Molecular Phylogenetics Reveals First Record and Invasion of Saccostrea Species in the Caribbean

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetics Reveals First Record and Invasion of Saccostrea Species in the Caribbean Molecular phylogenetics reveals first record and invasion of Saccostrea species in the Caribbean Katrina M. Pagenkopp Lohan, Kristina M. Hill-Spanik, Mark E. Torchin, Ellen E. Strong, Robert C. Fleischer & Gregory M. Ruiz Marine Biology International Journal on Life in Oceans and Coastal Waters ISSN 0025-3162 Mar Biol DOI 10.1007/s00227-015-2637-5 1 23 Your article is protected by copyright and all rights are held exclusively by Springer-Verlag Berlin Heidelberg (outside the USA). This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Mar Biol DOI 10.1007/s00227-015-2637-5 ORIGINAL PAPER Molecular phylogenetics reveals first record and invasion of Saccostrea species in the Caribbean Katrina M. Pagenkopp Lohan · Kristina M. Hill‑Spanik · Mark E. Torchin · Ellen E. Strong · Robert C. Fleischer · Gregory M. Ruiz Received: 29 August 2014 / Accepted: 17 February 2015 © Springer-Verlag Berlin Heidelberg (outside the USA) 2015 Abstract Taxonomic uncertainty often limits our ability data from the mitochondrial cytochrome oxidase I gene to resolve biogeographic patterns and discern biological were combined with morphological criteria to confirm the invasions. Within the bivalve mollusks, this uncertainty is identities of ten oyster species of Ostreidae, Isognomoni- particularly acute for oysters, as the high degree of pheno- dae, and Pteriidae, focusing on the Pacific and Caribbean typic plasticity of their shells creates taxonomic confusion. coasts of Panama, since tropical biota have received the The integration of molecular data with shell morphology least study. The results indicate that Crassostrea virginica, can differentiate species, providing new insights into bioge- previously only reported from this region along the Yucatan ography, invasions, and ecology of this functionally impor- Peninsula and coast of Venezuela, also occurs in the Carib- tant group. As an initial step in resolving the identities and bean waters of Panama. We also document the first record current geographic distributions of oyster species, sequence for a species of Saccostrea, a genus native to the Pacific, suggesting an invasion by an unknown non-native Saccos- trea species that is now widespread along the Caribbean Communicated by C. Riginos. from the Panama Canal west to Bocas del Toro. Sequences Electronic supplementary material The online version of this of the internal transcribed spacer region (ITS1) of the ribo- article (doi:10.1007/s00227-015-2637-5) contains supplementary somal gene complex (rDNA) did not reveal any hybridi- material, which is available to authorized users. zation. Considering the high connectivity of shipping and boating in Panama, Saccostrea sp. may have been intro- K. M. Pagenkopp Lohan · K. M. Hill-Spanik · R. C. Fleischer Center for Conservation and Evolutionary Genetics, Smithsonian duced to the Caribbean by either recreational or commer- Conservation Biology Institute, National Zoological Park, cial vessels, but the timing and potential ecological effects Washington, DC 20008, USA of this invasion remain unknown. K. M. Pagenkopp Lohan (*) · K. M. Hill-Spanik · G. M. Ruiz Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA Introduction e-mail: [email protected] Oysters are ecosystem engineers, playing many vital roles Present Address: K. M. Hill-Spanik in coastal ecological processes, including nutrient cycling Grice Marine Lab, College of Charleston, Charleston, and benthic-pelagic coupling (Newell 2004), helping SC 29414, USA decrease eutrophication (Kemp et al. 2005), and creating habitat that serves as nurseries for commercially impor- M. E. Torchin Smithsonian Tropical Research Institute, Apartado, tant fish and crab species (Coen et al. 2007). Additionally, 0843-03092 Balboa, Ancon, Republic of Panama oysters serve as hosts for a variety of protistan parasites, some of which can cause massive host mortalities and alter E. E. Strong community structure and ecosystem dynamics (Villalba Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, et al. 2004; Burreson and Ford 2004; Carnegie and Cochen- DC 20560, USA nec-Laureau 2004). Although oysters contribute greatly to 1 3 Author's personal copy Mar Biol integral biotic processes in coastal waters, the geographic As the first step in a study to resolve the broad-scale bio- boundaries of many species are not well understood, and geography of oysters and their associated parasites across their taxonomy is often unclear. This is mainly due to their North and Central America, we used a combination of mor- phenotypically plastic shells, which can be greatly influ- phological criteria and sequences of the mitochondrial COI enced by environmental factors (Tack et al. 1992; Wilk and gene from multiple oyster species within the family Ostrei- Bieler 2009), making species difficult to identify and cir- dae and several families within the Pterioidea, focusing on cumscribe based on external shell characteristics alone. commonly occurring species from multiple locations along To add to the confusion, oyster species often have the Pacific and Caribbean coasts of Panama. Our goals widespread and overlapping geographic ranges, reflecting were to confirm the identities of the bivalve species col- both natural and anthropogenic mechanisms for disper- lected and to determine their distributions within Panama- sal. Many bivalve larvae have extended planktonic stages, nian waters. enabling them to disperse to distant locations (Scheltema 1986). Juvenile and adult oysters rafting on floating debris is another potential mechanism for the natural dispersal Materials and methods of some species, sometimes over vast distances (e.g., Ó Foighil et al. 1999; Donald et al. 2005). Bivalves can also Specimen collection be spread inadvertently via maritime traffic by attaching to the hulls of vessels (Gollasch 2002; Carlton 1992; David- We collected oysters from a variety of intertidal and subtidal son et al. 2009), as larvae in ballast water (Gollasch et al. habitats (primarily mangrove rhizophores, rocks, docks, pil- 2002; Briski et al. 2012), or associated with sea chests ings, etc.) from multiple locations on the Pacific and Carib- (Coutts et al. 2003; Coutts and Dodgshun 2007). Addition- bean coasts near the Panama Canal and at Bocas del Toro ally, many bivalve species have been moved deliberately (Fig. 1). Maps showing the distribution of three of the iden- for aquaculture purposes (McKindsey et al. 2007) and tified bivalves and all sampling locations were generated through the aquarium trade (Padilla and Williams 2004; using ArcGIS 10.2.2 for Desktop (Esri, Redlands, Califor- Weigle et al. 2005). All of these mechanisms aid in dis- nia). At the time of collection, physical data associated with persing bivalve species and modifying their distributions, the water were also collected (Electronic Supplementary which, when combined with the inherent difficulties of Material (ESM) Table S1). We placed oysters in coolers on morphological identification, can contribute to confusion in ice and, upon returning to the laboratory, kept the oysters understanding the geographic range of species or recogniz- at ~4 °C for no more than 72 h. Prior to the tissue sam- ing new invaders. pling, we removed epibionts and mud from the shells, then Increasingly, molecular markers are being used as an measured and shucked the oysters. Oysters were tentatively independent data source for species identification, to detect identified in the field to the lowest possible taxonomic level cryptic or unrecognized species, and to clarify persistent (genus or species), using standard bibliographic references taxonomic and biogeographic uncertainty. Molecular mark- [e.g., Romashko (1992), Tucker Abbott and Morris (1995), ers have been successfully used to differentiate members Kaplan (1982) and Coan and Valentich-Scott (2012)] and within the genus Crassostrea (e.g., Lam and Morton 2003; later compared with synoptic collections deposited in the Reece et al. 2008; Cordes et al. 2008; Sekino and Yamash- National Museum of Natural History. For molecular analy- ita 2013) and the genus Saccostrea (e.g., Lam and Morton ses, we sampled pieces of gill, mantle, and digestive gland 2006; Sekino and Yamashita 2013), and between other and preserved them in 95 % ethanol. The majority of shells closely related oyster genera (e.g., Klinbunga et al. 2005; were thoroughly cleaned, dried, labeled with unique identi- Liu et al. 2011), as well as aiding in resolving the distribu- fication numbers, and retained as vouchers. tions of other bivalve species. For example, sequence data confirmed the Trans-Atlantic geographic ranges of C. rhiz- DNA extraction, PCR amplification, and sequencing ophorae and C. gasar (Lapégue et al. 2002), as well as the identities and geographic ranges of multiple Crassostrea Following an overnight digestion with proteinase
Recommended publications
  • The History and Decline of Ostrea Lurida in Willapa Bay, Washington Author(S): Brady Blake and Philine S
    The History and Decline of Ostrea Lurida in Willapa Bay, Washington Author(s): Brady Blake and Philine S. E. Zu Ermgassen Source: Journal of Shellfish Research, 34(2):273-280. Published By: National Shellfisheries Association DOI: http://dx.doi.org/10.2983/035.034.0208 URL: http://www.bioone.org/doi/full/10.2983/035.034.0208 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 34, No. 2, 273–280, 2015. THE HISTORY AND DECLINE OF OSTREA LURIDA IN WILLAPA BAY, WASHINGTON BRADY BLAKE1 AND PHILINE S. E. ZU ERMGASSEN2* 1Washington State Department of Fish and Wildlife, 375 Hudson Street, Port Townsend, WA 98368; 2Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom ABSTRACT With an annual production of 1500 metric tons of shucked oysters, Willapa Bay, WA currently produces more oysters than any other estuary in the United States.
    [Show full text]
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Field Identification Guide to the Living Marine Resources In
    Guide to Families 29 BIVALVES Coastal species are of great interest to fisheries and have potential for exportation for eating purposes. Bivalves are caught mainly by divers and are also fished for pearls. Their flesh is of excellent quality. Since oysters remain alive out of the water for over 12 hours, they may exported to far destinations when still alive. Moreover, some species are collected for their nacreous shell and ability to develop pearls. The shell can be used in the mother of pearl industry. The “Guide to Families’’ andTECHNICAL ‘‘Guide to Species’’ TERMS include 5AND families MEASUREMENTS and 10 species, respectively. ligament Dorsal margin umbo posterior adductor cardinal tooth muscle scar lateral tooth Posterior Anterior margin margin shell height anterior adductor muscle scar pallial sinus pallial shell length line left valve (interior) Ventral margin ligament left valve right valve lunule umbo Adductor muscle: Byssus: Chomata: Muscle connecting the two valves of a shell, tending to draw them together. Hinge: Clump of horny threads spun by the foot, by which a Bivalve can anchor to a hard substrate. Ligament: Small denticles and corresponding pits located on the inner margin of the valves (Ostreidae and Gryphaeidae). Mantle: Top interlocking margin of the valves, often with shelly projections (teeth) and corresponding recesses (sockets). Muscle scar: Horny, elastic structure joining the two valves dorsally. Pallial line: Fleshy sheet surrounding vital organs and composed of two lobes, one lining and secreting each valve. Umbo: Impression marking the place of attachment of a muscle inside the shell. A line near the internal margin of valve, marking the site of attachment of the mantle edge.
    [Show full text]
  • Richness and Distribution of Tropical Oyster Parasites in Two Oceans
    1 Richness and distribution of tropical oyster parasites in two oceans KATRINA M. PAGENKOPP LOHAN1,2*, KRISTINA M. HILL-SPANIK1,2†,MARK E. TORCHIN3, LEOPOLDINA AGUIRRE-MACEDO4, ROBERT C. FLEISCHER2 and GREGORY M. RUIZ1 1 Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA 2 Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA 3 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama 4 Centre for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km 6, A.P. 73 Cordemex, C.P. 97310 Mérida, Yucatan, Mexico (Received 21 September 2015; revised 25 November 2015; accepted 4 December 2015) SUMMARY Parasites can exert strong effects on population to ecosystem level processes, but data on parasites are limited for many global regions, especially tropical marine systems. Characterizing parasite diversity and distributions are the first steps towards understanding the potential impacts of parasites. The Panama Canal serves as an interesting location to examine tropical parasite diversity and distribution, as it is a conduit between two oceans and a hub for international trade. We examined metazoan and protistan parasites associated with ten oyster species collected from both Panamanian coasts, including the Panama Canal and Bocas del Toro. We found multiple metazoan taxa (pea crabs, Stylochus spp., Urastoma cyrinae). Our molecular screening for protistan parasites detected four species of Perkinsus (Perkinsus marinus, Perkinsus chesapeaki, Perkinsus olseni, Perkinsus beihaiensis) and several haplosporidians, including two genera (Minchinia, Haplosporidium). Species richness was higher for the protistan parasites than for the metazoans, with haplosporidian richness being higher than Perkinsus richness.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Perna Viridis (Asian Green Mussel)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Perna viridis (Asian Green Mussel) Order: Mytiloida (Mussels) Class: Bivalvia (Clams, Oysters and Mussels) Phylum: Mollusca (Molluscs) Fig. 1. Asian green mussel, Perna viridis. [http://www.jaxshells.org/n6948.htm, downloaded 3 April 2015] TRAITS. Perna viridis is a large species of mussel which ranges from 8-16 cm in length. There is no sexual dimorphism as regards their size or other external traits. The shell is smooth and elongated with concentric growth lines. The shell tapers in size as it extends to the anterior (Rajagopal et al., 2006). The ventral margin (hinge) of the shell is long and concave. The periostracum, a thin outer layer, covers the shell. In juveniles, the periostracum has a bright green colour. As the mussel matures to adulthood, the periostracum fades to a dark brown colour with green margins (Fig. 1). The inner surface of the shell is smooth with an iridescent blue sheen (McGuire and Stevely, 2015). The posterior adductor muscle scar is kidney shaped. There are interlocking teeth at the beak. The left valve has two teeth while the right valve has one tooth. The foot is long and flat and specially adapted for vertical movement. The ligamental ridge (hinge) is finely pitted (Sidall, 1980). DISTRIBUTION. They originated in the Indo-Pacific region, mainly dispersed across the Indian and southern Asian coastal regions (Rajagopal et al., 2006). It is an invasive species that has been introduced in the coastal regions of North and South America, Australia, Japan, southern United States and the Caribbean, including Trinidad and Tobago (Fig.
    [Show full text]
  • Biodiversity of Jamaican Mangrove Areas
    BIODIVERSITY OF JAMAICAN MANGROVE AREAS Volume 7 Mangrove Biotypes VI: Common Fauna BY MONA WEBBER (PH.D) PROJECT FUNDED BY: 2 MANGROVE BIOTYPE VI: COMMON FAUNA CNIDARIA, ANNELIDA, CRUSTACEANS, MOLLUSCS & ECHINODERMS CONTENTS Page Introduction…………………………………………………………………… 4 List of fauna by habitat……………………………………………………….. 4 Cnidaria Aiptasia tagetes………………………………………………………… 6 Cassiopeia xamachana………………………………………………… 8 Annelida Sabellastarte magnifica………………………………………………… 10 Sabella sp………………………………………………………………. 11 Crustacea Calinectes exasperatus…………………………………………………. 12 Calinectes sapidus……………………………………………………… 13 Portunis sp……………………………………………………………… 13 Lupella forcepes………………………………………………………… 14 Persephone sp. …………………………………………………………. 15 Uca spp………………………………………………………………..... 16 Aratus pisoni……………………………………………………………. 17 Penaeus duorarum……………………………………………………… 18 Panulirus argus………………………………………………………… 19 Alphaeus sp…………………………………………………………….. 20 Mantis shrimp………………………………………………………….. 21 Balanus eberneus………………………………………………………. 22 Balanus amphitrite…………………………………………………….. 23 Chthamalus sp………………………………………………………….. 23 Mollusca Brachidontes exustus…………………………………………………… 24 Isognomon alatus………………………………………………………. 25 Crassostrea rhizophorae……………………………………………….. 26 Pinctada radiata………………………………………………………... 26 Plicatula gibosa………………………………………………………… 27 Martesia striata…………………………………………………………. 27 Perna viridis……………………………………………………………. 28 Trachycardium muricatum……………………………………..……… 30 Anadara chemnitzi………………………………………………...……. 30 Diplodonta punctata………………………………………………..…... 32 Dosinia sp…………………………………………………………..….
    [Show full text]
  • Nmr General (NODE87)
    ISOGNOMONIDAE Isognomon alatus (Gmelin, 1791) NMR993000016060 Aruba, Basiruti 1967-01-07 ex coll. W.J.H. Onverwagt /3783 4 ex. NMR993000016061 Bahamas, Channel Houseat 0.3 m depth 1984-06-24 ex coll. W.J.H. Onverwagt /3793 3 ex. NMR993000065605 Mexico, Quintana Roo, Cancún, Lagune Nichupte 1994-02-00 ex coll. Natuurmuseum Enschede 2 ex. NMR993000072561 Mexico, Quintana Roo, Cancún, Lagune Nichupte 1994-02-00 ex coll. J.Ph. Voorwinde 5 ex. NMR993000089017 Sint Maarten 1979-08-00 ex coll. W. de Roo-Burger 1 ex. NMR993000052377 United States, Florida ex coll. F.J.A. Slieker 00008823 1 ex. NMR993000016059 United States, Florida, Florida Keys at 1 m depth 1978-07-00 ex coll. W.J.H. Onverwagt 02/3782 6 ex. Isognomon bicolor (C.B. Adams, 1845) NMR993000016357 Bahamas, Tamarind Ledge 1980-11-12 ex coll. W.J.H. Onverwagt /3794 4 ex. NMR993000072617 Mexico, Quintana Roo, Isla Mujeres 1994-02-00 ex coll. J.Ph. Voorwinde 2 ex. NMR993000052119 United States, Florida ex coll. J. Trausel 9209 3 ex. Isognomon californicum (Conrad, 1837) NMR993000052379 United States, Hawaii, Maui, Honomanu Bay 1977-12-00 ex coll. F.J.A. Slieker 00005888 9 ex. NMR993000052378 United States, Hawaii, Maui, Kalama Beach Park 1977-12-00 ex coll. F.J.A. Slieker 00005887 6 ex. NMR993000070924 United States, Hawaii, O'ahu, Kawela Bay 1998-05-05 ex coll. Stichting Schepsel Schelp 10 ex. Isognomon dunkeri (P. Fischer, 1881) NMR993000074019 Cape Verde, Sal, Baía de Palmeira 2012-07-00 ex coll. J. Trausel 11518 5 ex. NMR993000085475 Cape Verde, Santiago, Santa Cruz, Achada Fazenda 2016-01-00 ex coll.
    [Show full text]
  • The Immune Response of the Scallop Argopecten Purpuratus Is Associated with Changes in the Host Microbiota Structure and Diversity T
    Fish and Shellfish Immunology 91 (2019) 241–250 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity T K. Muñoza, P. Flores-Herreraa, A.T. Gonçalvesb, C. Rojasc, C. Yáñezc, L. Mercadoa, K. Brokordtd, ∗ P. Schmitta, a Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile b Laboratorio de Biotecnología y Genómica Acuícola – Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Concepción, Chile c Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile d Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Coquimbo, Chile ARTICLE INFO ABSTRACT Keywords: All organisms live in close association with a variety of microorganisms called microbiota. Furthermore, several 16S rDNA deep amplicon sequencing studies support a fundamental role of the microbiota on the host health and homeostasis. In this context, the aim Host-microbiota interactions of this work was to determine the structure and diversity of the microbiota associated with the scallop Argopecten Scallop purpuratus, and to assess changes in community composition and diversity during the host immune response. To Innate immune response do this, adult scallops were immune challenged and sampled after 24 and 48 h. Activation of the immune Antimicrobial effectors response was established by transcript overexpression of several scallop immune response genes in hemocytes and gills, and confirmed by protein detection of the antimicrobial peptide big defensin in gills of Vibrio-injected scallops at 24 h post-challenge.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • New Opportunities for Conservation of a Threatened Biogenic Habitat: A
    CSIRO PUBLISHING Marine and Freshwater Research, 2015, 66, 981–988 http://dx.doi.org/10.1071/MF14306 New opportunities for conservation of a threatened biogenic habitat: a worldwide assessment of knowledge on bivalve-reef representation in marine and coastal Ramsar Sites Tim KasoarA,B,E, Philline S. E. zu ErmgassenA,B, Alvar CarranzaC, Boze HancockD and Mark SpaldingB ADepartment of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK. BThe Nature Conservancy Global Marine Team, Department of Zoology, University of Cambridge, Cambridge, CB2 3HU, UK. CCentro Universitario Regional Este-CURE, Universidad de la Repu´blica, 20400 Maldonado, Uruguay and Area Biodiversidad y Conservacio´n, Museo Nacional de Historia Natural, 11000 Montevideo, Uruguay. DThe Nature Conservancy Global Marine Team, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 USA. ECorresponding author. Email: [email protected] Abstract. The present study draws attention to the current state of knowledge of bivalve reef, an important but historically overlooked habitat type. Recent interest has led to the explicit recognition of this habitat type under the Convention on Wetlands of International Importance (the Ramsar Convention), an international treaty that has widespread governmental and scientific involvement. To assess the state of knowledge, the Information Sheet on Ramsar Wetlands (RIS) for marine and coastal Sites was searched for evidence that bivalve-reef habitat is present in the site. We then examined the quality of this information using alternative data sources. These were public databases of geolocated species records at three spatial scales, local and regional experts, and a general web search. It was found that of the 893 marine and coastal Ramsar Sites considered, the RIS for 16 Sites provided strong evidence of bivalve-reef habitat and 99 had confirmed presence of reef-forming bivalves, a strikingly high number, given that it is not yet compulsory to include bivalve reef in RISs.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]