MATH 613: HOMOLOGICAL ALGEBRA LECTURES BY PROF. HARM DERKSEN; NOTES BY ALEKSANDER HORAWA These are notes from the course Math 613: Homological Algebra taught by Prof. Harm Derksen in Winter 2017 at the University of Michigan. They were LATEX'd by Aleksander Horawa. This version is from July 1, 2017. Please check if a new version is available at my website https://sites.google.com/site/aleksanderhorawa/. If you find a mistake, please let me know at
[email protected]. The textbook for this course was [Wei94], and the notes largely follow this book without specific reference. Citations are made where other resources were used. Contents 1. Review of category theory2 2. Algebraic topology 16 3. Homological algebra 22 4. Homological δ-functors 31 5. Projectives and left derived functors 33 6. Injectives and right derived functors 42 7. Limits 45 8. Sheaves and sheaf cohomology 47 9. Adjoint functors 50 10. Tor and Ext 55 11. Universal coefficients theorem 66 12. Quivers 69 13. Homological dimension 76 14. Local cohomology 89 15. Spectral sequences 90 16. Triangulated categories 106 17. Derived categories 115 References 120 1 2 HARM DERKSEN 1. Review of category theory We begin with a short review of the necessary category theory. Definition 1.1. A category C is (1) a class of objects, Obj C, and (2) for all A; B 2 Obj C, a set HomC(A; B) of morphisms from A to B, (3) for any A; B; C 2 Obj C, a composition map HomC(A; B) × HomC(B; C) ! HomC(A; C); (f; g) 7! g ◦ f = gf; (4) for any A 2 Obj C, a morphism idA 2 HomC(A; A), such that (a) for any A; B 2 Obj C and all f 2 HomC(A; B) idBf = f = fidA; (b) for any A; B; C; D 2 Obj C and any f : A ! B, g : B ! C, h: C ! D, the composi- tion is associative: (hg)f = h(gf): Note that Obj C may not be a set: for example, the category of sets cannot have the set of all objects (Russel paradox).