematik, Mathematikcarrée Thea-Leymann-Straße 9, 45127 Essen. E-mail address:
[email protected] Abstract. Let A=Q be an elliptic curve having split multiplicative reduction at an odd prime p. Under some mild technical assumptions, we prove the statement: rankZA(Q) = 1 and # X(A=Q)p1 < 1 =) ords=1L(A=Q; s) = 1; thus providing a ‘p-converse’ to a celebrated theorem of Kolyvagin-Gross-Zagier. Contents Introduction 1 1. Hida Theory 5 2. The theorem of Skinner-Urban7 3. Restricting to the central critical line 10 4. Bertolini-Darmon’s exceptional zero formula 13 5. Bounding the characteristic ideal via Nekovář’s duality 14 6. Proof of the main result 22 References 25 Introduction Let A be an elliptic curve defined over Q, let L(A=Q; s) be its Hasse-Weil L-function, and let X(A=Q) be its Tate-Shafarevich group. The (weak form of the) conjecture of Birch and Swinnerton-Dyer predicts that X(A=Q) is finite, and that the order of vanishing ords=1L(A=Q; s) of L(A=Q; s) at s = 1 equals the rank of the Mordell- Weil group A(Q). The main result to date in support of this conjecture comes combining the fundamental work of Kolyvagin [Kol90] and Gross-Zagier [GZ86] (KGZ theorem for short): ran := ords=1L(A=Q; s) ≤ 1 =) rankZA(Q) = ran and # X(A=Q) < 1: Let p be a rational prime, let ralg 2 f0; 1g, and let X(A=Q)p1 be the p-primary part of X(A=Q).