Iwasawa Theory: A Climb up the Tower Romyar Sharifi Iwasawa theory is an area of number theory that emerged Through such descriptions, Iwasawa theory unveils in- from the foundational work of Kenkichi Iwasawa in the tricate links between algebraic, geometric, and analytic ob- late 1950s and onward. It studies the growth of arithmetic jects of an arithmetic nature. The existence of such links objects, such as class groups, in towers of number fields. is a common theme in many central areas within arith- Its key observation is that a part of this growth exhibits metic geometry. So it is that Iwasawa theory has found a remarkable regularity, which it aims to describe in terms itself a subject of continued great interest. This year’s Ari- of values of meromorphic functions known as 퐿-functions, zona Winter School attracted nearly 300 students hoping such as the Riemann zeta function. to learn about it! The literature on Iwasawa theory is vast and often tech- Romyar Sharifi is a professor of mathematics at UCLA. His email addressis nical, but the underlying ideas possess undeniable beauty.
[email protected]. I hope to convey some of this while explaining the origi- Communicated by Notices Associate Editor Daniel Krashen. nal questions of Iwasawa theory and giving a sense of the This material is based upon work supported by the National Science Foundation directions in which the area is heading. under Grant Nos. 1661658 and 1801963. For permission to reprint this article, please contact:
[email protected]. DOI: https://doi.org/10.1090/noti/1759 16 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 1 Algebraic Number Theory in which case it has dense image in ℂ.