The Family Pleosporaceae: Intergeneric Relationships and Title Phylogenetic Perspectives Based on Sequence Analyses of Partial 28S Rdna

Total Page:16

File Type:pdf, Size:1020Kb

The Family Pleosporaceae: Intergeneric Relationships and Title Phylogenetic Perspectives Based on Sequence Analyses of Partial 28S Rdna The family Pleosporaceae: intergeneric relationships and Title phylogenetic perspectives based on sequence analyses of partial 28S rDNA Kodsueb, R; Vijaykrishna, D; Aptroot, A; Lumyong, S; Mckenzie, Author(s) EHC; Hyde, KD; Jeewon, R Citation Mycologia, 2006, v. 98 n. 4, p. 571-583 Issued Date 2006 URL http://hdl.handle.net/10722/57253 Rights Creative Commons: Attribution 3.0 Hong Kong License Mycologia, 98(4), 2006, pp. 571–583. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA Rampai Kodsueb niothelia, which is probably polyphyletic. Anamorphic Department of Biology, Faculty of Science, Chiang Mai characters appear to be significant (especially in University, Chiang Mai, Thailand Cochliobolus) while ascospore morphologies, such as Vijaykrishna Dhanasekaran shape and color and substrate occurrence are poor Centre for Research in Fungal Diversity, Department of indicators of phylogenetic relationships among these Ecology & Biodiversity, The University of Hong Kong, loculoascomycetes. Pokfulam Road, Hong Kong Key words: anamorphs, ascospore morphology, Andre´ Aptroot Loculoascomycetes, phylogeny, Pleospora, polyphy- Centraalbureau voor Schimmelcultures, P.O. Box letic, ribosomal DNA 85167, 3508 AD Utrecht, The Netherlands Saisamorn Lumyong INTRODUCTION Department of Biology, Faculty of Science, Chiang Mai The largest family within the Pleosporales, Pleospor- University, Chiang Mai, Thailand aceae, comprises 17 genera and 111 species (Kirk et al Eric H.C. McKenzie 2001). Species are parasites or saprobes on wood and Landcare Research, Private Bag 92170, Auckland, dead herbaceous stems or leaves (Sivanesan 1984). New Zealand The classification in the Pleosporaceae has been Kevin D. Hyde based primarily on the Pleospora type of centrum Rajesh Jeewon1 development (Dong et al 1998) and asci that are Centre for Research in Fungal Diversity, Department of interspersed with pseudoparaphyses in the asco- Ecology & Biodiversity, The University of Hong Kong, stroma. These pseudoparaphyses originate above the Pokfulam Road, Hong Kong hymenial layer and grow downward among the asci to fuse at the base of the locule (Wehmeyer 1975). Ascomata are perithecial, initially immersed and Abstract: The Pleosporaceae is an important locu- become erumpent and are usually black and some- loascomycete family. There has been disagreement, times hairy or setose. Asci are fissitunicate, cylindrical, however, regarding the taxonomic placement of with an ocular chamber and pseudoparaphyses are many genera within this family. This study investigates cellular. Ascospores are usually brown and phragmo- phylogenetic relationships among the genera Cochlio- sporous or dictyosporous (Dong et al 1998, Kirk et al bolus, Kirschsteiniothelia, Leptosphaerulina, Macroven- 2001). Many pleosporaceous taxa are important turia, Pleospora, Pyrenophora, and Wettsteinina. Partial plant pathogens. For instance Cochliobolus heterostro- 28S rDNA sequences from taxa within these genera phus causes southern corn leaf blight and Pyrenophora were analyzed with maximum parsimony, likelihood graminea is the causal agent of barley leaf stripe and Bayesian methods. Cochliobolus can be segregated (Agrios 2005). Their anamorphs are usually hypho- broadly into two groups as previously proposed. mycetes and also have been reported to cause plant Pleospora is polyphyletic in its current sense. Taxa disease in cereals (e.g. Bipolaris maydis, Exserohilum with Stemphylium anamorphs are closely related to turcicum and Helminthosporium oryzae) (Farr et al Cochliobolus and fit within the Pleosporaceae, whereas 1989, Berbee 1996, Krupinsky et al 2004, Agrios the affinities of Pleospora herbarum and P. ambigua are 2005). still ambiguous. Pyrenophora constitutes a monophy- The Pleosporaceae historically was placed in the letic group within the Pleosporaceae, whereas Lepto- Sphaeriales (e.g. Winter 1887, Ellis and Everhart sphaerulina and Macroventuria appear to share 1892, Lindau 1897) based on immersed perithecia phylogenetic affinities with the Leptosphaeriaceae containing paraphyses (Wehmeyer 1975). The family and Phaeosphaeriaceae. Phylogenies indicate that then was transferred to the Pseudosphaeriaceae, Wettsteinina should be excluded from the Pleospor- which was later raised to ordinal rank as the Pseudo- aceae. Similar findings are reported for Kirschstei- sphaeriales (Theissen and Sydow 1917, Wehmeyer 1975). Luttrell (1955) treated the name Pseudo- Accepted for publication 30 May 2006. 1 Corresponding author. E-mail: [email protected], rjeewon@ sphaeriales as a synonym of the Dothideales and graduate.hku.hk suggested that pseudoparaphyses were important in 571 572 MYCOLOGIA their taxonomy. He considered the Pseudosphaer- Lophiostoma caulium, Massarina ramunculicola, Phaeo- iales as synonym of the Pleosporales and assigned sphaeria vegans and Venturia carpophila) were selected the Pleosporaceae, Venturiaceae and Lophiostomata- for this study. Species names and accession numbers of ceae, to the Pleosporales. Such a scheme largely was the isolates in this study are listed (TABLE II). For each isolate, pure cultures were plated on potato dextrose accepted by other mycologists (e.g. Wehmeyer 1975). agar and incubated at 25 C 10–20 d before DNA Wehmeyer (1975) pointed out that the family extraction. Genomic DNA was extracted from fresh Pleosporaceae has never been clearly delimited fungal mycelia following a protocol as outlined by following Luttrell’s concept and as a result taxa with Jeewon et al (2002, 2003, 2004) and Cai et al (2005). ascostromata of many different types, which pre- Briefly, mycelia were scraped off from the surface of viously were placed in other families, were placed the plate. The mycelia were ground with 200 mg of arbitrarily in the Pleosporaceae. sterilized quartz sand and 600 mLof23 CTAB The family Pleosporaceae is a heterogeneous extraction buffer (2% w/v CTAB, 100 mM Tris-HCL, group of bitunicate ascomycetes with genera pri- 1.4 M NaCl, 20 mM EDTA, pH 8) in a 1.5 mL Eppen- dorf tube. The contents were incubated at 60 C in marily included based on ascospore characteristics, a water bath 40 min with gentle swirling every 10 min. including shape, color, septation, pigmentation and The solution was extracted three times with an equal presence or absence of mucilaginous sheaths (Lut- volume of phenol:chloroform (1:1) at 13 000 g 30 min trell 1955, 1973; Wehmeyer 1961, 1975; Eriksson until no interface was visible. The upper aqueous phase 1981; Sivanesan 1984; Barr 1987b; Abler 2003). Other containing the DNA was precipitated by addition of families, such as the Leptosphaeriaceae, Melanom- 2.5 volumes of absolute ethanol and kept at 220 C mataceae, Phaeosphaeriaceae and Sporormiaceae, overnight. The precipitated DNA was washed two times however, also possess morphological characters sim- with 70% ethanol, dried under vacuum and suspended ilar to those of the Pleosporaceae, and this has in TE buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.0) resulted in considerable ambiguity and confusion and treated with RNase (1 mg/mL) before DNA amplification. in intergeneric and familial classification (Luttrell 1955, 1973; Wehmeyer 1961, 1975; von Arx and DNA amplification and sequencing of 28S rDNA.—Approx- Mu¨ller 1975; Sivanesan 1984; Barr 1987a, b; Eriksson imately 900 nucleotides at the 59 end of the 28S rDNA and Hawksworth 1986, 1991). Most genera in these region were amplified by primer pairs LROR/LRO5 families have morphological characters that overlap (Vilgalys and Hester 1990). PCR was carried out in m m in many respects and the taxonomic organization 50 L reaction volume containing 31.7 L sterile water, 5 mLof103 Mg free PCR buffer, 3 mLof25mMMgCl , among them has been modified on several occasions 2 4 mL of 2.5 mM deoxyribonucleotide triphosphate (TABLE I). Barr (1987b) redefined the Pleosporaceae (dNTPs), 1.5 mL of each 10 mM primers (LROR and to include Clathrospora (5Comoclathris), Kirschstei- LRO5), 3 mL of DNA template, 0.3 mL of 2.5 units of niothelia, Lewia and Pleospora and grouped Cochliobo- Taq DNA polymerase (Promega, Madison, Wisconsin). lus, Pyrenophora and Setosphaeria into the family Typical amplification parameters were: initial denatur- Pyrenophoraceae. Berbee (1996) disagreed, suggest- ation of 95 C for 3 min; 35 cycles of denaturation at ing that all those genera belong to the Pleosporaceae. 95 C 1 min, annealing at 52 C 50 s and extension at Given the considerable taxonomic confusion, this 72 C 1 min and final extension of 72 C 10 min. Double- TM study, based on phylogenetic analyses of rDNA stranded DNA products were purified with GFX PCR DNA and Gel Band Purification Kit (Amersham sequence data, was undertaken to (i) verify the Biosciences, catalogue No. 27-9602-01) following man- familial placement of these genera and assess whether ufacturer’s protocol. Sequencing reactions were per- they represent natural groups, (ii) determine which formed and sequences determined automatically in an morphological characters are phylogenetically signi- Applied Biosystem 3730 Genetic Analyzer/Sequencer ficant and therefore are useful for generic delinea- (Genome Research Center, The University of Hong tion and (iii) assess whether phylogenies based on Kong) using PCR primers mentioned above. molecular characters are concordant with any of the Phylogenetic analyses.—Fifty-four taxa from different traditional morphology-based
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Mycologie, 2013, 34 (4): 303-319 © 2013 Adac. Tous droits réservés Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces Rungtiwa PHOOKAMSAK a, b, c, Jian-Kui LIU a, b, Ekachai CHUKEATIROTE a, b, Eric H. C. McKENZIE d & Kevin D. HYDE a, b, c * a Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand b School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand c International Fungal Research & Development Centre, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China d Landcare Research, Private Bag 92170, Auckland, New Zealand Abstract – A Dothideomycete species, associated with leaf spots of sugarcane (Saccharum officinarum), was collected from Nakhonratchasima Province, Thailand. A single ascospore isolate was obtained and formed the asexual morph in culture. ITS, LSU, RPB2 and TEF1α gene regions were sequenced and analyzed with molecular data from related taxa. In a phylogenetic analysis the new isolate clustered with Leptosphaerulina americana, L. arachidicola, L. australis and L. trifolii (Didymellaceae) and the morphology was also comparable with Leptosphaerulina species. Leptosphaerulina saccharicola is introduced to accommodate this new collection which is morphologically and phylogenetically distinct from other species of Leptosphaerulina. A detailed description and illustration is provided for the new species, which is compared with similar taxa. The type specimen of Pleosphaerulina oryzae, is transferred to Leptosphaerulina. It is redescribed and is a distinct species from L. australis, with which it was formerly synonymized. Leptosphaerulina species have been linked to Pithomyces but the lack of phylogenetic support for this link is discussed.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Two Pleosporalean Root-Colonizing Fungi, Fuscosphaeria Hungarica Gen
    Mycological Progress (2021) 20:39–50 https://doi.org/10.1007/s11557-020-01655-8 ORIGINAL ARTICLE Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary Alexandra Pintye1 & Dániel G. Knapp2 Received: 15 May 2020 /Revised: 14 November 2020 /Accepted: 29 November 2020 # The Author(s) 2020 Abstract In this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grass- lands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the
    [Show full text]
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • Genetic Diversity and Population Structure of Corollospora Maritima Sensu Lato: New Insights from Population Genetics
    Botanica Marina 2016; 59(5): 307–320 Patricia Veleza,*, Jaime Gasca-Pinedab, Akira Nakagiri, Richard T. Hanlin and María C. González Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics DOI 10.1515/bot-2016-0058 Received 22 June, 2016; accepted 24 August, 2016; online first proven to decrease genetic diversity, a conservation genet- 26 September, 2016 ics approach to assess this matter is urgent. Our results revealed the occurrence of five genetic lineages with dis- Abstract: The study of genetic variation in fungi has been tinctive environmental preferences and an overlapping poor since the development of the theoretical underpin- geographical distribution, agreeing with previous studies nings of population genetics, specifically in marine taxa. reporting physiological races within this species. Corollospora maritima sensu lato is an abundant cosmo- Keywords: dispersal; gene flow; ITS rDNA; marine Asco- politan marine fungus, playing a crucial ecological role in mycota; molecular ecology. the intertidal environment. We evaluated the extent and distribution of the genetic diversity in the nuclear riboso- mal internal transcribed spacer region of 110 isolates of this ascomycete from 19 locations in the Gulf of Mexico, Introduction Caribbean Sea and Pacific Ocean. The diversity estimates Sandy beach ecosystems harbor a unique biodiversity, demonstrated that C. maritima sensu lato possesses a high which is highly adapted to endure dynamic and extreme genetic diversity compared to other cosmopolitan fungi, conditions. This biodiversity performs critical habitat with the highest levels of variability in the Caribbean Sea. functions, providing a range of ecological services not Globally, we registered 28 haplotypes, out of which 11 available through other ecosystems (McLachlan and were specific to the Caribbean Sea, implying these popu- Brown 2006, Schlacher and Connolly 2009).
    [Show full text]
  • AR TICLE One Fungus = One Name: DNA and Fungal Nomenclature
    GRLLPDIXQJXV IMA FUNGUS · VOLUME 2 · NO 2: 113–120 One Fungus = One Name: DNA and fungal nomenclature twenty years after ARTICLE PCR -RKQ:7D\ORU 8QLYHUVLW\RI&DOLIRUQLD%HUNHOH\.RVKODQG+DOO%HUNHOH\&$86$HPDLOMWD\ORU#EHUNHOH\HGX Abstract: 6RPHIXQJLZLWKSOHRPRUSKLFOLIHF\FOHVVWLOOEHDUWZRQDPHVGHVSLWHPRUHWKDQ\HDUVRIPROHFXODU Key words: SK\ORJHQHWLFVWKDWKDYHVKRZQKRZWRPHUJHWKHWZRV\VWHPVRIFODVVL¿FDWLRQWKHDVH[XDO³'HXWHURP\FRWD´ $PVWHUGDP'HFODUDWLRQ DQGWKHVH[XDO³(XP\FRWD´0\FRORJLVWVKDYHEHJXQWRÀRXWQRPHQFODWRULDOUHJXODWLRQVDQGXVHMXVWRQHQDPH (1$6 IRU RQH IXQJXV 7KH ,QWHUQDWLRQDO &RGH RI %RWDQLFDO 1RPHQFODWXUH ,&%1 PXVW FKDQJH WR DFFRPPRGDWH 0\FR&RGH FXUUHQWSUDFWLFHRUEHFRPHLUUHOHYDQW7KHIXQGDPHQWDOGLIIHUHQFHLQWKHVL]HRIIXQJLDQGSODQWVKDGDUROHLQ nomenclature WKHRULJLQRIGXDOQRPHQFODWXUHDQGFRQWLQXHVWRKLQGHUWKHGHYHORSPHQWRIDQ,&%1WKDWIXOO\DFFRPPRGDWHV pleomorphic fungi PLFURVFRSLFIXQJL$QRPHQFODWRULDOFULVLVDOVRORRPVGXHWRHQYLURQPHQWDOVHTXHQFLQJZKLFKVXJJHVWVWKDW PRVWIXQJLZLOOKDYHWREHQDPHGZLWKRXWDSK\VLFDOVSHFLPHQ0\FRORJ\PD\QHHGWREUHDNIURPWKH,&%1 DQGFUHDWHD0\FR&RGHWRDFFRXQWIRUIXQJLNQRZQRQO\IURPHQYLURQPHQWDOQXFOHLFDFLGVHTXHQFH LH(1$6 IXQJL Article info:6XEPLWWHG-XQH$FFHSWHG-XQH3XEOLVKHG-XO\ INTRODUCTION papaveracea and the other as an anamorph, Brachycladium papaveris ,QGHUELW]LQet al )LJ 7KH¿IWHHQRWKHU It has been a bit over two decades since the polymerase chain members of the committee, eleven academics and four very UHDFWLRQ 3&5 FKDQJHGHYROXWLRQDU\ELRORJ\LQJHQHUDODQG knowledgeable staff, stared at me in disbelief when I said that IXQJDO V\VWHPDWLFV LQ SDUWLFXODU
    [Show full text]
  • Towards a Phylogenetic Clarification of Lophiostoma / Massarina and Morphologically Similar Genera in the Pleosporales
    Fungal Diversity Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales Zhang, Y.1, Wang, H.K.2, Fournier, J.3, Crous, P.W.4, Jeewon, R.1, Pointing, S.B.1 and Hyde, K.D.5,6* 1Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China 2Biotechnology Institute, Zhejiang University, 310029, P.R. China 3Las Muros, Rimont, Ariège, F 09420, France 4Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands 5School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 6International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034 Zhang, Y., Wang, H.K., Fournier, J., Crous, P.W., Jeewon, R., Pointing, S.B. and Hyde, K.D. (2009). Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales. Fungal Diversity 38: 225-251. Lophiostoma, Lophiotrema and Massarina are similar genera that are difficult to distinguish morphologically. In order to obtain a better understanding of these genera, lectotype material of the generic types, Lophiostoma macrostomum, Lophiotrema nucula and Massarina eburnea were examined and are re-described. The phylogeny of these genera is investigated based on the analysis of 26 Lophiostoma- and Massarina-like taxa and three genes – 18S, 28S rDNA and RPB2. These taxa formed five well-supported sub-clades in Pleosporales. This study confirms that both Lophiostoma and Massarina are polyphyletic. Massarina-like taxa can presently be differentiated into two groups – the Lentithecium group and the Massarina group.
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • Ecology and Taxonomy of Leptosphaerulina Spp. Associated with Turfgrasses in the United States
    Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States Steven W. Abler Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of Master of Science in Plant Pathology, Physiology, and Weed Science H.B. Couch, Chair A.B. Baudoin E.H. Ervin January 31, 2003 Blacksburg, Virginia Key Words: Leptosphaerulina, Turfgrass, Morphology, Phylogenetics, ITS, EF-1α Copyright 2003, Steven W. Abler Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States Steve W. Abler Abstract Leptosphaerulina spp. are common fungi that have been reported to colonize several turfgrass species. Controversy exists regarding the relationship of Leptosphaerulina spp. and their turfgrass hosts. The fungus has been classified as a saprophyte, senectophyte, weak pathogen, and pathogen of turfgrasses. There has also been conflicting reports regarding the delineation of species within the genus Leptosphaerulina. Because of the uncertainty regarding the ecology and taxonomy of the genus in relation to turfgrasses the present study was undertaken. The ITS and EF-1α gene regions were sequenced and analyzed to compare to the multiple taxonomic schemes reported in the literature. The ITS region offered no resolution of species; however, the phylogeny of the EF-1α gene was consistent with the six-species model of Graham and Luttrell. Inoculation experiments were performed on unstressed and artificially stressed plants to determine whether the fungi are pathogens, senectophytes, or saprophytes of turfgrasses. Perennial ryegrass and creeping bentgrass plants were stressed by placing them in a dew chamber set at 38ºC, 100% R.H., and no light for two and one days respectively.
    [Show full text]
  • Australia Biodiversity of Biodiversity Taxonomy and and Taxonomy Plant Pathogenic Fungi Fungi Plant Pathogenic
    Taxonomy and biodiversity of plant pathogenic fungi from Australia Yu Pei Tan 2019 Tan Pei Yu Australia and biodiversity of plant pathogenic fungi from Taxonomy Taxonomy and biodiversity of plant pathogenic fungi from Australia Australia Bipolaris Botryosphaeriaceae Yu Pei Tan Curvularia Diaporthe Taxonomy and biodiversity of plant pathogenic fungi from Australia Yu Pei Tan Yu Pei Tan Taxonomy and biodiversity of plant pathogenic fungi from Australia PhD thesis, Utrecht University, Utrecht, The Netherlands (2019) ISBN: 978-90-393-7126-8 Cover and invitation design: Ms Manon Verweij and Ms Yu Pei Tan Layout and design: Ms Manon Verweij Printing: Gildeprint The research described in this thesis was conducted at the Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland, 4102, Australia. Copyright © 2019 by Yu Pei Tan ([email protected]) All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or transmitted in any other forms by any means, without the permission of the author, or when appropriate of the publisher of the represented published articles. Front and back cover: Spatial records of Bipolaris, Curvularia, Diaporthe and Botryosphaeriaceae across the continent of Australia, sourced from the Atlas of Living Australia (http://www.ala. org.au). Accessed 12 March 2019. Taxonomy and biodiversity of plant pathogenic fungi from Australia Taxonomie en biodiversiteit van plantpathogene schimmels van Australië (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op donderdag 9 mei 2019 des ochtends te 10.30 uur door Yu Pei Tan geboren op 16 december 1980 te Singapore, Singapore Promotor: Prof.
    [Show full text]