Agnieszka Bodzenta

Total Page:16

File Type:pdf, Size:1020Kb

Agnieszka Bodzenta June 12, 2019 HOMOLOGICAL METHODS IN GEOMETRY AND TOPOLOGY AGNIESZKA BODZENTA Contents 1. Categories, functors, natural transformations 2 1.1. Direct product, coproduct, fiber and cofiber product 4 1.2. Adjoint functors 5 1.3. Limits and colimits 5 1.4. Localisation in categories 5 2. Abelian categories 8 2.1. Additive and abelian categories 8 2.2. The category of modules over a quiver 9 2.3. Cohomology of a complex 9 2.4. Left and right exact functors 10 2.5. The category of sheaves 10 2.6. The long exact sequence of Ext-groups 11 2.7. Exact categories 13 2.8. Serre subcategory and quotient 14 3. Triangulated categories 16 3.1. Stable category of an exact category with enough injectives 16 3.2. Triangulated categories 22 3.3. Localization of triangulated categories 25 3.4. Derived category as a quotient by acyclic complexes 28 4. t-structures 30 4.1. The motivating example 30 4.2. Definition and first properties 34 4.3. Semi-orthogonal decompositions and recollements 40 4.4. Gluing of t-structures 42 4.5. Intermediate extension 43 5. Perverse sheaves 44 5.1. Derived functors 44 5.2. The six functors formalism 46 5.3. Recollement for a closed subset 50 1 2 AGNIESZKA BODZENTA 5.4. Perverse sheaves 52 5.5. Gluing of perverse sheaves 56 5.6. Perverse sheaves on hyperplane arrangements 59 6. Derived categories of coherent sheaves 60 6.1. Crash course on spectral sequences 60 6.2. Preliminaries 61 6.3. Hom and Hom 64 6.4. Serre duality 66 6.5. Derived functors in algebraic geometry 66 6.6. Grothendieck-Verdier duality 72 6.7. Spanning classes in the derived category 73 7. Full exceptional collections 79 7.1. Beilinson's result 80 7.2. Equivalence of categories 80 7.3. Braid group action 81 7.4. Glued t-structure 82 7.5. Full exceptional collections on P2 and Markov numbers 83 7.6. Full exceptional collections on homogeneous spaces and toric varieties 83 7.7. Derived category under blow-up and projective bundles 84 8. Modern approach 90 8.1. The stable category of spectra 90 8.2. DG categories and DG enhancements 91 8.3. Infinity categories 92 8.4. Stable infinity categories 94 8.5. Examples of stable infinity categories 96 8.6. Derived algebraic geometry 98 8.7. Why do we care about derived algebraic geometry 99 References 100 1. Categories, functors, natural transformations A category C is the data of a class of objects Ob(C) and a family of morphisms Mor(C). Every morphism has a source and a target, we denote by HomC(C1;C2) the collection of objects whose source is C1 and target is C2. We assume that there exists an associative HOMOLOGICAL METHODS IN GEOMETRY AND TOPOLOGY 3 composition HomC(C2;C3) × HomC(C1;C2) ! HomC(C1;C3) and that every object has 0 00 the identity IdC 2 HomC(C; C) such that for any f 2 HomC(C; C ), g 2 HomC(C ;C), f ◦ IdC = f and IdC ◦g = g. A subcategory D ⊂ C is a category such that Ob(D) ⊂ Ob(C) and Mor(D) ⊂ Mor(C). A morphism f 2 HomC(C1;C2) is an isomorphism if there exists g 2 HomC(C2;C1) such that f ◦ g = IdC2 and g ◦ f = IdC1 . op The opposite category C has the same objects as C while HomCop (C1;C2) = HomC(C2;C1). Examples of categories include the categories of Sets, (pointed) topological spaces, (abelian) groups, the category ∆: Objects of ∆ are [n], for n = 0; 1;:::. Hom∆([m]; [n]) is the set of nonincreasing mappings from f0; : : : ; mg to f0; : : : ; ng. A (covariant) functor F : C!D is the data of a mapping ObC! ObD, C 7! F (C) and a mapping Mor(C) ! Mor(D), ' 7! F (') such that F ( ') = F ( )F (') and F (IdC ) = op IdF (C). A contravariant functor C!D is a functor C !D. A natural transformation η : F ! G of functors C!D is the data of ηC 2 HomD(F (C);G(C)), for any C 2 Ob(C). Morphisms ηC induce commutative diagrams ηC2 F (C2) / G(C2) O O F (') G(') ηC1 F (C1) / G(C1) for any ' 2 HomC(C1;C2). We say that a functor F : C!D is faithful if the map F : Mor(C) ! Mor(D) is injective. F is full if the map is surjective. It is essentially surjective if every object in D is isomorphic to F (C), for some C 2 Ob(C). A subcategory D ⊂ C is full if the embedding functor D!C is fully faithful. Functor F : C!D is an equivalence if there exists G: D!C and natural transformations η : IdC ! G ◦ F , ν : IdD ! F ◦ G such that ηC and νD are isomorphisms, for all C 2 Ob(C), D 2 Ob(D). Exercise 1.1. Show that a functor F : C!D is an equivalence if and only if it is fully faithful and essentially surjective. Examples of functors C op C • Any object C 2 C defines functors h : C! Set and hC : C ! Set via h (C1) = C HomC(C; C1), hC (C1) = HomC(C1;C). Functors h , hC are representable. 4 AGNIESZKA BODZENTA • Let ∆op Set be the category of simplicial sets. Its objects of ∆op Set are functors ∆op ! Set. Morphisms are natural transformations of functors. The geometric realisation is a functor j − j: ∆op Set ! Top. To a simplicial F1 set X = fXn = X([n])g it assigns jXj = n=0(∆n × Xn)=R where ∆n is the geometrical n-dimensional simplex n n+1 X ∆n = f(x0; : : : ; xn) 2 R j xi = 1; xi ≥ 0g i=0 and the equivalence relation R is defined as follows: (s; x) 2 ∆n × Xn is identified with (t; y) 2 ∆m × Xm if there exists f 2 Hom∆([m]; [n]) with y = X(f)x and F1 s = ∆f t. The topology on jXj is the weakest for which n=0 Xn × ∆n ! jXj is continuous. The map ∆f : ∆m ! ∆n is the unique linear mapping which sends vertex ei 2 ∆m to ef(i) 2 ∆n. • Another example of a functor is the Singular simplicial set Sing: Top ! ∆op Set. For a topological space Y , Sing(Y )(n) is the set of continuous maps ∆n ! Y For f 2 Hom∆([n]; [m]) the map Sing(Y )(f) maps ': ∆m ! Y to ' ◦ ∆f : ∆n ! Y . • A presheaf of sets is a functor (TopY )op ! Set. Here, Y is a topological space and TopY is the category whose objects are open subsets of Y and morphisms are inclusions U ! V . 1.1. Direct product, coproduct, fiber and cofiber product. Let X, Y be objects of a category C. The direct product X × Y is the object Z representing the functor C 7! hX (C) × hY (C) The direct sum X ⊕ Y is the object Z representing the functor C 7! hX (C) [ hY (C): Let S be an object of C. Define category CS whose objects are pairs (C; ') of objects of C and morphisms ': C ! S. Morphisms CS (C1;'1) ! (C2;'2) in CS are such f 2 HomC(C1;C2) that '2 ◦ f = '1. Let now X, Y be objects of CS, i.e. assume fixed ': X ! S, : Y ! S. The fiber product X ×S Y of X and Y over S is the direct product of (X; '), (Y; ) in CS considered as an object of C. Exercise 1.2. Write down the universal property of a fiber product. HOMOLOGICAL METHODS IN GEOMETRY AND TOPOLOGY 5 Given morphisms αX : S ! X, αY : S ! Y in a category C the cofiber product X tS Y of X and Y along S is an object Z 2 C together with βX : X ! Z, βY : Y ! Z satisfying the following universal property: given C in C and 'X : X ! C, 'Y : Y ! C such that 'X ◦αX = 'Y ◦αY , there exists unique ': Z ! C such that '◦βX = 'X and '◦βY = 'Y . Exercise 1.3. Present cofiber product as a coproduct in an appropriate category. 1.2. Adjoint functors. Let C, D be categories and F : C!D, G: D!C functors. Functor F is left adjoint to G, F a G if there exist natural transformations ": FG ! IdD, η : IdC ! GF , called the adjunction counit and unit, such that maps HomC(C; G(D)) ! HomD(F (C);D);' 7! "D ◦ F ('); HomD(F (C);D) ! HomC(C; G(D)); 7! G( ) ◦ ηC are inverse to each other. Exercise 1.4. Show that ": FG ! IdD, η : IdC ! GF yield F a G if and only if the F η ηG compositions F −! F GF −!"F F , G −! GF G −!G" G are the identity transformations. 1.3. Limits and colimits. Consider a category I and a functor F : I !C. A cone to F is an object N of C together with i : N ! F (i), for any i 2 I, such that for every α 2 HomI (i; j), F (α) ◦ i = j.A limit of F : I ! J is a cone (L; 'i) such that given any other cone (N; i) there exists a unique morphism u: N ! L such that 'i ◦ u = i. A cocone to F is an object W of C together with i : F (i) ! W , for any i 2 I, such that for every α 2 HomI (i; j), j ◦ F (α) = i.A colimit of F : I ! J is a cocone (T;'i) such that given any other cocone (W; i) there exists a unique morphism u: T ! W such that u ◦ 'i = i.
Recommended publications
  • Arxiv:1403.7027V2 [Math.AG] 21 Oct 2015 Ytnoigit Iebnlson Bundles Line Into Tensoring by N Ytednsyfoundation
    ON EQUIVARIANT TRIANGULATED CATEGORIES ALEXEY ELAGIN Abstract. Consider a finite group G acting on a triangulated category T . In this paper we investigate triangulated structure on the category T G of G-equivariant objects in T . We prove (under some technical conditions) that such structure exists. Supposed that an action on T is induced by a DG-action on some DG-enhancement of T , we construct a DG-enhancement of T G. Also, we show that the relation “to be an equivariant category with respect to a finite abelian group action” is symmetric on idempotent complete additive categories. 1. Introduction Triangulated categories became very popular in algebra, geometry and topology in last decades. In algebraic geometry, they arise as derived categories of coherent sheaves on algebraic varieties or stacks. It turned out that some geometry of varieties can be under- stood well through their derived categories and homological algebra of these categories. Therefore it is always interesting and important to understand how different geometrical operations, constructions, relations look like on the derived category side. In this paper we are interested in autoequivalences of derived categories or, more gen- eral, in group actions on triangulated categories. For X an algebraic variety, there are “expected” autoequivalences of Db(coh(X)) which are induced by automorphisms of X or by tensoring into line bundles on X. If X is a smooth Fano or if KX is ample, essentially that is all: Bondal and Orlov have shown in [6] that for smooth irreducible projective b variety X with KX or −KX ample all autoequivalences of D (coh(X)) are generated by automorphisms of X, twists into line bundles on X and translations.
    [Show full text]
  • Classification of Subcategories in Abelian Categories and Triangulated Categories
    CLASSIFICATION OF SUBCATEGORIES IN ABELIAN CATEGORIES AND TRIANGULATED CATEGORIES ATHESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS UNIVERSITY OF REGINA By Yong Liu Regina, Saskatchewan September 2016 c Copyright 2016: Yong Liu UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Yong Liu, candidate for the degree of Doctor of Philosophy in Mathematics, has presented a thesis titled, Classification of Subcategories in Abelian Categories and Triangulated Categories, in an oral examination held on September 8, 2016. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. Henning Krause, University of Bielefeld Supervisor: Dr. Donald Stanley, Department of Mathematics and Statistics Committee Member: Dr. Allen Herman, Department of Mathematics and Statistics Committee Member: *Dr. Fernando Szechtman, Department of Mathematics and Statistics Committee Member: Dr. Yiyu Yao, Department of Computer Science Chair of Defense: Dr. Renata Raina-Fulton, Department of Chemistry and Biochemistry *Not present at defense Abstract Two approaches for classifying subcategories of a category are given. We examine the class of Serre subcategories in an abelian category as our first target, using the concepts of monoform objects and the associated atom spectrum [13]. Then we generalize this idea to give a classification of nullity classes in an abelian category, using premonoform objects instead to form a new spectrum so that there is a bijection between the collection of nullity classes and that of closed and extension closed subsets of the spectrum.
    [Show full text]
  • Derived Functors for Hom and Tensor Product: the Wrong Way to Do It
    Derived Functors for Hom and Tensor Product: The Wrong Way to do It UROP+ Final Paper, Summer 2018 Kevin Beuchot Mentor: Gurbir Dhillon Problem Proposed by: Gurbir Dhillon August 31, 2018 Abstract In this paper we study the properties of the wrong derived functors LHom and R ⊗. We will prove identities that relate these functors to the classical Ext and Tor. R With these results we will also prove that the functors LHom and ⊗ form an adjoint pair. Finally we will give some explicit examples of these functors using spectral sequences that relate them to Ext and Tor, and also show some vanishing theorems over some rings. 1 1 Introduction In this paper we will discuss derived functors. Derived functors have been used in homo- logical algebra as a tool to understand the lack of exactness of some important functors; two important examples are the derived functors of the functors Hom and Tensor Prod- uct (⊗). Their well known derived functors, whose cohomology groups are Ext and Tor, are their right and left derived functors respectively. In this paper we will work in the category R-mod of a commutative ring R (although most results are also true for non-commutative rings). In this category there are differ- ent ways to think of these derived functors. We will mainly focus in two interpretations. First, there is a way to concretely construct the groups that make a derived functor as a (co)homology. To do this we need to work in a category that has enough injectives or projectives, R-mod has both.
    [Show full text]
  • Categorical Enhancements of Triangulated Categories
    On the uniqueness of ∞-categorical enhancements of triangulated categories Benjamin Antieau March 19, 2021 Abstract We study the problem of when triangulated categories admit unique ∞-categorical en- hancements. Our results use Lurie’s theory of prestable ∞-categories to give conceptual proofs of, and in many cases strengthen, previous work on the subject by Lunts–Orlov and Canonaco–Stellari. We also give a wide range of examples involving quasi-coherent sheaves, categories of almost modules, and local cohomology to illustrate the theory of prestable ∞-categories. Finally, we propose a theory of stable n-categories which would interpolate between triangulated categories and stable ∞-categories. Key Words. Triangulated categories, prestable ∞-categories, Grothendieck abelian categories, additive categories, quasi-coherent sheaves. Mathematics Subject Classification 2010. 14A30, 14F08, 18E05, 18E10, 18G80. Contents 1 Introduction 2 2 ∞-categorical enhancements 8 3 Prestable ∞-categories 12 arXiv:1812.01526v3 [math.AG] 18 Mar 2021 4 Bounded above enhancements 14 5 A detection lemma 15 6 Proofs 16 7 Discussion of the meta theorem 21 8 (Counter)examples, questions, and conjectures 23 8.1 Completenessandproducts . 23 8.2 Quasi-coherentsheaves. .... 27 8.3 Thesingularitycategory . .... 29 8.4 Stable n-categories ................................. 30 1 2 1. Introduction 8.5 Enhancements and t-structures .......................... 33 8.6 Categorytheoryquestions . .... 34 A Appendix: removing presentability 35 1 Introduction This paper is a study of the question of when triangulated categories admit unique ∞- categorical enhancements. Our emphasis is on exploring to what extent the proofs can be made to rely only on universal properties. That this is possible is due to J. Lurie’s theory of prestable ∞-categories.
    [Show full text]
  • Derived Categories. Winter 2008/09
    Derived categories. Winter 2008/09 Igor V. Dolgachev May 5, 2009 ii Contents 1 Derived categories 1 1.1 Abelian categories .......................... 1 1.2 Derived categories .......................... 9 1.3 Derived functors ........................... 24 1.4 Spectral sequences .......................... 38 1.5 Exercises ............................... 44 2 Derived McKay correspondence 47 2.1 Derived category of coherent sheaves ................ 47 2.2 Fourier-Mukai Transform ...................... 59 2.3 Equivariant derived categories .................... 75 2.4 The Bridgeland-King-Reid Theorem ................ 86 2.5 Exercises ............................... 100 3 Reconstruction Theorems 105 3.1 Bondal-Orlov Theorem ........................ 105 3.2 Spherical objects ........................... 113 3.3 Semi-orthogonal decomposition ................... 121 3.4 Tilting objects ............................ 128 3.5 Exercises ............................... 131 iii iv CONTENTS Lecture 1 Derived categories 1.1 Abelian categories We assume that the reader is familiar with the concepts of categories and func- tors. We will assume that all categories are small, i.e. the class of objects Ob(C) in a category C is a set. A small category can be defined by two sets Mor(C) and Ob(C) together with two maps s, t : Mor(C) → Ob(C) defined by the source and the target of a morphism. There is a section e : Ob(C) → Mor(C) for both maps defined by the identity morphism. We identify Ob(C) with its image under e. The composition of morphisms is a map c : Mor(C) ×s,t Mor(C) → Mor(C). There are obvious properties of the maps (s, t, e, c) expressing the axioms of associativity and the identity of a category. For any A, B ∈ Ob(C) we denote −1 −1 by MorC(A, B) the subset s (A) ∩ t (B) and we denote by idA the element e(A) ∈ MorC(A, A).
    [Show full text]
  • Perverse Sheaves
    Perverse Sheaves Bhargav Bhatt Fall 2015 1 September 8, 2015 The goal of this class is to introduce perverse sheaves, and how to work with it; plus some applications. Background For more background, see Kleiman's paper entitled \The development/history of intersection homology theory". On manifolds, the idea is that you can intersect cycles via Poincar´eduality|we want to be able to do this on singular spces, not just manifolds. Deligne figured out how to compute intersection homology via sheaf cohomology, and does not use anything about cycles|only pullbacks and truncations of complexes of sheaves. In any derived category you can do this|even in characteristic p. The basic summary is that we define an abelian subcategory that lives inside the derived category of constructible sheaves, which we call the category of perverse sheaves. We want to get to what is called the decomposition theorem. Outline of Course 1. Derived categories, t-structures 2. Six Functors 3. Perverse sheaves—definition, some properties 4. Statement of decomposition theorem|\yoga of weights" 5. Application 1: Beilinson, et al., \there are enough perverse sheaves", they generate the derived category of constructible sheaves 6. Application 2: Radon transforms. Use to understand monodromy of hyperplane sections. 7. Some geometric ideas to prove the decomposition theorem. If you want to understand everything in the course you need a lot of background. We will assume Hartshorne- level algebraic geometry. We also need constructible sheaves|look at Sheaves in Topology. Problem sets will be given, but not collected; will be on the webpage. There are more references than BBD; they will be online.
    [Show full text]
  • 81151635.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 158 (2011) 2103–2110 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol The higher derived functors of the primitive element functor of quasitoric manifolds ∗ David Allen a, , Jose La Luz b a Department of Mathematics, Iona College, New Rochelle, NY 10801, United States b Department of Mathematics, University of Puerto Rico in Bayamón, Industrial Minillas 170 Car 174, Bayamón 00959-1919, Puerto Rico article info abstract Article history: Let P be an n-dimensional, q 1 neighborly simple convex polytope and let M2n(λ) be the Received 15 June 2011 corresponding quasitoric manifold. The manifold depends on a particular map of lattices Accepted 20 June 2011 λ : Zm → Zn where m is the number of facets of P. In this note we use ESP-sequences in the sense of Larry Smith to show that the higher derived functors of the primitive element MSC: functor are independent of λ. Coupling this with results that appear in Bousfield (1970) primary 14M25 secondary 57N65 [3] we are able to enrich the library of nice homology coalgebras by showing that certain families of quasitoric manifolds are nice, at least rationally, from Bousfield’s perspective. © Keywords: 2011 Elsevier B.V. All rights reserved. Quasitoric manifolds Toric topology Higher homotopy groups Unstable homotopy theory Toric spaces Higher derived functors of the primitive element functor Nice homology coalgebras Torus actions Cosimplicial objects 1. Introduction Given an n-dimensional q 1 neighborly simple convex polytope P , there is a family of quasitoric manifolds M that sit over P .
    [Show full text]
  • Signed Exceptional Sequences and the Cluster Morphism Category
    SIGNED EXCEPTIONAL SEQUENCES AND THE CLUSTER MORPHISM CATEGORY KIYOSHI IGUSA AND GORDANA TODOROV Abstract. We introduce signed exceptional sequences as factorizations of morphisms in the cluster morphism category. The objects of this category are wide subcategories of the module category of a hereditary algebra. A morphism [T ]: A!B is an equivalence class of rigid objects T in the cluster category of A so that B is the right hom-ext perpendicular category of the underlying object jT j 2 A. Factorizations of a morphism [T ] are given by totally orderings of the components of T . This is equivalent to a \signed exceptional sequences." For an algebra of finite representation type, the geometric realization of the cluster morphism category is the Eilenberg-MacLane space with fundamental group equal to the \picture group" introduced by the authors in [IOTW15b]. Contents Introduction 2 1. Definition of cluster morphism category 4 1.1. Wide subcategories 4 1.2. Composition of cluster morphisms 7 1.3. Proof of Proposition 1.8 8 2. Signed exceptional sequences 16 2.1. Definition and basic properties 16 2.2. First main theorem 17 2.3. Permutation of signed exceptional sequences 19 2.4. c -vectors 20 3. Classifying space of the cluster morphism category 22 3.1. Statement of the theorem 23 3.2. HNN extensions and outline of proof 24 3.3. Definitions and proofs 26 3.4. Classifying space of a category and Lemmas 3.18, 3.19 29 3.5. Key lemma 30 3.6. G(S) is an HNN extension of G(S0) 32 4.
    [Show full text]
  • The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017)
    The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017) Richard Hughes May 12, 2017 1 Preliminaries on derived functors. 1.1 A computational definition of right derived functors. We begin by recalling that a functor between abelian categories F : A!B is called left exact if it takes short exact sequences (SES) in A 0 ! A ! B ! C ! 0 to exact sequences 0 ! FA ! FB ! FC in B. If in fact F takes SES in A to SES in B, we say that F is exact. Question. Can we measure the \failure of exactness" of a left exact functor? The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which we will define below, are in a precise sense the unique extension of F to an exact functor. Recall that an object I 2 A is called injective if the functor op HomA(−;I): A ! Ab is exact. An injective resolution of A 2 A is a quasi-isomorphism in Ch(A) A ! I• = (I0 ! I1 ! I2 !··· ) where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every A 2 A embeds into some injective object, we say that A has enough injectives { in this situation it is a theorem that every object admits an injective resolution. So, for A 2 A choose an injective resolution A ! I• and define the pth right derived functor of F applied to A by RpF (A) := Hp(F (I•)): Remark • You might worry about whether or not this depends upon our choice of injective resolution for A { it does not, up to canonical isomorphism.
    [Show full text]
  • Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution
    Annals of Mathematics 178 (2013), 835{919 http://dx.doi.org/10.4007/annals.2013.178.3.2 Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution By Roman Bezrukavnikov and Ivan Mirkovic´ To Joseph Bernstein with admiration and gratitude Abstract We prove most of Lusztig's conjectures on the canonical basis in homol- ogy of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncom- mutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equiva- lences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality. Contents 0. Introduction 837 0.1. Notations and conventions 841 1. t-structures on cotangent bundles of flag varieties: statements and preliminaries 842 R.B.
    [Show full text]
  • Elements of -Category Theory Joint with Dominic Verity
    Emily Riehl Johns Hopkins University Elements of ∞-Category Theory joint with Dominic Verity MATRIX seminar ∞-categories in the wild A recent phenomenon in certain areas of mathematics is the use of ∞-categories to state and prove theorems: • 푛-jets correspond to 푛-excisive functors in the Goodwillie tangent structure on the ∞-category of differentiable ∞-categories — Bauer–Burke–Ching, “Tangent ∞-categories and Goodwillie calculus” • 푆1-equivariant quasicoherent sheaves on the loop space of a smooth scheme correspond to sheaves with a flat connection as an equivalence of ∞-categories — Ben-Zvi–Nadler, “Loop spaces and connections” • the factorization homology of an 푛-cobordism with coefficients in an 푛-disk algebra is linearly dual to the factorization homology valued in the formal moduli functor as a natural equivalence between functors between ∞-categories — Ayala–Francis, “Poincaré/Koszul duality” Here “∞-category” is a nickname for (∞, 1)-category, a special case of an (∞, 푛)-category, a weak infinite dimensional category in which all morphisms above dimension 푛 are invertible (for fixed 0 ≤ 푛 ≤ ∞). What are ∞-categories and what are they for? It frames a possible template for any mathematical theory: the theory should have nouns and verbs, i.e., objects, and morphisms, and there should be an explicit notion of composition related to the morphisms; the theory should, in brief, be packaged by a category. —Barry Mazur, “When is one thing equal to some other thing?” An ∞-category frames a template with nouns, verbs, adjectives, adverbs, pronouns, prepositions, conjunctions, interjections,… which has: • objects • and 1-morphisms between them • • • • composition witnessed by invertible 2-morphisms 푓 푔 훼≃ ℎ∘푔∘푓 • • • • 푔∘푓 푓 ℎ∘푔 훾≃ witnessed by • associativity • ≃ 푔∘푓 훼≃ 훽 ℎ invertible 3-morphisms 푔 • with these witnesses coherent up to invertible morphisms all the way up.
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]