Zoonotic Diseases of Companion Animals

Total Page:16

File Type:pdf, Size:1020Kb

Zoonotic Diseases of Companion Animals Zoonotic Diseases Direct Contact and Fomite These diseases may be spread by bites, scratches, or direct contact with of Companion animal tissues or fluids (e.g., urine, feces, saliva). Disease transmission Animals may also occur indirectly through contact with contaminated objects or surfaces (fomites), such as cages, aquaria, bowls, or bedding. Routes of Transmission • Acariasis (mange) • Lymphocytic • Pasteurellosis • Brucellosis Choriomeningitis • Plague This handout lists • Cat Scratch Disease • Melioidosis • Q Fever potential routes of • Dermatophytosis • Monkeypox • Rabies transmission of select zoonotic diseases • Glanders • Mycobacteriosis • Rat Bite Fever between animals and humans. • Influenza • Methicillin-Resistant • Salmonellosis • Leptospirosis Staphylococcus • Sporotrichosis aureus (MRSA) • Tularemia Additional routes may occur between animals. Oral These diseases can be transmitted by ingestion of food or water contaminated with a pathogen. This typically occurs from fecal contamination from unwashed hands or soil contact. • Baylisascariasis • Echinococcosis • Toxocariasis • Campylobacteriosis • Giardiasis • Toxoplasmosis • Cryptosporidiosis • Hookworm Infection • Trichuriasis • Escherichia coli • Leptospirosis • Tularemia O157:H7 • Salmonellosis • Yersiniosis Aerosol These diseases can be transmitted through the air by droplet transfer, fluids aerosolized from an animal to a person (e.g., sneezing or cough) or by aerosolized materials which are inhaled. • Bordetella Infection • Leptospirosis • Q Fever • Cryptococcosis • Melioidosis • Tularemia • Hantavirus • Plague • Influenza • Psittacosis Vector-borne These diseases are transmitted by an arthropod vector. FLEAS TICKS TRIATOMINE • Plague • Ehrlichiosis (“kissing bugs”) • Trypanosomiasis College of Veterinary Medicine MOSQUITOES • Lyme Disease Iowa State University • Rocky Mountain (Chagas disease) • West Nile Encephalitis Ames, Iowa 50011 Spotted Fever Phone: (515) 294–7189 SAND FLIES • Tularemia FAX: (515) 294–8259 • Leishmaniasis E–mail: [email protected] Web: www.cfsph.iastate.edu © 2013 Zoonotic Diseases Dogs Brucellosis Leptospirosis Mange (acariasis) of Companion Campylobacteriosis Larva Migrans: Rabies Dermatophytosis Hookworms Salmonellosis Animals (ringworm) Roundworms Ectoparasites: fleas, ticks Whipworms By Animal Species Cats This handout lists Campylobacteriosis Ectoparasites: fleas, ticks Rabies select zoonotic diseases Cat Scratch Disease Larva Migrans Salmonellosis that may be carried by Cryptococcosis Mange (acariasis) Sporotrichosis companion animals Dermatophytosis Plague Toxoplasmosis and potentially (ringworm) Q Fever transmitted to humans. Ferrets and Rabbits Ferrets Roundworms Pasteurellosis Most zoonoses can be Campylobacteriosis Salmonellosis Salmonellosis prevented when proper Dermatophytosis Tuberculosis Tularemia precautions are taken. (ringworm) Rabbits Yersiniosis Ectoparasites: fleas Cheyletiellosis Influenza Dermatophytosis Rabies Ectoparasites Rodents Gerbils Hamsters Hedgehogs Mice and Rats Ectoparasites Campylobacteriosis Dermatophytosis Ectoparasites Leptospirosis Dermatophytosis (ringworm) Dermatophytosis Salmonellosis (ringworm) Lymphocytic (ringworm) Tularemia Ectoparasites choriomeningitis Leptospirosis Guinea Pigs Leptospirosis Salmonellosis Lymphocytic Campylobacteriosis Lymphocytic Yersiniosis choriomeningitis Chlamydiosis choriomeningitis Pasteurellosis Dermatophytosis Mange (acariasis) Rat bite fever (ringworm) Pasteurellosis Ringworm Ectoparasites Salmonellosis Salmonellosis Lymphocytic Tularemia Yersiniosis choriomeningitis Prairie Dogs Pasteurellosis Ectoparasites Salmonellosis Monkeypox Sarcoptic mange Plague Tularemia Pet Birds Campylobacteriosis Newcastle disease Salmonellosis Cryptococcosis Pasteurellosis Tuberculosis Ectoparasites Psittacosis College of Veterinary Medicine Reptiles and Amphibians Iowa State University Ames, Iowa 50011 Campylobacteriosis Mycobacteriosis Salmonellosis Phone: (515) 294–7189 FAX: (515) 294–8259 Aquarium Fish E–mail: [email protected] Chlamydiosis Erysipeloid Melioidosis Web: www.cfsph.iastate.edu Cryptosporidiosis Mycobacteriosis Salmonellosis © 2013.
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Case Definition for Non-Pestis Yersiniosis Check This Box If This Po
    19-ID-03 Committee: Infectious Disease Title: Case Definition for Non-pestis Yersiniosis ☒Check this box if this position statement is an update to an existing standardized surveillance case definition: 18-ID-02 Synopsis: This position statement updates the case definition for non-pestis yersiniosis through the clarification of laboratory criteria. I. Statement of the Problem Non-pestis yersiniosis is an infection caused most commonly by the bacteria Yersinia enterocolitica or Yersinia pseudotuberculosis. These bacteria are normal intestinal and oropharyngeal colonizers of swine, and most commonly cause infections in children under 10 years of age, or adults over 70 years of age, through contaminated food. After Salmonella, Shigella, Campylobacter, and Shiga-toxin producing E. coli, th it is the 5 most commonly reported gastrointestinal bacterial illness reported through CDC Foodborne Diseases Active Surveillance Network (FoodNet), which monitors 10 sites in the United States for nine enteric pathogens transmitted through food. The increasing use of culture-independent diagnostic tests (CIDTs) in all parts of clinical medicine, and particularly for gastrointestinal illnesses, has also increased recognition of certain pathogens. Data from 2016 from FoodNet show a 29% increase in culture-confirmed and a 91% increase in CIDT-diagnosed Yersinia infections when compared to the 2013-2015 time frame. Yersinia enterocolitica and/or Yersinia pseudotuberculosis infections are reportable in 38 states, but no standard national definition exists for confirmed and probable cases. This position statement proposes a standardized case definition for non-pestis yersiniosis. II. Background and Justification Yersinia enterocolitica and Yersinia pseudotuberculosis are Gram negative rod-shaped or coccoid organisms that can be isolated from many animals and are most often transmitted to humans from undercooked or contaminated pork.
    [Show full text]
  • Are You Suprised ?
    B DAMB 721 Microbiology Final Exam B 100 points December 11, 2006 Your name (Print Clearly): _____________________________________________ I. Matching: The questions below consist of headings followed by a list of phrases. For each phrase select the heading that best describes that phrase. The headings may be used once, more than once or not at all. Mark the answer in Part 2 of your answer sheet. 1. capsid 7. CD4 2. Chlamydia pneumoniae 8. Enterococcus faecalis 3. oncogenic 9. hyaluronidase 4. pyruvate 10. interferon 5. Koplik’s spot 11. hydrophilic viruses 6. congenital Treponema pallidum 12. Streptococcus pyogenes 1. “spreading factor” produced by members of the staphylococci, streptococci and clostridia 2. viral protein coat 3. central intermediate in bacterial fermentation 4. persistant endodontic infections 5. a cause of atypical pneumonia 6. nonspecific defense against viral infection 7. has a rudimentary life cycle 8. HIV receptor 9. Hutchinson’s Triad 10. measles 11. resistant to disinfection 12. β-hemolytic, bacitracin sensitive, cause of suppurative pharyngitis 2 Matching (Continued): The questions below consist of diseases followed by a list of etiologic agents. Match each disease with the etiologic agent. Continue using Part 2 of your answer sheet. 1. dysentery 6. Legionnaire’s 2. botulism 7. gas gangrene 3. cholera 8. tuberculosis 4. diphtheria 9. necrotizing fascitis 5. enteric fever 10. pneumoniae/meningitis 13. Clostridium botulinum 14. Vibrio cholera 15. Mycobacterium bovis 16. Shigella species 17. Streptococcus pneumoniae 18. Clostridium perfringens 19. Salmonella typhi 20. Streptococcus pyogenes 3 II. Multiple Choice: Choose the ONE BEST answer. Mark the correct answer on Part 1 of the answer sheet.
    [Show full text]
  • Avian Cholera (Chapter 7)
    Chapter 7 Avian Cholera Synonyms 24–48 hours is more common. Susceptibility to infection and Fowl cholera, avian pasteurellosis, avian hemorrhagic the course of disease — whether or not it is acute or chronic septicemia — is dependent upon many factors including sex, age, ge- netic variation, immune status from previous exposure, con- Cause current infection, nutritional status, and other aspects of the Avian cholera is a contagious disease resulting from in- host; strain virulence and other aspects of the bacterium; and fection by the bacterium Pasteurella multocida. Several sub- dose and route of exposure. Infection in poultry generally species of bacteria have been proposed for P. multocida, and results when P. multocida enters the tissues of birds through at least 16 different P. multocida serotypes or characteristics the mucous membranes of the pharynx or upper air passages. of antigens in bacterial cells that differentiate bacterial vari- The bacterium can also enter through the membranes of the ants from each other have been recognized. The serotypes eye or through cuts and abrasions in the skin. It is assumed are further differentiated by other methods, including DNA that transmission is similar in wild birds. fingerprinting. These evaluations are useful for studying the Environmental contamination from diseased birds is a ecology of avian cholera (Fig. 7.1), because different sero- primary source for infection. High concentrations of types are generally found in poultry and free-ranging migra- P. multocida can be found for several weeks in waters where tory birds. These evaluations also show that different P. waterfowl and other birds die from this disease.
    [Show full text]
  • Q Fever in Small Ruminants and Its Public Health Importance
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever.
    [Show full text]
  • Zoonotic Diseases of Public Health Importance
    ZOONOTIC DISEASES OF PUBLIC HEALTH IMPORTANCE ZOONOSIS DIVISION NATIONAL INSTITUTE OF COMMUNICABLE DISEASES (DIRECTORATE GENERAL OF HEALTH SERVICES) 22 – SHAM NATH MARG, DELHI – 110 054 2005 List of contributors: Dr. Shiv Lal, Addl. DG & Director Dr. Veena Mittal, Joint Director & HOD, Zoonosis Division Dr. Dipesh Bhattacharya, Joint Director, Zoonosis Division Dr. U.V.S. Rana, Joint Director, Zoonosis Division Dr. Mala Chhabra, Deputy Director, Zoonosis Division FOREWORD Several zoonotic diseases are major public health problems not only in India but also in different parts of the world. Some of them have been plaguing mankind from time immemorial and some have emerged as major problems in recent times. Diseases like plague, Japanese encephalitis, leishmaniasis, rabies, leptospirosis and dengue fever etc. have been major public health concerns in India and are considered important because of large human morbidity and mortality from these diseases. During 1994 India had an outbreak of plague in man in Surat (Gujarat) and Beed (Maharashtra) after a lapse of around 3 decades. Again after 8 years in 2002, an outbreak of pneumonic plague occurred in Himachal Pradesh followed by outbreak of bubonic plague in 2004 in Uttaranchal. Japanese encephalitis has emerged as a major problem in several states and every year several outbreaks of Japanese encephalitis are reported from different parts of the country. Resurgence of Kala-azar in mid seventies in Bihar, West Bengal and Jharkhand still continues to be a major public health concern. Efforts are being made to initiate kala-azar elimination programme by the year 2010. Rabies continues to be an important killer in the country.
    [Show full text]
  • Anaplasma Phagocytophilum—A Widespread Multi-Host Pathogen with Highly Adaptive Strategies
    REVIEW ARTICLE published: 22 July 2013 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2013.00031 Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies Snorre Stuen 1*, Erik G. Granquist 2 and Cornelia Silaghi 3 1 Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Sandnes, Norway 2 Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway 3 Department of Veterinärwissenschaftliches, Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany Edited by: The bacterium Anaplasma phagocytophilum has for decades been known to cause Agustín Estrada-Peña, University of the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested Zaragoza, Spain areas in northern Europe. In recent years, the bacterium has been found associated Reviewed by: with Ixodes-tick species more or less worldwide on the northern hemisphere. Lee-Ann H. Allen, University of Iowa, USA A. phagocytophilum has a broad host range and may cause severe disease in several Jason A. Carlyon, Virginia mammalian species, including humans. However, the clinical symptoms vary from Commonwealth University School of subclinical to fatal conditions, and considerable underreporting of clinical incidents is Medicine, USA suspected in both human and veterinary medicine. Several variants of A. phagocytophilum *Correspondence: have been genetically characterized. Identification and stratification into phylogenetic Snorre Stuen, Department of Production Animal Clinical Sciences, subfamilies has been based on cell culturing, experimental infections, PCR, and Norwegian School of Veterinary sequencing techniques. However, few genome sequences have been completed so Science, Kyrkjeveien 332/334, far, thus observations on biological, ecological, and pathological differences between N-4325 Sandnes, Norway genotypes of the bacterium, have yet to be elucidated by molecular and experimental e-mail: [email protected] infection studies.
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Detection of ESKAPE Pathogens and Clostridioides Difficile in Simulated
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433847; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Detection of ESKAPE pathogens and Clostridioides difficile in 2 Simulated Skin Transmission Events with Metagenomic and 3 Metatranscriptomic Sequencing 4 5 Krista L. Ternusa#, Nicolette C. Keplingera, Anthony D. Kappella, Gene D. Godboldb, Veena 6 Palsikara, Carlos A. Acevedoa, Katharina L. Webera, Danielle S. LeSassiera, Kathleen Q. 7 Schultea, Nicole M. Westfalla, and F. Curtis Hewitta 8 9 aSignature Science, LLC, 8329 North Mopac Expressway, Austin, Texas, USA 10 bSignature Science, LLC, 1670 Discovery Drive, Charlottesville, VA, USA 11 12 #Address correspondence to Krista L. Ternus, [email protected] 13 14 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433847; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 1 Abstract 16 Background: Antimicrobial resistance is a significant global threat, posing major public health 17 risks and economic costs to healthcare systems. Bacterial cultures are typically used to diagnose 18 healthcare-acquired infections (HAI); however, culture-dependent methods provide limited 19 presence/absence information and are not applicable to all pathogens.
    [Show full text]
  • Bioterrorism Diseases Annex Infectious Disease Emergency Response (IDER) Plan
    Bioterrorism Diseases Annex Infectious Disease Emergency Response (IDER) Plan Contents I Background IV Activation & Notification II Response Organization V Operational Guidance III Purpose & Objectives VI Resources I. BACKGROUND A bioterrorism event is defined for the purposes of this annex as the deliberate introduction of pathogenic microorganisms or their products (bacteria, viruses, fungi or toxins) into a community. Potential bioterrorism agents are categorized by the Centers for Disease Control and Prevention (CDC) by category. Category A agents (highest priority) include organisms that pose a risk to national security because they can be easily disseminated or transmitted from person-to-person; result in high mortality rates and have the potential for major public health impact; might cause public panic and social disruption; and require special action for public health preparedness. These include: • Anthrax (Bacillus anthracis) • Smallpox (variola major) • Botulism (Clostridium botulinum • Tularemia (Franciscella tularensis) toxin) • Viral Hemorrhagic Fevers (filoviruses, • Plague (Yersinia pestis) arenaviruses) Of second highest priority are category B agents which are organisms that are moderately easy to disseminate; that result in moderate morbidity rates and low mortality rates; and that require enhanced diagnostic capacity and disease surveillance. • Brucellosis (Brucella species)* • Epsilon toxin of Clostridium perfringens • Food safety threats (Salmonella species, Escherichia coli O157:H7, Shigella) • Glanders (Burkholderia
    [Show full text]
  • Crimean-Congo Hemorrhagic Fever
    Crimean-Congo Importance Crimean-Congo hemorrhagic fever (CCHF) is caused by a zoonotic virus that Hemorrhagic seems to be carried asymptomatically in animals but can be a serious threat to humans. This disease typically begins as a nonspecific flu-like illness, but some cases Fever progress to a severe, life-threatening hemorrhagic syndrome. Intensive supportive care is required in serious cases, and the value of antiviral agents such as ribavirin is Congo Fever, still unclear. Crimean-Congo hemorrhagic fever virus (CCHFV) is widely distributed Central Asian Hemorrhagic Fever, in the Eastern Hemisphere. However, it can circulate for years without being Uzbekistan hemorrhagic fever recognized, as subclinical infections and mild cases seem to be relatively common, and sporadic severe cases can be misdiagnosed as hemorrhagic illnesses caused by Hungribta (blood taking), other organisms. In recent years, the presence of CCHFV has been recognized in a Khunymuny (nose bleeding), number of countries for the first time. Karakhalak (black death) Etiology Crimean-Congo hemorrhagic fever is caused by Crimean-Congo hemorrhagic Last Updated: March 2019 fever virus (CCHFV), a member of the genus Orthonairovirus in the family Nairoviridae and order Bunyavirales. CCHFV belongs to the CCHF serogroup, which also includes viruses such as Tofla virus and Hazara virus. Six or seven major genetic clades of CCHFV have been recognized. Some strains, such as the AP92 strain in Greece and related viruses in Turkey, might be less virulent than others. Species Affected CCHFV has been isolated from domesticated and wild mammals including cattle, sheep, goats, water buffalo, hares (e.g., the European hare, Lepus europaeus), African hedgehogs (Erinaceus albiventris) and multimammate mice (Mastomys spp.).
    [Show full text]
  • Choosing the Appropriate Surface Disinfectant
    antibiotics Review Back to Basics: Choosing the Appropriate Surface Disinfectant Angelica Artasensi , Sarah Mazzotta and Laura Fumagalli * Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; [email protected] (A.A.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +39-0250319303 Abstract: From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of having good biosafety measures and practices. To prevent infection from spreading and to maintain the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms can survive even for months. As a consequence, fomites serve as a second reservoir and transfer pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels. Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to prevent exposure to pathogens. Keywords: antimicrobial; disinfectant; surface disinfection; fomite; surface contamination; microor- ganisms Citation: Artasensi, A.; Mazzotta, S.; Fumagalli, L. Back to Basics: Choosing the Appropriate Surface 1. Introduction Disinfectant. Antibiotics 2021, 10, 613. In built environment, especially considering an indoor lifestyle, touching objects https://doi.org/10.3390/ or surfaces which surround us is integral to everyday life.
    [Show full text]