Dualities in Étale Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

Dualities in Étale Cohomology Università degli studi di Milano Université de Bordeaux I Dualities in étale cohomology Alberto Merici supervised by Baptiste Morin Academic year 2016/2017 Introduction Amor ch’al cor gentil ratto s’apprende, prese costui de la bella persona che mi fu tolta; e ’l modo ancor m’offende Amor ch’a nullo amato amar perdona, mi prese del costui piacer sì forte, che come vedi ancor non m’abbandona. Dante Alighieri, Inferno, Canto V, vv. 100-105 Since its definition by Grothendieck and Deligne, étale cohomology has been seenasa "bridge" between arithmetics and geometry, i.e. something that generalizes purely geomet- ric aspects, as sheaf cohomology, and purely arithmetic ones, as Galois cohomology. One of the most important tools in order to calculate these invariants are duality theorems: • roughly speaking, if Λ is a ring, for a cohomology theory H with values in Λ-mod and a • corresponding compact supported cohomology theory Hc , a duality is a collection of perfect pairings r n−r n H × Hc Ï Hc n where Hc is canonically isomorphic to a "nice" Λ-mod A. The first example of duality theorem one meets throughout the study of algebraic topology is probably Poincaré duality for De Rham cohomology (see [AT11]): Theorem. If X is an oriented differential manifold of dimension n, then the wedge prod- uct induces a perfect pairing of R-vector spaces r n−r n ∼ ∫ H (X, dR) × Hc (X, dR) Hc (X, dR) = R (η, ψ) X η ∧ ψ On the other hand, in Galois cohomology one has the whole machinery of Tate dualities for finite, local and global fields: these are very important tools and I will recall themin the first chapter, mostly following [Mil06]. The aim of this mémoire is to generalize these theorems in the context of étale coho- mology: the second chapter is dedicated to the proof of the Proper Base Change theorem, which I will prove following [Del], and from that proof I will obtain a nice definition of a cohomology with compact support. Then I will deduce Poincaré duality on smooth curves i ii over algebraically closed fields, as it is done in[Del] and [Fu11]. This will follow from an appropriate definition of the cup product pairing coming from the machinery of derived categories. This approach leads almost immediately to a generalization of Poincaré duality on smooth curves over a finite field k, as it is done in [Mil16]. This is the link to arithmetics: in fact this theorem generalizes in some way to Artin-Verdier duality for global fields. The aim of the second part is then to prove Artin-Verdier duality for global fields as it is done in [Mil06], although here, in the case of a number field with at least one real em- bedding, we need to refine the definition of cohomology with compact support in ordetto include the real primes too. This can be done in different ways, and I will briefly explain the approach given by [Mil16]. In the appendix, I will recall some results that are needed. I will recall results on the cohomology of the Idèle group, mostly following [CF67] and [Neu13], then results on the cohomology of topoi and the definition of étale cohomology with some important theorems involved. Most of the theorems are proved in [Tam12] or [Sta]. Then I will recall the definition of derived categories and some results needed in the mémoire, following [Har]. Finally, I will give one powerful application of Poincaré duality for algebraically closed fields: Grothendieck-Verdier-Lefschetz Trace formula and the consequent rationality of L- functions on curves over finite fields. I will give an idea of what it is donein[Del]. iii Acknowledgements First of all, I would like to thank my family for always being there for me and for all the support they have shown throughout all my life: I would not be here without you. I thank mum and dad, for being the best parents I could ever imagine, my brother, for being the exact opposite of me, my grandmas and all my close and far relatives. A special thanks to my little cousin Sara, for being the strongest person I have ever known and I will probably ever know. Secondly, I would like to thank my advisor Baptiste Morin for the incredible amount of time and effort he spent for my career and for listening to all my exposés, introducing me to this crazy and beautiful part of mathematics. He will always be of great inspiration to me. I will also thank the Algant consortium for this great opportunity and all the professors I had the pleasure to meet, both in Milan and Bordeaux, and especially prof. Fabrizio An- dreatta, I owe to him my passion for arithmetic. Mathematics is for weirdos, so I thank all the weirdos I had the pleasure to meet in these years: From Milan I thank Davide, Ale, Mosca, Edo, Fabio and Chiara for all the briscoloni, the Algant team "Senza nome": Isabella, Riccardo, Luca and Massimo for being the best travel companion in this adventure, for "Cuori Rubati", for staying late at university drawing com- mutative diagrams and for all the Skype sessions, Fra, for reminding me that sometimes analysis is nice, and Ema, for reminding that most of the times it’s not, and last but not least, Lori, for being the beautiful person he always is. From Bordeaux, I thank Danilo, for always being there when I needed a friend, Margarita, Corentin, Félicien, Alexandre, Nero and Thibault, for this incredible year together in the IMB. A whole year alone in Bordeaux doing math can drive you insane, but luckily I met the right people to stay real: I thank every beautiful person I met this year, it would be impossible to mention everyone but I am sincerely happy that I have met all of you. I have to give a special thanks to MJ, for the beautiful trips we took together. I would like to thank my longtime friends, who are still trying to figure out what is my position in the world: I thank the "Omega": Fede and his motto "There’s more than one way to be an educated man", Ricca for being the craziest and most generous friend I will always have, and Giacomo for being the lovely jerk he will always be. I also thank Corrado and Stefano, for being the high school friendship that is here for staying, even if I am far away. Finally, a big thank goes to my roomies from Milan, for being the family every student far from home would dream of. And last but not least, I would like to thank my best friend Edoardo for the late night phone calls, all the stupid messages and the support he has given me throughout all my life. Contents 1 Preliminaries: Tate duality1 1.1 Local Tate duality......................................1 1.1.1 Tate cohomology groups.............................1 1.1.2 Duality relative to class formation.......................3 1.1.3 Dualities in Galois cohomology.........................8 1.2 Global Tate duality..................................... 15 1.2.1 P-class formation.................................. 16 1.3 Tate-Poitou.......................................... 20 1.3.1 Proof of the main theorem........................... 22 2 Proper Base Change 28 2.1 Step 1............................................. 29 2.2 Reduction to simpler cases................................ 32 2.2.1 Constructible Sheaves............................... 32 2.2.2 DÃľvissages and reduction to the case of curves.............. 35 2.3 End of the proof....................................... 36 2.3.1 Proof for ℓ = chark ................................ 36 2.3.2 Proof for ℓ ≠ char(k) ............................... 37 2.4 Proper support....................................... 38 2.4.1 Extension by zero................................. 38 2.4.2 Cohomology with proper support....................... 40 2.4.3 Applications..................................... 41 3 Geometry: PoincarÃľ duality 44 3.1 Trace maps.......................................... 44 3.2 PoincarÃľ duality of curves................................ 48 3.2.1 Algebraically closed fields............................ 48 3.2.2 Finite fields..................................... 53 4 Arithmetics: Artin-Verdier duality 55 4.1 Local Artin-Verdier duality................................ 55 4.2 Global Artin-Verdier duality: preliminaries...................... 60 4.2.1 Cohomology of Gm ................................ 61 4.2.2 Compact supported................................ 62 4.2.3 Locally constant sheaves............................. 65 iv CONTENTS v 4.3 Global Artin-Verdier duality: the theorem....................... 67 4.3.1 An application.................................... 76 5 Higher dimensions 77 5.1 Statement of the duality theorem............................ 77 5.2 Motivic cohomology.................................... 78 5.2.1 Locally logarithmic differentials......................... 78 5.2.2 Motivic cohomology................................ 80 Appendix A Global class field theory 81 A.1 AdÃĺle and IdÃĺle...................................... 81 A.2 The IdÃĺle class group................................... 84 A.3 Extensions of the base field................................ 87 A.4 Cohomology of the idÃĺle class group......................... 89 Appendix B Étale cohomology 91 B.1 Sheafification......................................... 91 B.1.1 Yoneda........................................ 92 B.2 Direct images........................................ 93 B.3 Cohomology on a site................................... 96 B.3.1 Čech cohomology................................. 96 B.3.2 Cohomology of Abelian sheaves........................ 98 B.3.3 Flasque Sheaves.................................. 99 B.3.4 Higher Direct Image............................... 101 B.4 Étale cohomology.....................................
Recommended publications
  • Hasse Principles for Higher-Dimensional Fields 3
    Annals of Mathematics 183 (2016), 1{71 http://dx.doi.org/10.4007/annals.2016.183.1.1 Hasse principles for higher-dimensional fields By Uwe Jannsen dedicated to J¨urgen Neukirch Abstract For rather general excellent schemes X, K. Kato defined complexes of Gersten-Bloch-Ogus type involving the Galois cohomology groups of all residue fields of X. For arithmetically interesting schemes, he developed a fascinating web of conjectures on some of these complexes, which generalize the classical Hasse principle for Brauer groups over global fields, and proved these conjectures for low dimensions. We prove Kato's conjecture over number fields in any dimension. This gives a cohomological Hasse principle for function fields F over a number field K, involving the corresponding function fields Fv over the completions Kv of K. For global function fields K we prove the part on injectivity for coefficients invertible in K. Assuming resolution of singularities, we prove a similar conjecture of Kato over finite fields, and a generalization to arbitrary finitely generated fields. Contents 0. Introduction1 1. First reductions and a Hasse principle for global fields7 2. Injectivity of the global-local map for coefficients invertible in K 16 3. A crucial exact sequence, and a Hasse principle for unramified cohomology 26 4. A Hasse principle for Bloch-Ogus-Kato complexes 40 5. Weight complexes and weight cohomology 52 References 67 0. Introduction In this paper we prove some conjectures of K. Kato [Kat86] which were formulated to generalize the classical exact sequence of Brauer groups for a global field K, L (0.1) 0 −! Br(K) −! Br(Kv) −! Q=Z −! 0; v c 2016 Department of Mathematics, Princeton University.
    [Show full text]
  • Selmer Groups in Degree $\Ell$ Twist Families
    $\ell^{\infty}$-Selmer Groups in Degree $\ell$ Twist Families The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smith, Alexander. 2020. $\ell^{\infty}$-Selmer Groups in Degree $\ell$ Twist Families. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365902 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA `1-Selmer groups in degree ` twist families A dissertation presented by Alexander Smith to The Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Mathematics Harvard University Cambridge, Massachusetts April 2020 © 2020 – Alexander Smith All rights reserved. Dissertation Advisor: Professor Elkies and Professor Kisin Alexander Smith `1-Selmer groups in degree ` twist families Abstract Suppose E is an elliptic curve over Q with no nontrivial rational 2-torsion point. Given p a nonzero integer d, take Ed to be the quadratic twist of E coming from the field Q( d). For every nonnegative integer r, we will determine the natural density of d such that Ed has 2-Selmer rank r. We will also give a generalization of this result to abelian varieties defined over number fields. These results fit into the following general framework: take ` to be a rational prime, take F to be number field, take ζ to be a primitive `th root of unity, and take N to be an `- divisible Z`[ζ]-module with an action of the absolute Galois group GF of F .
    [Show full text]
  • Pontrjagin Duality for Finite Groups
    PONTRJAGIN DUALITY FOR FINITE GROUPS Partha Sarathi Chakraborty The Institute of Mathematical Sciences Chennai e1; ··· ; en : basis for V . ∗ V := fφjφ : V ! C linear map g. ∗ hφi ; ej i := φi (ej ) := δij , φi ; ··· ; φn, dual basis for V . Dual of a map, T : V ! W T ∗ : W ∗ ! V ∗; T ∗(φ)(v) = φ(T (v)). T : V ! W ; S : W ! U; (S ◦ T )∗ = T ∗ ◦ S∗ : U∗ ! W ∗ Pontryagin duality: classical formulation Motivation from linear algebra Limitations of the classical formulation dual of a cyclic group Some algebraic structures duals for direct sums and products The finite group case Pontryagin Duality Motivation: duality for vector spaces Dual of a vector space V : a finite dimensional vector space over C. ∗ V := fφjφ : V ! C linear map g. ∗ hφi ; ej i := φi (ej ) := δij , φi ; ··· ; φn, dual basis for V . Dual of a map, T : V ! W T ∗ : W ∗ ! V ∗; T ∗(φ)(v) = φ(T (v)). T : V ! W ; S : W ! U; (S ◦ T )∗ = T ∗ ◦ S∗ : U∗ ! W ∗ Pontryagin duality: classical formulation Motivation from linear algebra Limitations of the classical formulation dual of a cyclic group Some algebraic structures duals for direct sums and products The finite group case Pontryagin Duality Motivation: duality for vector spaces Dual of a vector space V : a finite dimensional vector space over C. e1; ··· ; en : basis for V . ∗ hφi ; ej i := φi (ej ) := δij , φi ; ··· ; φn, dual basis for V . Dual of a map, T : V ! W T ∗ : W ∗ ! V ∗; T ∗(φ)(v) = φ(T (v)). T : V ! W ; S : W ! U; (S ◦ T )∗ = T ∗ ◦ S∗ : U∗ ! W ∗ Pontryagin duality: classical formulation Motivation from linear algebra Limitations of the classical formulation dual of a cyclic group Some algebraic structures duals for direct sums and products The finite group case Pontryagin Duality Motivation: duality for vector spaces Dual of a vector space V : a finite dimensional vector space over C.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • The Derived Category of Sheaves and the Poincare-Verdier Duality
    THE DERIVED CATEGORY OF SHEAVES AND THE POINCARE-VERDIER´ DUALITY LIVIU I. NICOLAESCU ABSTRACT. I think these are powerful techniques. CONTENTS 1. Derived categories and derived functors: a short introduction2 2. Basic operations on sheaves 16 3. The derived functor Rf! 31 4. Limits 36 5. Cohomologically constructible sheaves 47 6. Duality with coefficients in a field. The absolute case 51 7. The general Poincare-Verdier´ duality 58 8. Some basic properties of f ! 63 9. Alternate descriptions of f ! 67 10. Duality and constructibility 70 References 72 Date: Last revised: April, 2005. Notes for myself and whoever else is reading this footnote. 1 2 LIVIU I. NICOLAESCU 1. DERIVED CATEGORIES AND DERIVED FUNCTORS: A SHORT INTRODUCTION For a detailed presentation of this subject we refer to [4,6,7,8]. Suppose A is an Abelian category. We can form the Abelian category CpAq consisting of complexes of objects in A. We denote the objects in CpAq by A or pA ; dq. The homology of such a complex will be denoted by H pA q. P p q A morphism s HomCpAq A ;B is called a quasi-isomorphism (qis brevity) if it induces an isomorphism in co-homology. We will indicate qis-s by using the notation A ùs B : Define a new additive category KpAq whose objects coincide with the objects of CpAq, i.e. are complexes, but the morphisms are the homotopy classes of morphisms in CpAq, i.e. p q p q{ HomKpAq A ;B : HomCpAq A ;B ; where denotes the homotopy relation. Often we will use the notation r s p q A ;B : HomKpAq A ;B : The derived category of A will be a category DpAq with the same objects as KpAq but with a q much larger class of morphisms.
    [Show full text]
  • Mackey Theorem Amritanshu Prasad the Institute of Mathematical Sciences, Chennai, India Article Info a B S T R a C T
    Expositiones Mathematicae 29 (2011) 110–118 Contents lists available at ScienceDirect Expositiones Mathematicae journal homepage: www.elsevier.de/exmath An easy proof of the Stone–von Neumann–Mackey Theorem Amritanshu Prasad The Institute of Mathematical Sciences, Chennai, India article info a b s t r a c t Article history: The Stone–von Neumann–Mackey Theorem for Heisenberg groups Received 3 December 2009 associated to locally compact abelian groups is proved using the Accepted 15 June 2010 Peter–Weyl Theorem and the theory of Fourier transforms for Rn. A theorem of Pontryagin and van Kampen on the structure of locally 2000 Mathematics Subject Classification: compact abelian groups (which is evident in any particular case) is 43-01 assumed. Keywords: ' 2010 Elsevier GmbH. All rights reserved. Stone–von Neumann Mackey Heisenberg group Fourier transform Locally compact abelian group 1. Introduction The definition of a Heisenberg group, which is motivated by Heisenberg's commutation relations for position and momentum operators, goes back to Hermann Weyl's mathematical formulation of quantum kinematics [9]. The basic feature of Heisenberg groups, now known as the Stone–von Neumann Theorem, was proved for Heisenberg groups associated to real vector spaces by Marshall Stone [6] and John von Neumann [7]. George W. Mackey [3] extended this result to Heisenberg groups associated to all locally compact abelian groups, allowing for groups that arise in number theory with consequences that were first studied by André Weil [8]. Our proof of Mackey's version of the Stone–von Neumann Theorem uses relatively simple tools from functional analysis: the Peter–Weyl Theorem on representations of compact topological groups [2, Theorem 1.12], and the classical theory of Fourier transforms for real vector spaces, specifically, the Fourier Inversion Theorem and the Plancherel Theorem [5, Chap.
    [Show full text]
  • Agnieszka Bodzenta
    June 12, 2019 HOMOLOGICAL METHODS IN GEOMETRY AND TOPOLOGY AGNIESZKA BODZENTA Contents 1. Categories, functors, natural transformations 2 1.1. Direct product, coproduct, fiber and cofiber product 4 1.2. Adjoint functors 5 1.3. Limits and colimits 5 1.4. Localisation in categories 5 2. Abelian categories 8 2.1. Additive and abelian categories 8 2.2. The category of modules over a quiver 9 2.3. Cohomology of a complex 9 2.4. Left and right exact functors 10 2.5. The category of sheaves 10 2.6. The long exact sequence of Ext-groups 11 2.7. Exact categories 13 2.8. Serre subcategory and quotient 14 3. Triangulated categories 16 3.1. Stable category of an exact category with enough injectives 16 3.2. Triangulated categories 22 3.3. Localization of triangulated categories 25 3.4. Derived category as a quotient by acyclic complexes 28 4. t-structures 30 4.1. The motivating example 30 4.2. Definition and first properties 34 4.3. Semi-orthogonal decompositions and recollements 40 4.4. Gluing of t-structures 42 4.5. Intermediate extension 43 5. Perverse sheaves 44 5.1. Derived functors 44 5.2. The six functors formalism 46 5.3. Recollement for a closed subset 50 1 2 AGNIESZKA BODZENTA 5.4. Perverse sheaves 52 5.5. Gluing of perverse sheaves 56 5.6. Perverse sheaves on hyperplane arrangements 59 6. Derived categories of coherent sheaves 60 6.1. Crash course on spectral sequences 60 6.2. Preliminaries 61 6.3. Hom and Hom 64 6.4.
    [Show full text]
  • Characteristic Classes of Mixed Hodge Modules
    Topology of Stratified Spaces MSRI Publications Volume 58, 2011 Characteristic classes of mixed Hodge modules JORG¨ SCHURMANN¨ ABSTRACT. This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the in- teraction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context. It uses M. Saito’s deep theory of mixed Hodge modules as a black box, thinking about them as “constructible or perverse sheaves of Hodge struc- tures”, having the same functorial calculus of Grothendieck functors. For the “constant Hodge sheaf”, one gets the “motivic characteristic classes” of Brasselet, Schurmann,¨ and Yokura, whereas the classes of the “intersection homology Hodge sheaf” were studied by Cappell, Maxim, and Shaneson. The classes associated to “good” variation of mixed Hodge structures where studied in connection with understanding the monodromy action by these three authors together with Libgober, and also by the author. There are two versions of these characteristic classes. The K-theoretical classes capture information about the graded pieces of the filtered de Rham complex of the filtered D-module underlying a mixed Hodge module. Appli- cation of a suitable Todd class transformation then gives classes in homology. These classes are functorial for proper pushdown and exterior products, to- gether with some other properties one would expect for a satisfactory theory of characteristic classes for singular spaces. For “good” variation of mixed Hodge structures they have an explicit clas- sical description in terms of “logarithmic de Rham complexes”.
    [Show full text]
  • Intersection Homology Duality and Pairings: Singular, PL, and Sheaf
    Intersection homology duality and pairings: singular, PL, and sheaf-theoretic Greg Friedman and James E. McClure July 22, 2020 Contents 1 Introduction 2 2 Conventions and some background 11 2.1 Pseudomanifolds and intersection homology . .. 11 3 Hypercohomology in the derived category 13 4 Some particular sheaf complexes 16 4.1 The Verdier dualizing complex and Verdier duality . 16 4.2 TheDelignesheaf................................. 17 4.3 The sheaf complex of intersection chains . .. 19 4.4 Thesheafofintersectioncochains . .. 20 ∗ 4.4.1 Ip¯C is quasi-isomorphic to PDp¯ ..................... 22 5 Sheafification of the cup product 24 5.1 Applications: A multiplicative de Rham theorem for perverse differential forms and compatibility with the blown-up cup product . 26 arXiv:1812.10585v3 [math.GT] 22 Jul 2020 5.1.1 Perversedifferentialforms . 26 5.1.2 Blown-up intersection cohomology . 31 6 Classical duality via sheaf maps 32 6.1 Orientationsandcanonicalproducts. ... 33 6.2 ProofofTheorem6.1............................... 35 7 Compatibility of cup, intersection, and sheaf products 50 8 Classical duality and Verdier duality 55 A Co-cohomology 59 1 B A meditation on signs 60 2000 Mathematics Subject Classification: Primary: 55N33, 55N45 Secondary: 55N30, 57Q99 Keywords: intersection homology, intersection cohomology, pseudomanifold, cup product, cap product, intersection product, Poincar´e duality, Verdier dual- ity, sheaf theory Abstract We compare the sheaf-theoretic and singular chain versions of Poincar´eduality for intersection homology, showing that they are isomorphic via naturally defined maps. Similarly, we demonstrate the existence of canonical isomorphisms between the sin- gular intersection cohomology cup product, the hypercohomology product induced by the Goresky-MacPherson sheaf pairing, and, for PL pseudomanifolds, the Goresky- MacPherson PL intersection product.
    [Show full text]
  • Number Theory and Harmonic Analysis
    Number theory and harmonic analysis November 8, 2018 1 Adèles and idèles of algebraic numbers In this section, we will review the constriction of real and p-adic numbers from the set Q of rational numbers by the process of completion with respect to different valuations. Completions of Q and more generally of number fields give rise to local fields (of characteristic zero). Local fields, which may be the field of real or complex numbers, or p-adic fields, are endowed with locally compact topology. We will also review the groups of adèles and idèles, their topology, and their connection with basic theorems in algebraic number theory. Real numbers We will very briefly review the construction of real numbers from rational numbers. Recall that the field of rational numbers Q is a totally ordered field: we write x > y x y if Q+ where Q+ is the semigroup of positive rational numbers. It is also − 2 equipped with the real valuation function Q Q+ 0 ! [ f g x = sign(x)x j j x x x x that takes value or depending on whether Q+ or Q+, and 0 = 0. For we will also use p-adic− absolute values, we will write2 x −instead2 of xj andj call it the the real absolute value. The absolute value of thej differencej1 x yj j defines a j − j1 Q+-valued metric on Q. The field of real numbers R is constructed as the completion of Q with respect to this metric. A real number is thus defined to be an equivalence class of Cauchy sequences of rational numbers with respect to this distance.
    [Show full text]
  • Category Theory Applied to Pontryagin Duality
    Pacific Journal of Mathematics CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY DAVID W. ROEDER Vol. 52, No. 2 February 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 52, No. 2, 1974 CATEGORY THEORY APPLIED TO PONTRYAGIN DUALITY DAVID W. ROEDER A proof of the Pontryagin duality theorem for locally compact abelian (LCA) groups is given, using category-theo- retical ideas and homological methods. The proof is guided by the structure within the category of LCA groups and does not use any deep results except for the Peter-Weyl theorem. The duality is first established for the subcategory of ele- mentary LCA groups (those isomorphic with T* Θ ZJ 0 Rk φ F, where T is the circle group, Z the integers, R the real num- bers, and F a finite abelian group), and through the study of exact sequences, direct limits and projective limits the duality is expanded to larger subcategories until the full duality theorem is reached. Introduction* In this note we present a fairly economical proof of the Pontryagin duality theorem for locally compact abelian (LCA) groups, using category-theoretic ideas and homological methods. This theorem was first proved in a series of papers by Pontryagin and van Kampen, culminating in van Kampen's paper [5], with methods due primarily to Pontryagin. In [10, pp. 102-109], Weil introduced the simplifying notion of compactly generated group and explored the functorial nature of the situation by examining adjoint homomorphisms and projective limits. Proofs along the lines of Pontryagin-van Kampen-Weil appear in the books by Pontryagin [7, pp. 235-279] and Hewitt and Ross [2, pp.
    [Show full text]
  • Local Galois Cohomology Computation) Let K Be a finite Extension of Qp Or Fp((T)) with Residue field Fq
    Exercise 2 (due on October 26) Choose 4 out of 8 problems to submit. Problem 2.1. (Local Galois cohomology computation) Let K be a finite extension of Qp or Fp((t)) with residue field Fq. Let V be a representation of GK on an F`-vector space. 1 GK ∗ GK (1) Show that when ` 6= p, H (GK ;V ) = 0 unless V 6= 0 or V (1) 6= 0. When ` = p 1 and K = Qp, what is dim H (GQp ;V ) \usually"? (2) When ` 6= p, compute without using Euler characteristic formula, in an explicit way, i n dim H (GK ; F`(n)). Your answer will depend on congruences of q modulo `. Observe that the dimensions coincidence with the prediction of Tate local duality and Euler characteristic formula. i (3) When ` = p and K a finite extension of Qp, compute the dimension of dim H (GK ; Fp(n)). Problem 2.2. (Dimension of local Galois cohomology groups) Let K be a finite extension of Qp, and let V be a representation of GK over a finite dimensional F`-vector space. Suppose that V is irreducible as a representation of GK and dim V ≥ 2. 1 2 (1) When ` 6= p, show that H (GK ;V ) = 0. (Hint: compute H using local Tate duality and then use Euler characteristic.) 1 (2) When ` = p, what is dim H (GK ;V )? Problem 2.3. (An example of Poitou{Tate long exact sequence) Consider F = Q, and let S = fp; 1g for an odd prime p. Determine each term in the Poitou{Tate exact sequence for 2 the trivial representation M = Fp.
    [Show full text]