Are You Suprised ?

Total Page:16

File Type:pdf, Size:1020Kb

Are You Suprised ? B DAMB 721 Microbiology Final Exam B 100 points December 11, 2006 Your name (Print Clearly): _____________________________________________ I. Matching: The questions below consist of headings followed by a list of phrases. For each phrase select the heading that best describes that phrase. The headings may be used once, more than once or not at all. Mark the answer in Part 2 of your answer sheet. 1. capsid 7. CD4 2. Chlamydia pneumoniae 8. Enterococcus faecalis 3. oncogenic 9. hyaluronidase 4. pyruvate 10. interferon 5. Koplik’s spot 11. hydrophilic viruses 6. congenital Treponema pallidum 12. Streptococcus pyogenes 1. “spreading factor” produced by members of the staphylococci, streptococci and clostridia 2. viral protein coat 3. central intermediate in bacterial fermentation 4. persistant endodontic infections 5. a cause of atypical pneumonia 6. nonspecific defense against viral infection 7. has a rudimentary life cycle 8. HIV receptor 9. Hutchinson’s Triad 10. measles 11. resistant to disinfection 12. β-hemolytic, bacitracin sensitive, cause of suppurative pharyngitis 2 Matching (Continued): The questions below consist of diseases followed by a list of etiologic agents. Match each disease with the etiologic agent. Continue using Part 2 of your answer sheet. 1. dysentery 6. Legionnaire’s 2. botulism 7. gas gangrene 3. cholera 8. tuberculosis 4. diphtheria 9. necrotizing fascitis 5. enteric fever 10. pneumoniae/meningitis 13. Clostridium botulinum 14. Vibrio cholera 15. Mycobacterium bovis 16. Shigella species 17. Streptococcus pneumoniae 18. Clostridium perfringens 19. Salmonella typhi 20. Streptococcus pyogenes 3 II. Multiple Choice: Choose the ONE BEST answer. Mark the correct answer on Part 1 of the answer sheet. Use a #2 pencil. 1. The effector cell in an immediate hypersensitivity reaction is a/an: A. macrophage B. Langerhans cell C. IgE opsonized mast cell D. lymphocyte E. IgE opsonized erythrocyte 2. Characteristics of the Staphylococcus aureus enterotoxin that make it a dangerous cause of food poisoning: A. It resists heat. B. Staphylococcus aureus grows in high salt environments. C. It resists proteases such as trypsin. D. A and C. E. A, B and C. 3. Which of the following is an untrue statement about ornithosis? A. close association with parrots can be a risk factor B. it is also called psittacosis C. it is transmitted to humans via inhalation of Chlamydia psittaci D. it is transmitted to humans via inhalation of Coxiella burnettii E. B and C are untrue statements. 4. Which of the following is a skin test that: takes 24 to 72 hours to develop; is characterized by a lesion that is red, swollen and indurated; is mediated by activated macrophages? A. tuberculin B. coccidioidin C. histoplasmin D. A, B and C E. A and C 5. Complication of influenzae that occurs in children in conjunction with aspirin therapy: A. viral pneumonia B. bacterial pneumonia C. Reye’s syndrome D. croup 6. Dental equipment that penetrates intact skin: 4 A. Is critical and should be disinfected with a high level disinfectant. B. Is semi-critical and should be disinfected with a low level disinfectant. C. Is critical and should be sterilized. D. Is non-critical and can be disinfected with a low level disinfectant. E. Is semi-critical and can be sterilized or disinfected with a high level disinfectant. 7. One of the bacteria listed below is a common cause of nongonococcal urethritis and eye diseases. In addition, it often causes coinfections with Neisseria gonorrhoea. Which one? A. Mycoplasma pneumoniae B. Coxiella burnetii C. Chlamydia pneumoniae D. Chlamydia trachomatis 8. Which of the following complement factors will opsonize antigen? A. C3a, C4a and C5a B. C5a C. C3b, C4b D. C5b through 9 9. Bacteria that grow in low oxygen levels of 5 to 10% are: A. facultative anaerobes B. microaerophilic C. aerobes D. facultative aerobes E. capneic 10. The streptococci that cause human caries are: A. Streptococcus cricetus and S. ferus B. S. gordonii and S. mutans C. S. mutans and S. sobrinus D. S. salivarius and S. sobrinus 11. The most important polymer that comprises the extracellular matrix of a persistent cariogenic biofilm will be the: A. alpha-1,3-branched levan B. alpha-1,3-branched mutan C. alpha-1,6-banched glucan D. alpha-1,6-branched mutan 12. A child that suffers from a pyogenic cellulitis is predisposed to this sequelae of S. pyogenes infections. A. toxic shock syndrome B. acute glomerulonephritis C. rheumatic fever D. rheumatoid arthritis 5 13. The antigen used to subdivide S. pyogenes into serotypes is: A. the Lancefield carbohydrate B. the β hemolysin C. the M protein D. the teichoic acid E. A, C, and D. 14. A coagulase negative species of staphylococcus that cannot produce coagulase but is a cause of urinary tract infections, mostly in hospitalized patients. A. Staphylococcus aureus B. Staphylococcus saprophyticus C. Staphylococcus epidermidis D. A and B E. B and C 15. Members of the genus Mycoplasma are unique among bacteria because they: A. have a rudimentary life cycle. B. have a primary arthropod host that is both a vector and a reservoir C. lack a cell wall and instead have a trilaminar membrane D. have human intermediate host 16. Hepatitis D cannot cause disease except in a coinfection with: A. HAV B. HBV C. HCV D. HSV1 E. HHV7 17. Compared to the periodontal pathogens more of the bacteria that cause endodontic infections are: A. mesophiles B. Gram positive C. Gram negative D. aerobic 18. A Staphylococcus aureus that cannot produce this enzyme is avirulent. A. catalase B. lipase C. coagulase D. hyaluronidase E. staphylokinase 19. One of the following viruses is not oncogenic, which one? A. HAV 6 B. HCV C. HBV D. Papilloma virus E. Epstein Barr virus 20. This rickettsial pathogen is transmitted in aerosols of dried animal waste. A. Campylobacter fetus B. Rickettsia typhi C. Coxiella burnettii D. Rickettsia rickettsii E. Ehrlichia chaffeensis 21. Reagins are antibodies that: A. can be used to screen for previous infection with Treponema pallidum. B. are cross reactive with cardiolipin. C. can be used to measure the effectiveness of a treatment for syphilis D. A, B and C. E. A and B. 22. The following is a virulence factor for Vibrio cholera, Pseudomonas aeruginosa and Neisseria gonorrhoea: A. n-methylphenylalanine pilus B. a polysaccharide capsule C. an alginate capsule D. filamentous hemagglutinin E. AB toxin 23. One of the following is not a common cause of meningitis in newborns. Which one? A. Streptococcus pneumoniae B. Escherichia coli C. Listeria monocytogenes D. Streptococcus agalactiae 24. Activation of the Hageman Factor (XII) can result in initiation of all of these inflammatory cascades, but one is indirect and secondary to the activation of a cell. Which one? A. fibrin B. arachidonic acid cascade C. plasmin D. complement E. bradykinin 25. Neonatal diseases caused by Listeria monocytogenes are spread through: A. respiratory droplets B. transplacental passage 7 C. consumption of contaminated milk D. contact with family pets E. B and C 26. Which of the following is the best description of the symptoms of diseases caused by the Rickettsiales? A. intense headache, fever and rash B. a soft gummy tumor that may form in any organ in the body C. patchy infiltrates in the lungs D. consolidation of the lungs 27. If the portal of exit and portal of entry of a disease is on the same person: A. this is an endogenous infection. B. this is evidence that the disease is spread by a fomite. C. this is evidence of spread by a biological vector. D. the individual must be immunocompromised. 28. Form of bacterial gene transfer in which either a fragment of DNA or a plasmid from the donor bacterium is transferred across the cell membrane of the recipient bacterium This nuclear material is not contained in a viral coat, and it is not passed through a pilus. A. conjugation B. transduction C. transformation D. locomotion 29. A vaccine for anthrax is: A. EF and LF. B. PA and EF. C. LF and PA. D. PA. 30. A mild form of C. perfringens infection that does not have any associated pathology is: A. enterotoxic. B. cellulitis. C. histotoxic. D. pseudomembranous.colitis E. myonecrosis. 31. The infectious form of tuberculosis is: A. Disseminated (miliary) tuberculosis B. Secondary (active) tuberculosis C. The tubercle D. Latent tuberculosis 8 32. Mutations in the influenzae virus that result in a new strain of virus are: A. antigenic drift B. the result of mixed infection with two or more strains of influenzae virus one of which is an avian strain C. antigenic shift D. possible because the segmented ssRNA genome allows reassortment of the genes that encode the hemagglutinin and neuraminidase E. All except A 33. This bacterium is never transmitted from human to human; instead it is transmitted from water sources where it may be parasitic on amoebae. A. Pseudomonas aeruginosa B. Mycoplasma pneumoniae C. Legionella pneumophilia D. Rickettsia typhii 34. Meningitis may occur following a respiratory infection with this microorganism. Transmission of one form of meningitis is thought to result from inhalation of dried avian feces. What is the pathogen? A. Chalmydia psittaci B. Cryptococcus neoformans C. Echovirus D. Listeria monocytogenes E. Streptococcus pneumoniae 35. A non-infectious syphilis lesion is: A. gumma B. chancre C. maculopapule D. furuncle 36. Latency is an outcome particularly characteristic of which one of the following virus groups? A. Polioviruses B. Herpesviruses C. Rhinoviruses D. Influenza viruses 37. An opportunistic cancer that is associated with human herpes virus 8: A. Kaposi’s sarcoma B. Nasopharyngeal carcinoma C. B cell lymphoma D. Burkitt’s lymphoma 9 38. When a Venereal Disease Research Laboratories (VDRL) test is done on a patient’s serum using cardiolipin-coated latex beads as an antigen, the latex beads agglutinate.
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Pronunciation Guide to Microorganisms
    Pronunciation Guide to Microorganisms This pronunciation guide is provided to aid each student in acquiring a greater ease in discussing, describing, and using specific microorganisms. Please note that genus and species names are italicized. If they cannot be italicized, then they should be underlined (example: a lab notebook). Prokaryotic Species Correct Pronunciation Acetobacter aceti a-se-toh-BAK-ter a-SET-i Acetobacter pasteurianus a-se-toh-BAK-ter PAS-ter-iann-us Acintobacter calcoacetius a-sin-ee-toe-BAK-ter kal-koh-a-SEE-tee-kus Aerococcus viridans (air-o)-KOK-kus vi-ree-DANS Agrobacterium tumefaciens ag-roh-bak-TEAR-ium too-me-FAY-she-ens Alcaligenes denitrificans al-KAHL-li-jen-eez dee-ni-TREE-fee-cans Alcaligenes faecalis al-KAHL-li-jen-eez fee-KAL-is Anabaena an-na-BEE-na Azotobacter vinelandii a-zoe-toe-BAK-ter vin-lan-DEE-i Bacillus anthracis bah-SIL-lus AN-thray-sis Bacillus lactosporus bah-SIL-lus LAK-toe-spore-us Bacillus megaterium bah-SIL-lus Meg-a-TEER-ee-um Bacillus subtilis bah-SIL-lus SA-til-us Borrelia recurrentis bore-RELL-ee-a re-kur-EN-tis Branhamella catarrhalis bran-hem-EL-ah cat-arr-RAH-lis Citrobacter freundii sit-roe-BACK-ter FROND-ee-i Clostridium perfringens klos-TREH-dee-um per-FRINGE-enz Clostridium sporogenes klos-TREH-dee-um spore-AH-gen-ease Clostridium tetani klos-TREH-dee-um TET-ann-ee Corynebacterium diphtheriae koh-RYNE-nee-back-teer-ee-um dif-THEE-ry-ee Corynebacterium hofmanni koh-RYNE-nee-back-teer-ee-um hoff-MAN-eye Corynebacterium xerosis koh-RYNE-nee-back-teer-ee-um zer-OH-sis Enterobacter
    [Show full text]
  • Compendium of Measures to Control Chlamydia Psittaci Infection Among
    Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017 Author(s): Gary Balsamo, DVM, MPH&TMCo-chair Angela M. Maxted, DVM, MS, PhD, Dipl ACVPM Joanne W. Midla, VMD, MPH, Dipl ACVPM Julia M. Murphy, DVM, MS, Dipl ACVPMCo-chair Ron Wohrle, DVM Thomas M. Edling, DVM, MSpVM, MPH (Pet Industry Joint Advisory Council) Pilar H. Fish, DVM (American Association of Zoo Veterinarians) Keven Flammer, DVM, Dipl ABVP (Avian) (Association of Avian Veterinarians) Denise Hyde, PharmD, RP Preeta K. Kutty, MD, MPH Miwako Kobayashi, MD, MPH Bettina Helm, DVM, MPH Brit Oiulfstad, DVM, MPH (Council of State and Territorial Epidemiologists) Branson W. Ritchie, DVM, MS, PhD, Dipl ABVP, Dipl ECZM (Avian) Mary Grace Stobierski, DVM, MPH, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Karen Ehnert, and DVM, MPVM, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Thomas N. Tully JrDVM, MS, Dipl ABVP (Avian), Dipl ECZM (Avian) (Association of Avian Veterinarians) Source: Journal of Avian Medicine and Surgery, 31(3):262-282. Published By: Association of Avian Veterinarians https://doi.org/10.1647/217-265 URL: http://www.bioone.org/doi/full/10.1647/217-265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Relapsing Fever in Young Refugees from East Africa Spinello Antinori1,2* , Valeria Colombo1 and Mario Corbellino1,2
    Antinori et al. Critical Care (2017) 21:205 DOI 10.1186/s13054-017-1777-z LETTER Open Access Relapsing fever in young refugees from East Africa Spinello Antinori1,2* , Valeria Colombo1 and Mario Corbellino1,2 See related letter by Cutuli et al. https://ccforum.biomedcentral.com/articles/10.1186/s13054-017-1666-5 We read with interest the letter by Cutuli et al. [1] leptospirosis, all other findings can be observed in describing a case of severe co-infection by Leptospira patients with severe clinical presentation of both dis- spp. and Borrelia recurrentis in a young female refugee eases. However, in the recent wave of LBRF observed in from East Africa. We would like to comment on several Europe, intensivists were faced with severe cases of issues raised by their paper. LBRF presenting with shock solely as a consequence of First, the authors state “nits were present on her the Jarisch-Herxheimer reaction precipitated by adminis- scalp…”. In our opinion, this sentence may mislead tration of antibiotics [4]. readers as meaning that “head lice” (Pediculus humanus A final point that deserves comment concerns the capitis) are the vectors of louse-borne relapsing fever microbiology diagnosis. Molecular biology by means of (LBRF). Indeed, body lice (Pediculus humanus humanus) real-time polymerase chain reaction in this case pro- are to date the only demonstrated vectors of the disease. vided the correct diagnosis of both infections. Although We are aware of only two reports providing proof that not clearly stated, the authors report that malaria was head lice can harbor B. recurrentis and consequently excluded among other possible differential diagnoses.
    [Show full text]
  • World Health Orsanization Manila
    REGIONAL OFFICE FOR THE WESTERN PACIFIC of the World Health Orsanization Manila REPORT ON THE SECOND REGIONAL SEMINAR ON VENEREAL DISEASE CONTROL MANILA. PHILIPPINES, 3 - 12 DECEMBER 1968 ., REGIONAL OFfiCE fOR THE WESTERN PACIFIC OF THE WORLD HEALTH ORGANIZATION MANILA ~PORl' ON rrHE SECOND REGIONAL SEMlNAR ON VENEREAL DISEASE CONTROL - Manila. Philippines 3 to 12 Decemher, 1968 WPRO 0144 SECOND RlOOIONAL SEMINAR ON VENEREAL DISEASE CONTBOL Sponsored by the WORLD HEALTH ORGANIZATION RIDIONAL OFFICE FOR THE WESTERN PACIFIC Manila, Philippines 3 to 12 December 1968 FINAL REPORT NOT FOR SALE PRINTED AND DISTRIBUTED by the REGIONAL OFFICE FOR THE WESTERN PACIFIC of the World Health Organization Manila, Philippines August 1969 CONTENTS PREFACE ~ 1. INTRODUCTION: THE CHANGING ENVIRONMENT •••••••••••••••••••••••• 1 2. NATURE AND ~ OF THE PBOBLEM .............................. 2 3. DIAGNOSIS OF VENEREAL DISEASES ....................•..••......•• 6 4.. TREA'D-mNT OF VENEREAL DlSEAS:e:f> ................................................................ .. 11 5.. VENEREAL DISEASE CONTROL .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 17 6. BEHAVIOURAL PA'1"1'ERNS, HEALTH ElXJCATION AND ATTITUDES ........... 33 7 .. roruRE (J(]IJ!I.()OK .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 35 8. SUMMARY AND RECOMMENDATIONS ............•..................•.... 35 9.. RE:P'ERmlCES .. .. .
    [Show full text]
  • Practical Infection Control Guidelines
    PRACTICAL INFECTION CONTROL GUIDELINES EDITION ONE CONTENTS INTRODUCTION 4 How to start 5 Four guiding principles 5 SECTION 1: HAND HYGIENE 6 Alcohol-based sanitisers 7 Hand washing 9 Factors that influence the effectiveness of hand hygiene 11 SECTION 2: PERSONAL PROTECTIVE EQUIPMENT 12 Laboratory coats/Scrubs 12 Non-sterile gowns 12 Gloves 13 Face protection 13 Respiratory protection 13 Footwear 14 Footbaths and foot mats 14 Table 1. Selection of appropriate protective equipment relative to risk 14 SECTION 3: ENVIRONMENTAL HYGIENE 15 Combining Cleaning and Disinfection 15 Cleaning 15 Disinfecting 16 Isolation Wards 16 Managing Patients in the isolation ward 17 Disinfectant selection 18 Table 2. Characteristics of selected disinfectants 19 Table 3. Commonly used disinfectants 20 Table 4. Antimicrobial spectrum of selected disinfectants 21 Miscellaneous items 21 SECTION 4: GENERAL PROCEDURES 22 Introduction 22 Cleaning of examination rooms 22 Cleaning of stethoscopes and smart devices 23 Cleaning of otoscopes 23 Cleaning of video-otoscopy units 23 Cleaning of diagnostic equipment (ultrasound machines, radiography machines) 23 Anaesthetic equipment disinfection 24 Cleaning of endoscopes 24 Endoscope disinfection with a liquid chemical agent involves five steps after leak testing 25 SECTION 4: GENERAL PROCEDURES CONTINUED 25 Surgery 25 Surgical Theatre 25 Personal Protective Equipment 25 Hand Hygiene 26 Preoperative-care 26 Skin Preparation 26 Post-operative care 26 Prophylactic antimicrobial use 26 Instrument sterilisation 27 Cold sterilisation using immersion in antiseptic solutions 27 Commonly performed high risk procedures 27 A. Otoscopic examination in a consult room 27 Instrument sterilisation 27 B. Ear flushing 28 Procedures area 28 Animal preparation 28 Personal Protective Equipment 28 Instrument sterilisation 29 C.
    [Show full text]
  • Zoonotic Diseases Birds
    Zoonotic Diseases Birds Zoonotic diseases Psittacosis (Ornithosis, Chlamydiosis): Psittacosis is caused by the bacteria Chlamydia psittaci. C. psittaci is common in wild birds and can occur in laboratory bird colonies. Infected birds are highly contagious to other birds and to humans. The organism is spread to humans by aerosolization of respiratory secretions or feces from the infected birds. Typical symptoms in the bird are diarrhea, ocular discharge, and nasal discharge. The infection in humans by C.psittaci, can cause fever, headache, myalgia chills, and upper and lower respiratory disease. Serious complications can occur and include pneumonia, hepatitis, myocarditis, thrombophlebitis and encephalitis. It is responsive to antibiotic therapy but relapses can occur in untreated infections. Prevention: Only disease-free flocks should be allowed into the research facility. Wild-caught birds or birds of unknown status should be treated prophylactically for 45 days with chlortetracycline. Animal Biosafety Level 2 practices are recommended for personnel working with naturally infected birds or experimentally infected birds. Wearing NIOSH certified dust masks should be considered in rooms housing birds of unknown health status. Newcastle Disease: Newcastle disease is caused by a paramyxovirus and can be seen in birds both wild and domestic. Transmission is mainly by aerosol but contaminated food, water and equipment can also transmit the infection within bird colonies. Pathogenic strains produce anorexia and respiratory disease in adult birds.Young birds often show neurologic signs. In humans the disease is characterized by conjunctivitis, fever, and respiratory symptoms. Prevention: The disease can be prevented by immunizing susceptible birds and obtaining birds from flocks free of infection.
    [Show full text]
  • Louisiana Morbidity Report
    Louisiana Morbidity Report Office of Public Health - Infectious Disease Epidemiology Section P.O. Box 60630, New Orleans, LA 70160 - Phone: (504) 568-8313 www.dhh.louisiana.gov/LMR Infectious Disease Epidemiology Main Webpage BOBBY JINDAL KATHY KLIEBERT GOVERNOR www.infectiousdisease.dhh.louisiana.gov SECRETARY September - October, 2015 Volume 26, Number 5 Cutaneous Leishmaniasis - An Emerging Imported Infection Louisiana, 2015 Benjamin Munley, MPH; Angie Orellana, MPH; Christine Scott-Waldron, MSPH In the summer of 2015, a total of 3 cases of cutaneous leish- and the species was found to be L. panamensis, one of the 4 main maniasis, all male, were reported to the Department of Health species associated with progression to metastasized mucosal and Hospitals’ (DHH) Louisiana Office of Public Health (OPH). leishmaniasis in some instances. The first 2 cases to be reported were newly acquired, a 17-year- The third case to be reported in the summer of 2015 was from old male and his father, a 49-year-old male. Both had traveled to an Australian resident with an extensive travel history prior to Costa Rica approximately 2 months prior to their initial medical developing the skin lesion, although exact travel history could not consultation, and although they noticed bug bites after the trip, be confirmed. The case presented with a non-healing skin ulcer they did not notice any flies while traveling. It is not known less than 1 cm in diameter on his right leg. The ulcer had been where transmission of the parasite occurred while in Costa Rica, present for 18 months and had not previously been treated.
    [Show full text]
  • Lice, Rodents, and Many Hopes: a Rare Disease in a Young Refugee Salvatore L
    Cutuli et al. Critical Care (2017) 21:81 DOI 10.1186/s13054-017-1666-5 LETTER Open Access Lice, rodents, and many hopes: a rare disease in a young refugee Salvatore L. Cutuli1, Gennaro De Pascale1*, Teresa Spanu2, Antonio M. Dell’Anna1, Maria G. Bocci1, Federico Pallavicini3, Fabiola Mancini4, Alessandra Ciervo4 and Massimo Antonelli1 Keywords: Migrants, Borrelia recurrentis, Leptospira, Borreliosis, Leptospirosis Migrants from countries with scarce resources represent Leptospira species, Borrelia species, Leishmania species, an increasing worldwide phenomenon providing a daily and Malaria species related infections. challenge for governments and humanitarian organiza- On day 3, the blood and urine samples were positive on tions [1, 2]. real-time polymerase chain reaction (PCR) [3, 4] for Lep- A teenage refugee from East Africa was admitted to tospira spp. (Fig. 1a) and Borrelia recurrentis (only in the our intensive care unit (ICU) with acute respiratory dis- blood sample; Fig. 1b). Antibiotic therapy with 100 mg tress syndrome (ARDS), hypotension, and jaundice. Nits doxycycline every 12 h and 2 g ceftriaxone every 12 h was were present on her scalp and she had no relevant past started, leading to a progressive improvement of the medical history. She arrived in Italy after travelling for patient’s clinical status. On day 21 she was moved to the 7 months under poor hygienic conditions. infectious disease ward, and 10 days later she ran away the ARDS was managed with protective mechanical venti- hospital and has never come back for clinic follow-up. lation (tidal volume 350 ml, plateau pressure 28 Borrelia recurrentis infection is a louse-borne disease cmH2O), high positive end-expiratory pressure (15 and Leptospirosis is a rat-borne zoonosis, both endemic in cmH2O), neuromuscular blocking agents, prone posi- areas characterized by a low hygiene condition.
    [Show full text]
  • Borrelia Species
    APPENDIX 2 Borrelia Species Likelihood of Secondary Transmission: • Secondary transmission of relapsing fever from blood Disease Agent: exposure or blood contact with broken skin or con- • Borrelia recurrentis—Tick-borne relapsing fever junctiva, contaminated needles • B. duttoni—Louse-borne relapsing fever At-Risk Populations: Disease Agent Characteristics: • Persons with exposure to the tick vector and people living in crowded conditions with degraded public • Not classified as either Gram-positive or Gram- health infrastructure negative, facultatively intracellular bacterium • Order: Spirochaetales; Family: Spirochaetaceae Vector and Reservoir Involved: • Size: 20-30 ¥ 0.2-0.3 mm • Nucleic acid: Approximately 1250-1570 kb of DNA • Argasid (soft) ticks: Tick-borne (endemic) relapsing fever. Rodents are the reservoir. Disease Name: • Human body louse: Louse-borne (epidemic) relaps- ing fever. No nonhuman reservoir • Relapsing fever Blood Phase: Priority Level: • Bacteria are present in high numbers in the blood • Scientific/Epidemiologic evidence regarding blood during febrile episodes and at lower levels between safety: Very low fevers. • Public perception and/or regulatory concern regard- • The duration of bacteremia is not well characterized, ing blood safety: Absent but recurrent fevers can persist for several weeks to • Public concern regarding disease agent: Very low months. Background: Survival/Persistence in Blood Products: • Relapsing fevers occur throughout the world, with the • No information for B. recurrentis; however, laboratory exception of a few areas in the Southwest Pacific. The studies indicate that B. burgdorferi survives in fresh distribution and occurrence of endemic tick-borne frozen plasma, RBCs, and platelets for the duration of relapsing fever (TBRF) are governed by the presence their storage period.
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]