PF 44(2) Table of Contents Publish Date: April 30, 2018

Total Page:16

File Type:pdf, Size:1020Kb

PF 44(2) Table of Contents Publish Date: April 30, 2018 PF 44(2) Table of Contents Publish date: April 30, 2018 PROPOSED IRA: Proposed Interim Revision Announcements USP MONOGRAPHS IN-PROCESS REVISION: In-Process Revision GENERAL CHAPTERS <2> ORAL DRUG PRODUCTS-PRODUCT QUALITY TESTS (USP42-NF37 1S) <41> BALANCES (USP42-NF37 1S) <701> DISINTEGRATION (USP42-NF37 1S) <729> GLOBULE SIZE DISTRIBUTION IN LIPID INJECTABLE EMULSIONS (USP42-NF37 1S) REAGENTS, INDICATORS, AND SOLUTIONS Reagent Specifications Octylamine [NEW] (USP42-NF37 1S) Poly(dimethylsiloxane-co-methylphenylsiloxane) [NEW] (USP42-NF37 1S) Silica Gel, Precoated Plates, with Fluorescence Indicator F254 [NEW] (USP42-NF37 1S) Sodium 1-Heptanesulfonate Monohydrate (USP42-NF37 1S) Tryptamine Hydrochloride [NEW] (USP42-NF37 1S) Test Solutions 1 M Phosphoric Acid TS [NEW] (USP42-NF37 1S) Volumetric Solutions 0.1 N Potassium Arsenite VS (USP42-NF37 1S) 0.1 N Sodium Hydroxide VS (USP42-NF37 1S) Chromatographic Columns G50 [NEW] (USP42-NF37 1S) L87 (USP42-NF37 1S) L117 [NEW] (USP42-NF37 1S) REFERENCE TABLES Container Specifications Container Specifications [NEW] (USP42-NF37) Description and Solubility PF 43(4) Table of Contents 1 | P a g e Description and Relative Solubility of USP and NF Articles (USP42-NF37 1S) Description and Solubility - A Description and Solubility - C Description and Solubility - F Description and Solubility - N Description and Solubility - S USP MONOGRAPHS Allopurinol Compounded Oral Suspension (USP42-NF37 1S) Aminoglutethimide (USP42-NF37 1S) Aminoglutethimide Tablets (USP42-NF37 1S) Aminosalicylate Sodium (USP42-NF37 1S) Aminosalicylate Sodium Tablets (USP42-NF37 1S) Aminosalicylic Acid Tablets (USP42-NF37 1S) Amlodipine and Olmesartan Medoxomil Tablets [NEW] (USP42-NF37 1S) Azithromycin for Injection (USP42-NF37 1S) Benazepril Hydrochloride Tablets (USP42-NF37 1S) Bivalirudin [NEW] (USP42-NF37 1S) Bivalirudin for Injection [NEW] (USP42-NF37 1S) Cefepime for Injection (USP42-NF37 1S) Chlorothiazide Sodium for Injection (USP42-NF37 1S) Cholecalciferol Capsules (USP42-NF37 1S) Clindamycin Injection (USP42-NF37 1S) Clindamycin Hydrochloride Capsules (USP42-NF37 1S) Clindamycin Hydrochloride Compounded Oral Solution [NEW] (USP42-NF37 1S) Clindamycin Hydrochloride Oral Solution (USP42-NF37 1S) Clindamycin Phosphate Topical Solution (USP42-NF37 1S) Clindamycin Phosphate Vaginal Inserts (USP42-NF37 1S) Clobetasol Propionate Ointment (USP42-NF37 1S) Dacarbazine (USP42-NF37 1S) Dacarbazine for Injection (USP42-NF37 1S) Desmopressin Acetate (USP42-NF37 1S) Desoximetasone (USP42-NF37 1S) Doxycycline (USP42-NF37 1S) Doxycycline Hyclate (USP42-NF37 1S) Ephedrine Hydrochloride (USP42-NF37 1S) Epoprostenol Sodium [NEW] (USP42-NF37 1S) Epoprostenol for Injection [NEW] (USP42-NF37 1S) Ergocalciferol Capsules (USP42-NF37 1S) Ergoloid Mesylates Sublingual Tablets (USP42-NF37 1S) Ergotamine Tartrate Sublingual Tablets (USP42-NF37 1S) Escitalopram Oral Solution (USP42-NF37 1S) Fosfomycin Tromethamine (USP42-NF37 1S) Glycopyrrolate Tablets (USP42-NF37 1S) Gonadorelin Acetate (USP42-NF37 1S) Hydroxychloroquine Sulfate (USP42-NF37 1S) Lamotrigine Tablets for Oral Suspension (USP42-NF37 1S) Loracarbef Capsules (USP42-NF37 1S) PF 43(4) Table of Contents 2 | P a g e Loracarbef for Oral Suspension (USP42-NF37 1S) Magnesium Carbonate (USP42-NF37 1S) Magnesium Trisilicate (USP42-NF37 1S) Manganese Chloride for Oral Solution (USP42-NF37 1S) Manganese Sulfate Injection (USP42-NF37 1S) Meclocycline Sulfosalicylate (USP42-NF37 1S) Meclocycline Sulfosalicylate Cream (USP42-NF37 1S) Mephenytoin (USP42-NF37 1S) Mephenytoin Tablets (USP42-NF37 1S) Meprednisone (USP42-NF37 1S) Meprobamate Oral Suspension (USP42-NF37 1S) Mesoridazine Besylate (USP42-NF37 1S) Mesoridazine Besylate Injection (USP42-NF37 1S) Mesoridazine Besylate Tablets (USP42-NF37 1S) Metaproterenol Sulfate Inhalation Solution (USP42-NF37 1S) Methacycline Hydrochloride Capsules (USP42-NF37 1S) Methdilazine Hydrochloride (USP42-NF37 1S) Methdilazine Hydrochloride Oral Solution (USP42-NF37 1S) Methdilazine Hydrochloride Tablets (USP42-NF37 1S) Methenamine Oral Solution (USP42-NF37 1S) Methenamine Mandelate for Oral Solution (USP42-NF37 1S) Methenamine Mandelate Oral Suspension (USP42-NF37 1S) Methenamine Mandelate Delayed-Release Tablets (USP42-NF37 1S) Minoxidil (USP42-NF37 1S) Minoxidil Tablets (USP42-NF37 1S) Naltrexone Hydrochloride Tablets (USP42-NF37 1S) Oxaprozin (USP42-NF37 1S) Phytonadione Compounded Oral Suspension [NEW] (USP42-NF37 1S) Prochlorperazine Maleate Tablets (USP42-NF37 1S) Pyridostigmine Bromide Oral Solution (USP42-NF37 1S) Pyridostigmine Bromide Extended-Release Tablets [NEW] (USP42-NF37 1S) Ropinirole Tablets (USP42-NF37 1S) Saccharin Calcium (USP42-NF37 1S) Saccharin Sodium (USP42-NF37 1S) Sisomicin Sulfate (USP42-NF37 1S) Sisomicin Sulfate Injection (USP42-NF37 1S) Sodium Phenylbutyrate Oral Powder [NEW] (USP42-NF37 1S) Sodium Phenylbutyrate Tablets [NEW] (USP42-NF37 1S) Sodium Thiosulfate (USP42-NF37 1S) Spironolactone (USP42-NF37 1S) Spironolactone Tablets (USP42-NF37 1S) Succinylcholine Chloride (USP42-NF37 1S) Testosterone Cypionate (USP42-NF37 1S) Testosterone Cypionate Injection (USP42-NF37 1S) Tiagabine Hydrochloride (USP42-NF37 1S) Triamterene and Hydrochlorothiazide Capsules (USP42-NF37 1S) Vancomycin Hydrochloride Compounded Oral Solution [NEW] (USP42-NF37 1S) Vitamin A (USP42-NF37 1S) PF 43(4) Table of Contents 3 | P a g e Vitamin A Capsules (USP42-NF37 1S) Vitamin A Oral Liquid Preparation (USP42-NF37 1S) Vitamin A Tablets (USP42-NF37 1S) Vitamin E (USP42-NF37 1S) Vitamin E Capsules (USP42-NF37 1S) Vitamin E Preparation (USP42-NF37 1S) Zolmitriptan (USP42-NF37 1S) DIETARY SUPPLEMENT MONOGRAPHS Chinese Skullcap Root [NEW] (USP42-NF37 1S) Chinese Skullcap Root Powder [NEW] (USP42-NF37 1S) Chinese Skullcap Root Dry Extract [NEW] (USP42-NF37 1S) Chrysanthemum Flower [NEW] (USP42-NF37 1S) Chrysanthemum Flower Powder [NEW] (USP42-NF37 1S) Chrysanthemum Flower Dry Extract [NEW] (USP42-NF37 1S) Wild Chrysanthemum Flower [NEW] (USP42-NF37 1S) Wild Chrysanthemum Flower Powder [NEW] (USP42-NF37 1S) Wild Chrysanthemum Flower Dry Extract [NEW] (USP42-NF37 1S) Ginkgo Capsules (USP42-NF37 1S) Ginkgo Tablets (USP42-NF37 1S) Guarana Seed [NEW] (USP42-NF37 1S) Guarana Seed Powder [NEW] (USP42-NF37 1S) Guarana Seed Dry Extract [NEW] (USP42-NF37 1S) Conjugated Linoleic Acids-Triglycerides [NEW] (USP42-NF37 1S) EXCIPIENTS USP and NF Excipients, Listed By Category [NEW] (USP42-NF37 1S) Briefing Introduction Flavors and Fragrance NF MONOGRAPHS Anise Oil (USP42-NF37 1S) Potassium Sorbate (USP42-NF37 1S) Saccharin (USP42-NF37 1S) Sorbic Acid (USP42-NF37 1S) Star Anise Oil [NEW] (USP42-NF37 1S) STAGE 4 HARMONIZATION: Stage 4 Harmonization STIMULI TO THE REVISION PROCESS STIMULI TO THE REVISION PROCESS PF 43(4) Table of Contents 4 | P a g e PF 43(4) Table of Contents 5 | P a g e .
Recommended publications
  • Review Electrochemical Immunosensors for Antibiotics
    Review Electrochemical Immunosensors for Antibiotic Detection Aleksandra Pollap and Jolanta Kochana * Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-6862-416 Received: 27 March 2019; Accepted: 25 April 2019; Published: 1 May 2019 Abstract: Antibiotics are an important class of drugs destined for treatment of bacterial diseases. Misuses and overuses of antibiotics observed over the last decade have led to global problems of bacterial resistance against antibiotics (ABR). One of the crucial actions taken towards limiting the spread of antibiotics and controlling this dangerous phenomenon is the sensitive and accurate determination of antibiotics residues in body fluids, food products, and animals, as well as monitoring their presence in the environment. Immunosensors, a group of biosensors, can be considered an attractive tool because of their simplicity, rapid action, low-cost analysis, and especially, the unique selectivity arising from harnessing the antigen–antibody interaction that is the basis of immunosensor functioning. Herein, we present the recent achievements in the field of electrochemical immunosensors designed to determination of antibiotics. Keywords: antibiotic; immunosensor; antibody; electrochemical; immunoassay; antibacterial resistance 1. Introduction In recent years, a rapid development of analytical methods employing biosensors has been observed. A biosensor is a small analytical device that consists of a bioreceptor and a transducer. The role of a bioreceptor is the recognition of the target analyte, while a transducer converts the biological signal, produced by the bioreceptor and depending on the concentration of analyte molecules, into a measured signal, e.g., electrical, thermal, or optical [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on Β-Alanine and Isatin
    Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin by Robert Philip Colaguori A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmaceutical Sciences University of Toronto © Copyright by Robert Philip Colaguori, 2016 ii Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin Robert Philip Colaguori Master of Science Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Epilepsy is the fourth-most common neurological disorder in the world. Approximately 70% of cases can be controlled with therapeutics, however 30% remain pharmacoresistant. There is no cure for the disorder, and patients affected are subsequently medicated for life. Thus, there is a need to develop compounds that can treat not only the symptoms, but also delay/prevent progression. Previous work resulted in the discovery of NC-2505, a substituted β-alanine with activity against chemically induced seizures. Several N- and α-substituted derivatives of this compound were synthesized and evaluated in the kindling model and 4-AP model of epilepsy. In the kindling model, RC1-080 and RC1-102 were able to decrease the mean seizure score from 5 to 3 in aged mice. RC1-085 decreased the interevent interval by a factor of 2 in the 4-AP model. Future studies are focused on the synthesis of further compounds to gain insight on structure necessary for activity. iii Acknowledgments First and foremost, I would like to thank my supervisor Dr. Donald Weaver for allowing me to join the lab as a graduate student and perform the work ultimately resulting in this thesis.
    [Show full text]
  • Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms
    International Journal of Molecular Sciences Article Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3H-1,2,4-Triazole-3-Thione (TP-315)—A New Anticonvulsant Drug Candidate—On Living Organisms Anna Makuch-Kocka 1,* , Marta Andres-Mach 2, Mirosław Zagaja 2, Anna Smiech´ 3 , Magdalena Pizo ´n 4 , Jolanta Flieger 4, Judyta Cielecka-Piontek 5 and Tomasz Plech 1 1 Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; [email protected] (M.A.-M.); [email protected] (M.Z.) 3 Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland; [email protected] 4 Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (M.P.); jolanta.fl[email protected] (J.F.) 5 Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 61-781 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Citation: Makuch-Kocka, A.; Andres-Mach, M.; Zagaja, M.; Smiech,´ Abstract: About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In A.; Pizo´n,M.; Flieger, J.; most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a Cielecka-Piontek, J.; Plech, T. Effect of Chronic Administration of stroke, trauma to the brain, or the use of psychotropic substances.
    [Show full text]
  • Antibiotic Use and Abuse: a Threat to Mitochondria and Chloroplasts with Impact on Research, Health, and Environment
    Insights & Perspectives Think again Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment Xu Wang1)†, Dongryeol Ryu1)†, Riekelt H. Houtkooper2)* and Johan Auwerx1)* Recently, several studies have demonstrated that tetracyclines, the antibiotics Introduction most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals Mitochondria and chloroplasts are ranging from round worms, fruit flies, and mice to human cell lines. Importantly, unique and subcellular organelles that a plant chloroplasts, like their mitochondria, are also under certain conditions have evolved from endosymbiotic - proteobacteria and cyanobacteria-like vulnerable to these and other antibiotics that are leached into our environment. prokaryotes, respectively (Fig. 1A) [1, 2]. Together these endosymbiotic organelles are not only essential for cellular and This endosymbiotic origin also makes organismal homeostasis stricto sensu, but also have an important role to play in theseorganellesvulnerabletoantibiotics. the sustainability of our ecosystem as they maintain the delicate balance Mitochondria and chloroplasts retained between autotrophs and heterotrophs, which fix and utilize energy, respec- multiple copies of their own circular DNA (mtDNA and cpDNA), a vestige of the tively. Therefore, stricter policies on antibiotic usage are absolutely required as bacterial DNA, which encodes for only a their use in research confounds experimental outcomes, and their uncontrolled few polypeptides, tRNAs and rRNAs [1, 3, applications in medicine and agriculture pose a significant threat to a balanced 4]. Furthermore, both mitochondria and ecosystem and the well-being of these endosymbionts that are essential to chloroplasts have bacterial-type ribo- sustain health.
    [Show full text]
  • Pharmaceutical Composition Comprising Brivaracetam and Lacosamide with Synergistic Anticonvulsant Effect
    (19) TZZ __T (11) EP 2 992 891 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.03.2016 Bulletin 2016/10 A61K 38/04 (2006.01) A61K 31/4015 (2006.01) A61P 25/08 (2006.01) (21) Application number: 15156237.8 (22) Date of filing: 15.06.2007 (84) Designated Contracting States: (71) Applicant: UCB Pharma GmbH AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 40789 Monheim (DE) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (72) Inventor: STOEHR, Thomas 2400 Mol (BE) (30) Priority: 15.06.2006 US 813967 P 12.10.2006 EP 06021470 (74) Representative: Dressen, Frank 12.10.2006 EP 06021469 UCB Pharma GmbH 22.11.2006 EP 06024241 Alfred-Nobel-Strasse 10 40789 Monheim (DE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: Remarks: 07764676.8 / 2 037 965 This application was filed on 24-02-2015 as a divisional application to the application mentioned under INID code 62. (54) PHARMACEUTICALCOMPOSITION COMPRISING BRIVARACETAM AND LACOSAMIDE WITH SYNERGISTIC ANTICONVULSANT EFFECT (57) The present invention is directed to a pharmaceutical composition comprising (a) lacosamide and (b) brivara- cetam for the prevention, alleviation or/and treatment of epileptic seizures. EP 2 992 891 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 992 891 A1 Description [0001] The present application claims the priorities of US 60/813.967 of 15 June 2006, EP 06 021 470.7 of 12 October 2006, EP 06 021 469.9 of 12 October 2006, and EP 06 024 241.9 of 22 November 2006, which are included herein by 5 reference.
    [Show full text]
  • Diazepam Therapy and CYP2C19 Genotype
    NLM Citation: Dean L. Diazepam Therapy and CYP2C19 Genotype. 2016 Aug 25. In: Pratt VM, McLeod HL, Rubinstein WS, et al., editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/ Diazepam Therapy and CYP2C19 Genotype Laura Dean, MD1 Created: August 25, 2016. Introduction Diazepam is a benzodiazepine with several clinical uses, including the management of anxiety, insomnia, muscle spasms, seizures, and alcohol withdrawal. The clinical response to benzodiazepines, such as diazepam, varies widely between individuals (1, 2). Diazepam is primarily metabolized by CY2C19 and CYP3A4 to the major active metabolite, desmethyldiazepam. Approximately 3% of Caucasians and 15 to 20% of Asians have reduced or absent CYP2C19 enzyme activity (“poor metabolizers”). In these individuals, standard doses of diazepam may lead to a higher exposure to diazepam. The FDA-approved drug label for diazepam states that “The marked inter-individual variability in the clearance of diazepam reported in the literature is probably attributable to variability of CYP2C19 (which is known to exhibit genetic polymorphism; about 3-5% of Caucasians have little or no activity and are “poor metabolizers”) and CYP3A4” (1). Drug: Diazepam Diazepam is used in the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. In acute alcohol withdrawal, diazepam may provide symptomatic relief from agitation, tremor, delirium tremens, and hallucinations. Diazepam is also useful as an adjunct treatment for the relief of acute skeletal muscle spasms, as well as spasticity caused by upper motor neuron disorders (3). There are currently 16 benzodiazepines licensed by the FDA.
    [Show full text]
  • STUDY GUIDE the TETRACYCLINE ANTIBIOTICS 1. Identify the Tetracyclines (Tcs) As First Or Second Generation Agents and by Duratio
    STUDY GUIDE THE TETRACYCLINE ANTIBIOTICS 1. Identify the tetracyclines (TCs) as first or second generation agents and by duration of action (short, intermediate and long). 2. Be able to identify the TC rings (A, B, C and D) and number the entire ring system. 3. Which organisms biosynthesize TCs? What are the biochemical precursors? 4. Identify the TWO acidic functionalities of the TC ring system and explain why they are acidic. Identify the basic functionality of the TCs. 5. Why are the TSs compounds zwitterionic at physiological pH? Which salts (of the base) are used and why these salts? 6. Understand the epimerization reaction; where it occurs and what is its significance. 7. Explain the tetracycline elimination reaction involving substituents in Ring C. When and why does this occur? What electronic factor drives this reaction to completion? 8. Why is the elimination reaction less likely to occur with demeclocycline than tetracycline? Why is it less likely with minocycline than demeclocycline? 9. What are the elimination products generally called? Explain why methacycline and meclocycline may also undergo an "elimination- type" reaction like those TCs with a 6-OH group? 10. Identify all of the TCs as acid unstable, intermediate acid stability and acid-stable and know why! Why is this reaction important? 11. What is an epianhydrotetracycline? How does it form and why is it's formation important? 12. How do isotetracyclines form? What is the key functional group in this reaction? Why is this reaction important? 13. What is the chelation reaction, when does it occur and why is it significant? 14.
    [Show full text]
  • WO 2007/147133 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 21 December 2007 (21.12.2007) WO 2007/147133 Al (51) International Patent Classification: (74) Agent: SARUSSI, Steven, J.; Mcdonnel Boehnen HuI- A61K9/20 (2006.01) A61K 31/65 (2006.01) bert & Berghoff LIp, 300 South Wacker Drive, Suite 3200, A61K9/00 (2006.01) A61P 31/00 (2006.01) Chicago, IL 60606 (US). (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US2007/071369 AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (22) International Filing Date: 15 June 2007 (15.06.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, (26) Publication Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW 60/813,925 15 June 2006 (15.06.2006) US 60/814,255 16 June 2006 (16.06.2006) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, SERENEX, INC.
    [Show full text]
  • 31295005186035.Pdf (3.964Mb)
    CYCLODEXTRINS AND MICELLES IN SEPARATIONS by TIMOTHY JOSEPH WARD, B.S. A DISSERTATION IN CHEMISTRY (ANALYTICAL) Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved 1 /1 May, 1987 h'C^ ACKN0WLEDGMENT5 I give my deepest appreciation to Dr. Armstrong for his guidance and constant support. His encouragement helped me to grow as an independent researcher. I also thank the members of my committee for their constructive criticism. I would like to express my love and gratitude to Karen, for her companionship and help made the entire process easier and more enjoyable. I give thanks and praise to our Lord Jesus Christ through whom all things are possible. Finally, I want to dedicate this dissertation to my mother and father, who placed such a high value on education. Their love and encouragement sustained me through the years. 11 TABLE OF C0NTENT5 ACKN0WLEDGMENT5 i i LI5T0FTABLE5 vi LI5T0FFIGURES viii PREFACE Xi CHAPTER PART ONE CYCL0DEXTRIN5 IN SEPARATI0N5 \. INTRODUCTION 2 Traditíonal Methods for Resolving Enantiomers 2 Separation of Enantiomers by HPLC 4 Cyclodextrins 8 Structure and Physical Properties 11 Preparation of Bonded Phases 20 11. MATERIALS AND METHODS 29 Instrumentation 29 111 Chemicals 30 Methods 31 III. RESULTS AND DI5CU55I0N 34 Enantiomeric Separations 34 Dansy] Amino Acids 35 Crown Ethers 43 Drug Stereoisomers 54 Routine Separations 59 Mechanism of Separation 67 Parameters Which Affect Separation 80 IV. CONCLUSIONS 92 REFERENCES 94 APPENDIX 99 PART TWO MICELLESINSEPARATIONS V. MICELLES 101 Introduction 101 Micelle Structure and Properties 101 Micelles in Chromatography 102 iv VI.
    [Show full text]
  • Drugs Affecting the Central Nervous System
    Drugs affecting the central nervous system 15. Antiepileptic drugs (AEDs) Epilepsy is caused by the disturbance of the functions of the CNS. Although epileptic seizures have different symptoms, all of them involve the enhanced electric charge of a certain group of central neurons which is spontaneously discharged during the seizure. The instability of the cell membrane potential is responsible for this spontaneous discharge. This instability may result from: increased concentration of stimulating neurotransmitters as compared to inhibiting neurotransmitters decreased membrane potential caused by the disturbance of the level of electrolytes in cells and/or the disturbance of the function of the Na+/K+ pump when energy is insufficient. 2 Mutations in sodium and potassium channels are most common, because they give rise to hyperexcitability and burst firing. Mutations in the sodium channel subunits gene have been associated with - in SCN2A1; benign familial neonatal epilepsy - in SCN1A; severe myoclonic epilepsy of infancy - in SCN1A and SCN1B; generalized epilepsy with febrile seizures The potassium channel genes KCNQ2 and KCNQ3 are implicated in some cases of benign familial neonatal epilepsy. Mutations of chloride channels CLCN2 gene have been found to be altered in several cases of classical idiopathic generalized epilepsy suptypes: child-epilepsy and epilepsy with grand mal on awakening. Mutations of calcium channel subunits have been identified in juvenile absence epilepsy (mutation in CACNB4; the B4 subunit of the L-type calcium channel) and idiopathic generalized epilepsy (CACN1A1). 3 Mutations of GABAA receptor subunits also have been detected. The gene encoding the 1 subunit, GABRG1, has been linked to juvenile myoclonic epilepsy; mutated GABRG2, encoding an abnormal subunit, has been associated with generalized epilepsy with febrile seizures and childhood absence epilepsy.
    [Show full text]
  • Assay of Mephenytoin Metabolism in Human Liver Microsomes by High-Performance Liquid Chromatography
    ANALYTICAL BIOCHEMISTRYlS1,286-29 1 (1985) Assay of Mephenytoin Metabolism in Human Liver Microsomes by High-Performance Liquid Chromatography U. THOMAS MEIER, THOMAS KRONBACH, AND URS A. MEYER Department of Pharmacology, Biocenter of the University, Basel, Switzerland Received May 8, 1985 The metabolism of mephenytoin to its two major metabolites, 4-OH-mephenytoin (4-OH-M) and 5-phenyl-5-ethylhydantoin (nirvanol) was studied in human liver microsomes by a reversed phase HPLC assay. Because of preferential hydroxylation of Smephenytoin in vivo, microsomes (5-300 rg protein) were incubated separately with 9 and R-mephenytoin. After addition of phenobarbital as internal standard, the incubation mixture was extracted with dichloromethane. The residue remaining after evaporation was dissolved in water and injected on a 60 X 4.6-mm reversed-phase column (5 k-C- 18). Elution with acetonitrile/methanoI/sodium perchlorate (20 mM, pH 2.5) led to almost baseline separation of mephenytoin, metabohtes, and phenobarbital. Quantitation was performed by uv-absorption at 204 nm by the internal standard method. Pro- pylene glycol was found to be the best solvent for mephenytoin, but inhibited the reaction non- competitively. 4-OH-M and nirvanol could be detected at concentrations in the incubation mixture as low as 40 and 80 nM, respectively. The rates of metabolite formation were linear with time and protein concentration. The reaction was found to be substrate stereoselective. At substrate concentrations below 0.5 mM Smephenytoin was preferentially hydroxylated to 4-OH-M, while R-mephenytoin was preferentially demethylated to nirvanol at all substrate concentrations tested (25- 1600 FM).
    [Show full text]