The possible role of stingless in the spread of Banana Xanthomonas

Wilt in Uganda and the nesting biology of Plebeina hildebrandti and

Hypotrigona gribodoi (--Meliponini)

Dissertation

zurErlangungdesDoktorgradesderAgrarwissenschaften(Dr.agr.)

der

LandwirtschaftlicheFakultät

der

RheinischenFriedrichWilhelmsUniversitätBonn

vorgelegtam24Januar2008

von

Flora Njeri Namu

aus

Embu

Kenia

1.Referent:Prof.Dr.D.Wittmann

2.Referent:Prof.Dr.R.Sikora

TagderMündlichenPrüfung:11thApril2008

Erscheinungsjahr:2008

DieseDissertationistaufdemHochschulschriftenserverderULBBonn http://hss.ulb.unibonn.de/diss_onlineelektronischpubliziert

Dedication

ToallbananafarmersinUganda

Abstract In Uganda stingless bees were speculated to be the primary vectors of Xanthomonas campestris pv.musacearum (Xcm),thecausalagentofbananaxanthomonaswiltwhich emergedinyear2001.Xanthomonas isspeculatedtoenterthebananaplantthroughmoist scarsofrecentlydehiscedmaleflowersandfloralbracts.However,nostudyhadbeen donetosupportthehypothesisthatstinglessbeesweretheprimaryvectors.Wetherefore determinedtheprobableroleofstinglessbeesinthespreadofXanthomonasinUganda. AstherewasnoselectiveculturemediumforXcm,weappliedindirectapproachestotest whetherstinglessbeeswouldgetincontactandcarrythebacteriaduringforaging.We documentedtheforagingbehaviorofcoloniesinwoodenobservationhivesandinbanana farms. We tested whether workers of Hypotrigona gribodoi Magretti and Plebeina hildebrandti Friese would take up banana sap, bacterial ooze and nectar offered at the nestentrance.Nectarofbananaflowershaslowsugarcontent.Thereforeweinvestigated if P. hildebrandtiworkerswouldrecruitnestmatestoexperimentalfeederswith11%, 33%,48%and54%sugarsolution.Wefurtherdeterminedthedistancethebeeswould flytocollectsuchsolutions.Inadditionwedocumentednestingsitesofstinglessbeesin thebananafarms.Thenestarchitectureoftwomostcommon;H.gribodoiandP. hildebrandtiwasdescribed. Werecordedfourspeciesofstinglessbees,Hypotrigona gribodoi,Plebeina hildebrandti, Meliponula ferrugineaLepeletierandMeliponula sp.inthebananafarms.Theynestedin termitemounds,cavitiesintrees,housesandothermanmadestructures.Thefourspecies collectednectarfrombothmaleandfemalebananaflowers.Theydidnotcollectbanana andbacterialoozefromscarsofrecentlydehiscedmaleflowersandatthenestentrance. Pisang Awak, the banana variety which is most susceptible to Xcm, had mean nectar sugar concentration of 12.5%. The foraging distance of workers of P. hildebrandti decreased with decrease in sugar concentration. When 11% sugar solution was offered thebeesstoppedforagingat1050mandfor33%sugarat1215m.Theforagerswould thereforeflylessthan1215mfromthenesttocollect PisangAwaknectar.

If Xcmispresentinnectarandincasethebeesgotaccidentallycontaminatedwithit,they wouldspreaditovershortdistances.Thereisthereforeneedforstudiesonpossiblelong distancevectors.

Kurzfassung Stachellose Bienen wurden in Uganda als primäre Überträger von Xanthomonas pv. Musacearum (Xcm) vermutet, dem Verursacher der BananenWelke, die im Jahr 2001 auftauchte. Es wird vemutet, dass Xanthomonas durch feuchte Narben von kürzlich aufgeplatzten männlichen Blüten und Brakteen in die Bananenpflanze eintritt. Jedoch wurdebisherkeineStudiedurchgeführtumdieHypothesezustützen,dassstachellose Bienen die primären Vektoren sind. Daher untersuchten wir die mögliche Rolle der stachellosenBienenbeiderVerbreitungvonXanthomonasinUganda. DaeskeinselektivesKulturmediumfürXcmgab,wandtenwirindirekteMethodenan umzutesten,obstachelloseBienenbeiihrenSammlungsflügeninBerührungmitdem Bakteriumkommenundesweitertransportieren.WirdokumentiertendasVerhaltender Völker in hölzernen BeobachtungsStöcken und ihr Sammlungsverhalten in Bananen Plantagen. Wir testeten ob Arbeiterinnen von Hypotrigona gribodoi und Plebeina hildebrandtivonSaft,HarzundNektarangezogenwerdenunddieseaufnehmen,wenn sie am Eingang des BeobachtungsStocks angeboten werden. Der Nektar der BananenblütehateinengeringenZuckergehalt.DaheruntersuchtenwirobArbeiterinnen vonP.hildebrandtiandereArbeiterinnenausdemNestzuexperimentellenFutterstellen mit 11%, 33 %, 48 % und 54 % Zurckerlösung führt. Weiterhin bestimmten wir die Distanz,dieBienenfliegenwürden(Sammelradius)umsolcheLösungenzusammeln. In den BananenPlantagen wurden vier Arten der Stachellosen Bienen nachgewiesen: Hypotrigona gribodoi (Magretti), Plebeina hildebrandti (Friese), Melipona ferruginea (Lepeletier) und Meliponula sp.. Sie bewohnten Hohlräume in Bäumen, anthropogene Strukturen und TermitenBauten. Unsere Ergebnisse zeigen, dass alle diese vier Arten Nektarsowohlvonmännlichenals auchvonweiblichenBananenblüten sammeln.Die Bananensorte Pisang Awak ist am anfälligsten für Xcm. Sie hatte Nektar mit einem mittlerenZuckergehaltvon12.5%(von2–32%).DerSammelradiusderArbeiterinnen vonP.hildebrandtiverringertesichmiteinerAbnahmederZuckerkonzentration.Als11 %igeZuckerlösungangebotenwurde,hörtendieBienenbei1050mEntfernungaufzu sammeln,bei33%igerZuckerlösungbei1215m,bei48%bei1220mundbei54%bei

1230m.DieSammlerinnenwürdendaherwenigerals1215MetervomNestfliegenum denNektarderSortePisangAwakzusammeln. Falls Xcm im Nektar vorkommt und im Falle, dass die Bienen versehentlich damit kontaminiert werden, verbreiten sie es wahrscheinlich über kurze Entfernungen und Sammlerinnen könnten es ins Nest eintragen. Durch eine alte Beziehung zwischen stachellosen Bienen und BacillusArten, die antimikrobielle Stoffe produzieren, die andereMikroorganismeninihremWachstumhemmen,unddurchdieAnwesenheitvon Propolis,welchesantimikrobielleStoffeenthält,wirdXcmerwartungsgemäßimNestder stachellosenBieneneliminiert.DesweiterenzeigteeinvorangegangenerTest,dassXcm nichtaufPropolisausdemNestvonP.hildebrandtiwachsenkonnte. Bemerkenswert ist, dass die Bienen niemals Saft oder Harz, der am Nesteingang angeboten wurde, sammelten; weder von gesunden noch von Bananen, die mit Xanthomonas infiziert waren. Falls sich Xcm durch den Nektar verbreiten kann, sind sowohl männliche als auch weibliche Blüten mögliche Eintrittspforten, falls die Verbreitung aber durch Narben erfolgt, die durch das Abfallen der männlichen Blüten undBrakteenentstehen,sindstachelloseBienenwahrscheinlichkeineÜberträger,dasie keinenSaftvondenNarbensammelten. Darüberhinaus besteht die Notwendigkeit weiterer Untersuchungen zu möglichen LangstreckenÜberträgern

TABLE OF CONTENTS Content Page General introduction…...... 1 1.Bananas………………………………………………………………………1 1.1Whatarebananas…...... 1 1.2Structureofthebananaplant…………………………………………...... 1 1.3Distributionofbananas……………….……………………………………...5 1.4Importanceandusesofbananas…...... 5 1.5ProductionandconsumptionofbananasinEasternandSouthernAfrica…...6 1.6Diseasesandpestsofbananas...…...... 7 1.6.1SymptomsofBananaXanthomonasWilt…...... 8 1.6.2DistributionofBananaXanthomonasWiltinUganda………………………8 1.6.3BananaXanthomonasWiltinDemocraticRepublicofCongo...... 9 1.6.4OriginofBananaXanthomonasWiltinUganda…...... 10 1.6.5ControlofBananaXanthomonasWilt……………………….……………..12 2.Stinglessbees...... 13 2.1Introduction…...... 13 2.2Stinglessbees’phylogenyandclassification...... 13 2.3Distributionofstinglessbees…...... 13 2.4Nestingsites…………….……………………………………...... 14 2.5Nestentranceandnestarchitecture...... 14 2.6Nestdefense…..…………………...... 14 2.7Divisionoflabor…...... 15 2.8Provisioningandoviposition…...... 15 2.9Foraging...... 15

Part one: The possible role of stingless bees in the spread of Xanthomonas campestris pv. musacearum (xvm) responsible for banana wilt in Uganda and the neighboring countries

1.Introduction………………………………………………………………...18 1.2Objectivesofthestudy…...... 19 2.Studyareaandmethods…………………………………………………….20 2.1Determiningstinglessspeciesandtheirnestingsitesinthefarmland…21 2.2Foragingbehaviorofstinglessbeesonbananasandthematerialsthey collected…………………………………….………………………………21 2.2.1Foragingbehaviorandforagingduration…...... 21 2.2.2Collectionofsapandoozeinthefield...……...………………………….…22 2.2.1Foragingbehaviorandforagingduration…...... 22 2.2.2Collectionofsapandoozeinthefield...……...………………………….…22 2.2.3Collectionofnectar,sap,andoozeofferedatthenestentranceofcolonies rearedinobservationhives………………………………………………....24 2.2.4Introductionofbananasapwithinthehives………………..………………25 2.2.5Provisionofbananabuncheswithmaleflowerbuds50cminfrontofthe hives………………………………………………………………………..26 2.3 Determiningtheamountofnectarandthesugarconcentrationproduced bymaleandfemalePisangAwakflowers…….……….…………...... 27 2.4.Plebeina hildebrandtiforagingbehaviorandforagingdistance…………....27 2.4.1Recruitmentofnestmatestofoodsources………………………...... 27 2.4.1.1Trainingofthebees………………………………...... 28 2.4.2Resourceswitching……………………………………………….………...28 2.4.2.1Experimenttodetermineifsugarsolutioncollectorswouldswitchtoeither resinorsapcollectionwhensugarsolutionwastakenaway…………….…28 2.4.2.2Experimenttodetermineifresincollectorswouldswitchtoeithersapor sugarcollectionwhenresinwastakenaway………………..………...... 29 2.4.3Foragingdistancetosugarsolutionsofdifferentconcentrations………...... 29 3.Statisticalanalysis……………………………………………………….….30

4.Results……………………………………………………...... 31 4.1Stinglessbeespeciesandtheirnestingsitesinbananafarms………………31 4.2Foragingbehaviorofstinglessbeesonbananasandthematerialsthey collected……………………………………………………...………..……31 4.2.1.1Foragingdurationfromthetimeabeelandedontheflowerstillitleft…....34 4.2.1.2Foragingdurationfrommorningtoevening………………………………..35 4.2.1.3Foragingdurationonmaleandfemaleflowers…………………………….35 4.2.2Collectionofsapandoozeinthefield…...... 36 4.2.3Uptakeofnectar,sap,andoozeofferedatthenestentrance…………...... 37 4.2.4Treatmentofsapintroducedinsidethehives………………………………39 4.2.5Reactiontobananabuncheshung50cminfrontofthehives……..………41 4.3 Determiningtheamountofnectarandthesugarconcentrationproduced bymaleandfemalePisangAwakflowers…………………………………41 4.4Plebeina hildebrandtiforagingbehaviorandforagedistance……...... 42 4.4.1Recruitmentofnestmatestofoodsources………………...... 42 4.4.2Resourceswitching………………………………………………………....43 4.4.2.1Replacingsugarsolutionwitheithersaporresin…………………………..43 4.4.2.2Replacingresinwitheithersaporsugarsolution………………………….44 4.4.3 ForagingdistanceofPlebeinahildebrandtiwhen11%,33%,48%and 54%sugarsolutionswereoffered…………….…………………………….45 5.Discussion…………………………………………………...... 47 6.Summary……………………………………………………………………51

Part two: Nesting biology of Plebeina hildebrandti and Hypotrigona gribodoi 1.Plebeina hildebrandti (Friese)……………………...... 54 2. Hypotrigona gribodo (Magretti)...... 55 3. Objectivesofthestudy…...... 55 4.Studyareaandmethods……………………………………………..………55 5.Results:Plebeina hildebrandtinestingsitesandnestarchitecture...... 57 5.1Nestingsites……………………………………………...... 57 5.2Nestarchitecture…………………………………………………………….59 5.2.1Nestentrance………………………………………………………………...60 5.2.2Nestcavity………………………………………………………………….68 5.2.3Batumenlayer………………………………………………………………70 5.2.4Involucrum………………………………………………………………….70 5.2.5Storagepots…………………………………………………………………74 5.2.6Broodcombs………………………………………………………………..76 5.2.6.1Broodcombarchitectureindifferentnests…………………………………77 5.2.7Drainagetube………………………………………...... 85 5.3Behaviorofthebeesatthenestentrance……………….……………...... 86 5.4Discussion…………………………………………………………………..88 6.Results:Hypotrigona gribodoinestingsitesandnestarchitecture………...91 6.1Nestingsites…………………………………………...... 91 6.2Nestinwallsofmudhousesandindrydrainagepipes...... 91 6.3Nestarchitecture…………………………………………………………...91 6.3.1Entrancetube……………………………………………………………….91 6.3.2Nestcavity………………………………………………………………….96 6.3.3Batumenlayer………………………………………………………………97 6.3.4Storagepots……………………………………………...………………….99 6.3.5Broodcells……………………………………………………………...... 99 6.4Behaviorofthebeesatthenestentrance…………...... 100 6.5Colonysize………………………………………………………………...101 7.Hypotrigona gribodoinestincavitiesintreetrunks...... …...... 102

7.1Entrancetube…………………………………………...... 102 7.2Nestcavity...... 103 7.3Storagepots…………………………...... 104 7.4Broodcells…………………………………………………………………..104 7.5Discussion…………………………………………………………………...105 General conclusion………………………….………………………………………....107 Outlook……………………………………...…………………………………………109 References…...... 110 Acknowledgement……………………….…………………………………………….118 Curriculum vitae..……………………..………………………………………………12

GENERAL INTRODUCTION 1. Bananas 1.1 What are Bananas? Banana is a term used to refer to species and hybrids in the genus Musa, family Musaceae. Within the Musaceae there are two genera, Musa and Ensete (Simmonds 1966; Cobley & Steele 1976). The genus Musa contains 3040 species and is further divided into five series. Most edible bananas usually seedless, originated from wild bananatypes;mainlyfromMusa acuminata,M. balbisiana andahybridM. paradisica. Theediblebananasareclassifiedaccordingtotheirgenotypesintogroups,subgroupsand clones. 1.2 Structure of the banana plant Pseudostems Banana plants which are wrongly referred to as trees are large herbs 29 metres. The pseudostem,whicharisesfromafleshycorm,issucculentandjuicymadeofleafpetiole sheaths.Youngpseudostems(suckers)growtoformaclumparoundtheoldestsucker (mothersucker).Theyreplacethemothersuckerwhenitfruitsanddies(Morton1987)

Leaves Bananashaveabout415fleshyleaveswhicharelong,smooth,andoblong.Theyare arrangedspirallyaroundthepseudostem.Theyunfoldastheplantgrowsnormallyatone leafperweek.Duetotheirtenderness,theleavesarealwayspronetoshreddingbythe wind(Morton1987). Inflorescence It is a transformed growing point which shoots out from the heart in the tip of the pseudostem.It’sapurplebudwhichisinitiallylong,ovalandtaperingandfacingtothe skies.Thebudiscomposedofpurplebracts(undersideofthebractsisdeepred)beneath whichtheflowersarelocated.Oncethebractsopen,tubularwhiteflower,clusteredin whorleddoublerowsalongthefloralstalkareexposed(Figure1).

1 Eachclusteriscoveredbyabract.Normallythebractliftsandrollsfromthefirstcluster offlowersinthreeto10daysafteremergenceoftheflowerbud.Femaleflowersarethe firsttobeexposed(Figure1aand2a).Theyoccupythelowerthreeto15rows.Above them are a few rows of hermaphroditic flowers. Rows of male flowers follow the hermaphroditicrows(Figure3).Afteropeningofmaleflowers,ittakesaboutoneday beforeboththeflowersandthebractsfall.Thisleavesthefloralstalkbare,exceptatthe tipwhereunopenedbudremainscontainingthelastformedofthemaleflower(Figure1b and2b).Somebananavarietieshavepersistentmaleflowersandbractswhichwitherand remainfillingthespacebetweenthefruitsandtheterminalbud(Morton1987).

Fruits Theylooklikeslendergreenfingers,hencereferredtoasfingers.Asthefruitsdevelop, the bracts are shed off and the fully grown fruits in each cluster become a hand of bananas (Figure 3). At this point the stalk droops with the weight until the bunch is upsidedown.Small(fruits)fingersformfromthehermaphroditicflowerbuttheydonot growbeyondthefingerstage.Bractsfallwhilethesmallfingersremainattachedtothe floralstalk(Figure3). Seeds Thecommoncultivatedbananasareseedlesswithminuteovulesatthecentreofthefruit. Occasionalcrosspollinationbywildtypes resultsinanumberofseedsinanormally seedlessvariety.Wildbananatypesareseeded. Pollination Edible bananas do not require pollination. They reproduce asexually by suckers from corm. Wild banana types may or may not require pollination as they reproduce both sexuallyorasexually(Purseglove1972;Stover&Simmonds1987).Inthewildbananas arepollinatedbybats,birdsandtreeshrews(Nur1976).Generallybananasproducelarge quantitiesofnectar(Figure2).

2 i i

ii ii iii

a b Figure 1: Bananaplants (a)showingbractsrollingup(i)torevealfemaleflowers(ii) (b)Showingabarefloralstalkwithscars(i),bractrollinguptorevealmaleflowers(ii) andterminalbud(iii)

a b Figure 2:Bananaflowers(a)female(b)male.Arrowsinbothflowerspointtonectar

3 a

b

c

Figure 3:Abananaplantshowing(a)greenfruitsformedbyfemaleflowers(b)smallnever fullydevelopedfingersformedbyhermaphroditeflowers(c)purplebractsliftingtorevealmale flowers

4 1.3 Distribution of bananas Edible bananas are restricted to the tropics or near tropical regions. Bananas came originallyfromSoutheastAsia,andthentheyspreadouttotheIndianPeninsula,Eastern Africaandtheislandsofthepacific.Todaybananasaregrownineveryhumidtropical region(Mexico,Panama,Jamaica,Ecuador,Colombia,WestAfrica,CentralAfrica,East Africa,IndiaandChina). Ensete occurswildlyfromWesttoSouthernAfrica.Afewspeciesarealsofoundfrom northeast India to the Philippines and New Guinea. Enset (Ensete ventricosum) is cultivatedinEthiopiaforfibreandforthestablefood:flourderivedfromyoungshoot, baseofthestemandcorms(Lawrence1951;Purseglove1972;Morton1987;Stover& Simmonds1987). 1.4 Importance and uses of bananas Bananasconstitutethe4thlargestfruitcropoftheworldaftergrapes,citrusandapples. Theyare4thamongthelistofdevelopingworldsmostimportantfoodcropsafterrice, wheatandmaize(Frison&Sharrock1998).Fordevelopingcountries,theyareaprecious sourceofrevenuefrombothlocalandinternationaltrade. Farmersinthetropicscanintercropbananaswithlegumesandcanfeedonby products(peelsandpseudostems)ofthecrops.Theplanthasbeenusedformedicinal purposes (Wainwright 1953 in Karamura 1998), for celebrating marriage and for other rituals (Howes 1928 in Karamura 1998; Price 1994). Virtually all components of the plant have found use in the homesteads and many domestic industries like making baskets,carpets,shoesandahostofindoordecorations(Wainwright1953inKaramura 1998;Price1994). InEasternAfrica,cultivationofbananashasbecomewovenintothesocioeconomiclife ofthecommunities.Thecropisakeycomponentinbothfoodsecurityandagricultural sustainabilityoftheregion. Ithasanextendedharvestperiodwhichensuresfoodand income throughout the year (Karamura 1992). Bananas reduce soil erosion on steep

5 slopes and are principal sources of mulch for maintaining and improving soil fertility (INIBAP 1986). This is because the giant herbs (29 metres high) with large leaves createsclosedcanopieswhichassistinarrestingrainimpactionanddirectinsolation,both ofwhichareimportantinsoilconservation(Karamura1992).Rottenleavesandstems addorganicmatterandimprovesoilaeration.Environmentally,thebananais“atropical forest”becauseonceestablished,itentersaphaseofcontinuousgrowth. 1.5 Production and consumption of bananas in Eastern and Southern Africa About26%oftotalworldbananaoutputisproducedintheEasternandSouthernAfrica. Theseregionsarealsotheworldsleadingconsumerofbananaswithanannualpercapita consumptionrateof400600kg(Karamura et al. 1998). Bananas are an all year round fruitingcrop,andprovidemainstaplefoodandsourceofincometomillionsofpeople living in the Great Lakes Zone of Uganda, Tanzania, Kenya, Rwanda and Burundi (Karamuraet al.1998;INIBAP2004).Localtradeiswelldevelopedalthoughnoexport tradehasdeveloped.Thisisduetotransportationproblemsandthefactthatmostofthe exportvarietiesselectedforhighrainfall,hot,humidconditionsgivepoorresultsinthe maingrowingareasofEastAfrica,whicharecooleranddrier(Acland1971;Karamura 1998). Greencookingbananasandtablebananasaremarketedforfoodwhilebeerbananasare used for local brews. Beer bananas production is dominant in Rwanda and Burundi, though it’s on the increase in Uganda and northern Tanzania where green cooking highlandbananashavefailedforvariousreasons(Karamuraet al.1998).InUgandathe beer bananas (Pisang Awak) constitute 11% (Karamura et al. 1996) although it’s increasingly replacing other types of bananas as its seen to be more hardy (Karamura 1998). Banana production in Uganda EastAfricahasahighdiversityofbananaswithUgandaontopwiththehighestlevelof cultivardiversity(Kyobe1981).Varieties whicharespecially adapted tothehighland conditions of Uganda “East African highland bananas” are widely cultivated (INPAB

6 2000).EastAfricanhighlandbananasconstitute85%ofthebananasgrowninUganda, beerbananaconstitute11%,dessertbanana3%andplantains1%(Karamuraet al.1996). Bananas are grown as subsistence crops mostly mixed or intercropped with both perennialandannualcrops(Karamuraet al.1998).

Inthe1970sand1980s,Ugandawitnesseddrasticbanana yielddeclinesintraditional growingareasoftheeastandcentralregions.Bananaproductiondeclinedfrombetween 1520tonnesperacretothecurrentproductionofonly6tonnesperacreand9.5million tones annually (Tushemereire 2004). Yield declines were due to population pressures, labour,competingactivities,decliningsoilfertility,pestsanddiseases(Goldet al.1993; Tushemereirwe1996).

1.6 Diseases and pests of bananas Worldwide,themainpestsofbananasincludenematodes,bananaweevils,bananathrips andbananamites.ThemaindiseasesofbananasincludeSigatoka,Panamadisease,Moko disease,Blackend,Cigarend,andBunchytopdisease. In Uganda, weevils, nematodes, diseases like black Sigatoka and Fusarium wilt are a majorconstrainttoindigenousanddominanthighlandcookingbananas(Tushemereirwe 1996). Fusarium wilt is also a major constraint to production of introduced banana cultivars.ThewiltisprevalentinmanyotherpartsofAfrica. In 1993, symptoms similar to those of Fusarium wilt were observed in the Western Uganda highlands. The new disease affected all Musa cultivars grown in Uganda includingplantains, whicharenormallynot affectedby Fusariumwilt(Kangire1998; Kangireet al.2000).Thenewdiseaseanditscausalagentwereneveridentified(Gold pers.com.). In2001,anewdisease,BananaXanthomonasWiltemergedinCentralUganda.Thisnew diseaseisasubjectofnumerousinvestigationsstillgoingontodetermineitsoriginand howtocurbthespread.

7 1.6.1 Symptoms of Banana Xanthomonas Wilt (BXW) BXWcausedbyXanthomonas campestris pv. musacearum,wasfirstreportedinUganda in year 2001. The first symptoms include discoloration at the tip of the flower and witheringoftheflowerbracts.Thebananabunchwiltsandripensbeforeit’sonemonth old. In heavily affected plants the male bud appears wilted and discolored. The discolorationonthemalebudstalkprogressfromthebaseofthemaleflowerstowards the bunch and there is cream colored ooze in the area close to the male bud. This suggests that the bacterium may be air or borne, although rain droplets and movementofplantingmaterialmayalsocontributetotransmittingtheinfection(Kangire & Rutherford 2001; Tushemereirwe et al. 2003). The internal symptoms include discolorationofthecormofmostaffectedplants,discoloredcentralstalkthatcarriersthe bunch,thebananafingersarestainedreddishbrownandthepulpissoftaswhenitisripe, evenwhenthebunchstillneedaboutoneandhalfmonthstoreachmaturity(Kangire& Rutherford2001;Tushemereirweet al.2003). 1.6.2 Distribution of Banana Xanthomonas Wilt in Uganda (BXW) ThediseaseemergedinMukonodistrictincentralUgandainyear2001.InJanuary2002, the disease was still restricted to a radius of five kilometer from the farm where the diseasewasfirstidentified(Tushemereirwe etal.2003).ByJune2003,thediseasehad beenreportedinthedistrictsofKayunga,Lira,ApacandKaberamaido(Figure5)which areinnorthern andnortheasternUganda(Bao2004;Tushemereirweet al.2003).The initialdistributionwaslocalizedandpatchy,butbyyear2004,thediseasewasrapidly filling the gaps and moving southwards and westwards towards some of the most important banana growing areas (EdenGreen 2004). Since then the disease has spread intomanyotherdistrictsinUgandaandtheneighboringcountries(Figure6)ofRwanda, Burundi,TanzaniaandKenya(Boa2004).

8

Figure 5: InitialdistributionofBananaXanthomonasWiltinUganda(Boa2004)

1.6.3 Banana Xanthomonas Wilt (BXW) in Democratic Republic of Congo (DRC) Just like in Uganda, BXW emerged in DRC in year 2001. The symptoms and causal agentwerelikeinUganda,withthefirstsymptomsalwaysseenonflowers(Ndungoet al.2004).HoweverthespreadinDRCwasveryslowcomparedtoUgandawherethe diseasewasspreadingatarateof75kmperyear(Ndungoet al.2004).InDRCinfected flowersweremuchlesscommon,leadingtothesuggestionthatthemodeofspreadmay havebeendifferentthantheoneinUganda.ItwasthoughtthatthediseaseinDRCmay haveoriginatedjustfromwithinCongo;fromwildensetplants(Ndungoet al.2004).

9 1.6.4 Origin of Banana Xanthomonas Wilt in Uganda The BXW affecting bananas in Uganda is speculated to have originated from Ethiopia (Figure6).InEthiopiathewiltcausedbyXanthomonas campestris pv. musacearumwas firstreportedinenset(Ensete ventricosum)byYirgouandBradbury(1968).Ensetisa majorsourceoffoodforthepeopleandisgrownwidelyinSouthernEthiopiaforits pseudostemandcormwhichareusedtomakeflour.Bothcultivatedandwildensetare affected by the bacterial wilt (Addies et al. 2004). As enset are cultivated for their pseudostems,theyarenotallowedtoflower,hencetransmissionofthebacteria throughflowersisnotlikely(Addieset al.2004).Althoughtherearebananasgrownin SouthernEthiopia,nobacterialwilthadbeenreportedinthem(Addieset al.2004).In SouthCentralEthiopia,scatteredmatsofensetarepresentbutnoinfectionshavebeen reportedinbananas.HoweverinwesternEthiopia,itisreportedthatthewilthadbeen presentinensetandbananasforabout20years(Addieset al.2004). It has been argued that bananas grown in high altitude (over 1700m), and lower temperatures,suchasinSouthCentralEthiopiaandNorthKivuinDRCarenotaffected bythewilt,sincehighaltitudeandlowertemperaturesarenotfavorabletoinsectvectors. It has thereforebeenpostulated that infections through male flowers in Uganda, is a primarycauseofnewinfectionssincebananasaregrownataltitudesoflessthan1600m (Addieset al.2004).

10 Figure 6: OriginanddistributionofBananaXanthomonasWiltinEasternAfrica(Boa 2004)

11 1.6.5 Control of Banana Xanthomonas Wilt (BXW) The control of BXW presents a unique demand since epidemiological studies such as transmission,insectvector,pathogensurvival,factorsthataffectdisease developments andevencontrolmeasuresarenotreadilyavailable(EdenGreen2004).Thefactthatits notyetknownhowthediseaseenteredUganda,intheaffectedareasofMukonodistrict, makesitdifficulttocomeupwithcontrolmeasures.Thediseasewasfirstreportedina plantationwhichwasoverseven yearsoldsuggestingthatithadnotbeentransmitted withplantingmaterials.Itisreportedthatthefarmerswiththewiltproblemindicatedthat theyhadgottentheirplantingmaterialsfromlocalsources(Tushemereireet al.2003). SinceBXWwasreportedtohavemanysimilaritiestootherbananabacterialwiltssuchas Moko,BloodandBugtokdiseasesinotherpartsoftheworld,itwassuggestedthatjust likeotherwiltdiseases,airborneinfectionviamaleflowerparts,wasthemain mechanismdrivingthewiltepidemicinUganda(Thwaiteset al.2000;EdenGreen 2004).Itwasspeculatedthatinfectionviamaleflowerpartswasmainlythroughinsects. InUgandastinglessbeeswerehypothesizedtobetheprimaryvectors(Goldet al.2006; Tinzaaraet al.2006). Removalofmaleflowerbudsasameasureofcontrollingtherapidspreadofthedisease tonewareasthroughinflorescenceinfectionwasadvocated(EdenGreen2004).Removal ofmalebudshadbeeneffectivelyappliedinIndonesiaandPhilippinesinthecontrolof Moko and Bugtok banana bacterial wilt diseases (Molina G.1996; Molina A. 1999). Howevertherehavebeenclaimsthattheinfectioncanoccurthroughboththemaleand thefemaleflowers.Othercontrolmeasuresadvocatedincluded:disinfectionoftoolsand foot wear, no exchange of planting materials, uprooting and chopping into pieces all infectedplantmaterialsandburyingthem.

12 2. STINGLESS BEES

2.1 Introduction Stinglessbeesarehighlyeusociallivinginpermanentcolonies,composedofhundredsto thousandsofindividuals(Michener1974).Duetotheirtropicallyconfineddistribution, thebiologyofstinglessbeeshasbeenfarlessexploredthanthatofhoneybees.Mostof the work done on biology of stingless bees has been reviewed by (Wilson 1971; Michener1974;Sakagami1982).MuchofthebiologyisbasedonstudiesdoneinSouth America,AustraliaandAsia.Fewstudieshavefocusedonthebiologyofstinglessbeesin Africa.

2.2 phylogeny and classification Therearedifferentclassificationsofstinglessbeesbyvariousauthors(Michener2007). The most widely used classification is by Michener (1990) and Carmargo and Pedro (1992). According to Michener’s cladogram of genera of Meliponini, Melipona a Neotropical genus, is the sister group to all the other Meliponini. The African genera seemtohavebeenderivedfromamongNewWorldgenera.OnthecontraryCarmargo andPedrocladogramshowsamajordivisionofMeliponiniintoAfricanandnonAfrican genera(Michener2007). 2.3 Distribution of stingless bees Stinglessbeesoccurinthetropicsandthesubtropicsaroundtheworld.TotheSouththey extendupto35oSinAustraliaandSouthAmerica,and28oSinAfrica.Tothenorththey extendto23.5oN(Michener2007).Thehighestdiversityofstinglessbeesisintropical America,wheretheyarealsomuchstudiedcomparedtootherpartsoftheworld.There are26generaofstinglessbees,with15generabelongingtotheNeotropics,3toAsiaand Sunda Island, 2 to Australia and New Guinea, 6 to Africa including Madagascar (Michener2007).ThesixgenerainAfricaare:Cleptotrigona,Liotrigona,Hypotrigona, Dactylurina,Meliponula and Plebeina(Eardley2004,Michener2007).Thenumberof stinglessbeespeciesinAfricaremainunknown,withKerr&Maule(1964;inWilson 1971)noting42specieswhileEardley(2004)noted19species.

13 2.4 Nesting sites NestingsitesinStinglessbeesarespeciesspecific.MostStinglessbeesspeciesnestin preexisting cavities in hollow trunks and branches of trees (e.g. Hypotrigona, Brasssindale 1955), hollows between roots and other subterranean cavities (e.g. Mourella, Camargo and Wittmann 1989), deserted nests of ants or termites (e.g. Axestotrigona, Darchen 1971; Paratrigona, Vera Lucia 1972), cracks and holes in houses,orcavitiesofrocks(e.g.Plebeia, Wittmann1989).Somespeciesmakeexposed nestsontreebranches,onwallsoronclifffaces(Michener2007). 2.5 Nest entrance and nest architecture Nest entrances vary from species to species, ranging from simple holes to dome or trumpetshapedentrances.Generallythereisconcealmentofentrancebystinglessbees which nest in the soil as is the case of some African Meliponini (Brassindale 1955; PortugalAraujo1963;inVeraLucia1972). Nests are constructed from a mixture of wax and propolis (resins and gums) called cerumen.Resinisastickymaterialcollectedbystinglessbeesfromplantsusedinnest construction (Ghilsalberti 1979). A basic meliponini nest consists of brood cells, compactedintocombsorirregularclustersandstoragepotsforpollenandhoney.The storagepotsforhoneyandpollenmaybethesameshapeordifferent.Thebroodcells maybesurroundedbyasoftsheathofcerumen(involucrum)whileboththebroodcells andthestoragepotsaresurroundedbyahardprotectivelayerofpropoliscalledbatumen (Wilson1971;Michener1974;Sakagami1982).Broodcellsaredestroyedafteruseand cannotbereusedastheyareinApis. 2.6 Nest defense Stinglessbeesgottheirnamefromthefactthattheirstingsarevestigialandcannotbe usedindefense.Waysthroughwhichthenestcanbedefendedinclude:swarmingover the intruder, biting using mandibles, ejection of a burning liquid from the mandibles camouflage of nesting sites, restricted nest entrances, walls of sticky resin around the

14 entrance tube, and positioning of guard bees in front of nest entrance (Wilson 1971; Michener1974;Wittmann1984). 2.7 Division of labor Thestinglessbeeshaveawelldefinedagedependentdivisionoflabor.Thedivisionof laboriscorrelatedinpartwithexocrineglandactivityandadvancedsystemsofchemical alarm and recruitment communication. The recruitment is reinforced by a modulated soundsignalsimilartothatfoundinthewaggledanceofApis mellifera(Wilson1971). Normally a worker bee passes through four stages, callow, nursing, household and foraging, although there are variations in age ranges during which particular tasks are executedamongdifferentspecies(Sakagami1982). 2.8 Provisioning and Oviposition The process of provisioning and oviposition is highly sequential and complicated in stinglessbees.Thelarvalfoodisprovisionedinmassbeforeoviposition.Theprocessof provisioningandovipositioninstinglessbeeshasbeenstudiedindetailsby(Sakagami& Zucchi1974;Sakagami1982;Sakagami&Inoue1990;Wittmannet al.1991).

2.9 Foraging In stingless bees colonies, foraging is mainly done by old workers. Once the workers have become foragers, they continue with this activity till death (Bego 1983). The patternsofforagers’visitsandchangesinstandingcropsoffloralresourceshavebeen observedbyvariousauthors(Johnson&Hubbel1975;1974;Hubbel&Johnson1978; 1977;Vorwohl1979;Roubik1978;1979;1980;1981;1982:InInoue et al.1985)and Roubik&Aluja(1983).ForagingobservationsatnestentrancebyInoueet al.(1985), working on three species of Trigona, indicated that pollen, nectar and resin are the resourcesbroughtbackbystinglessbeestothenest.

Despite of all the above studies, there is still much to be learnt about stingless bees, comparedtothewealthofknowledgeavailableforhoneybees,whichisonlyonegenus Apis. It’s even more unfortunate that in some countries in Africa, there is very little

15 knowledge on the biology of stingless bees. Hence, the potential of utilizing stingless beesforincomegenerationthroughhoney,wax,propolisproduction,pollination,ortheir roleincropdamageaspestsorvectorsofpathogensisfarfrombeingrealized.Stingless beescollectresinandgumsfromplantswhicharemixedwithwaxfornestconstruction. Resin and gum collection may lead to injuries on plants creating entry points for pathogens. Due to the implication that stingless bees are responsible for the BXW epidemic in Africa,thereisanurgentneedtostudythebehaviorofAfricanstinglessbeesinorderto understandtheirroleinthespreadofthedisease.Astudyontheforagingbehaviorofthe beesisnecessarytodeterminethelikelihoodandthemeansthroughwhichthebeescan contractandspreadthepathogenfromabananaplanttoanotherandbacktothenest.The behaviorofthebeeswithinthenestisofspecialimportanceindeterminingthefateofthe pathogenifbroughtbacktothenestbytheforagers.Thepossibilityofthenestactingasa reservoirforthepathogenandacenterforthediseasespreadrequireinvestigation. Knowledgegainedfromthestudywillnotonlybeusefulincontrollingthespreadofthe BXW epidemic, but also in the sustainable utilization of the stingless bees for meliponicultureandpollination. We therefore aim to study the behavior of stingless bees found to visit bananas in Uganda, as a first step towards the control of BXW epidemic and understanding the biologyofAfricanstinglessbees.

16

PART ONE

THE POSSIBLE ROLE OF STINGLESS BEES IN SPREAD OF Xanthomonas campestris pv. musacearum (Xcm) RESPONSIBLE FOR BANANA WILT IN UGANDA AND THE NEIGHBOURING COUNTRIES

17 1. Introduction Anumberofinsectsareknowntobevectorsofplantpathogens.Theytransmitpathogens through various modes ranging from foregut borne, circulative, propagative and transovarial. Still, some insects may spread pathogens attached to their body as they movefromplanttoplant.Forexamplehoney bees, Apis mellifera spread the bacteria pathogenforfireblight(Erwinia amylovoa)throughpollen(Johnsonet al.1993). It is implied that the vectors of insect transmitted strains of Moko banana disease in Central America are most likely to be bees, wasps or flies (Buddenhagen & Elsasser 1962),whilethatofBugtokdiseaseareprobablyThrips.InUgandastinglessbeeswere speculatedtobetheprimaryvectorsinthespreadofXanthomonas.Xanthomonas issaid toenterthebananaplantthroughmoistscarsofrecentlydehiscedmaleflowersandfloral bracts(Goldet al.2006;Tinzaaraet al.2006).Thespeculationisbasedonthegrounds thatBananaXanthomonasWilt(BXW)inUgandahassimilarsymptomstootherbanana bacterial diseases such as Moko whose vectors are insects (EdenGreen 2007). In addition Xanthomonaswasrecoveredfromstinglessbeesbody(Tinzaara et al. 2006). However no study has been done to show the role and mode of transmission of the bacteriabyinsectsortosupportthehypothesisthatstinglessbeesaretheprimaryvectors. Informationisneededonthepartsofbananasvisitedbystinglessbees(especiallythe most susceptible type Pisang Awak), materials that the bees collect, their movement betweenbananaplants,andbetweenthebananasandtheirnests.Knowledgeofthebees foragingrangewouldbeessentialindeterminingtheforagers’distributionradiusfrom theirnests,whichwoulddeterminehowfartheycouldspreadXanthomonas. WethereforedidastudyincentralUgandatodeterminetheroleofstinglessbeesinthe spreadofBXW.

18 1.2 Aims of the study 1. As stingless bees were said to be the primary vectors in the spread of Xanthomonas campestris pv. musacearum,wewantedtodeterminewhichspecies ofstinglessbeesvisitedbananasandwheretheynested 2. Tofindoutthelikelywaysthroughwhichstinglessbeeswouldgetincontactwith Xanthomonas campestris pv. musacearum,wedeterminedstinglessbeesforaging behaviorandthematerialstheycollectedfrombananasbyobservationinbanana fieldsandincolonies(PlebeinahildebrandtiandHypotrigona gribodoi,themost commonstinglessbeesinthestudyarea)rearedinwoodenhives 3. Since Pisang Awak banana variety was reported as the most susceptible to Xanthomonas,wedeterminedtheamountofnectarandthesugarconcentration produced by male and female flowers which would be collected by visiting stinglessbees. 4. Giventhatanymovingobjectwhichcomesintocontactwithdiseasedbananas hadalikelihoodofgettingincontactwithXanthomonas,wewantedtoestablish how far stingless bees were likely to spread Xanthomonas if they got contaminatedwithit.Wedetermined Plebeina hildebrandtiforagingdistanceto sugar solutions of different concentrations and extrapolated the results to other speciesofstinglessbeesfoundvisitingbananas

19 2. Study area and methods

Study area ThestudywascarriedoutfromNovember2005toJuly2006infarmlandsplantedwith bananas in four districts, Luwero, Mpigi, Mukono and Wakiso districts in Central Uganda(Figure7)

Figure 7: Image of Uganda showing district and regional boundaries. Each district is givenanumber:Number48=Luwero,59=Mpigi,61=Mukono,76=Wakisodistricts.

20 Methods AstherewasnoselectiveculturemediumforXanthomonas campestris pv. musacearum (Xcm),weappliedindirectapproachestotestwhetherstinglessbeeswouldgetincontact andcarrythebacteria.Wedocumentedthebehaviorofcoloniesinwoodenobservation boxesandtheirforagingbehaviorinbananafields.

2.1 Determining stingless bee species and their nesting sites in the farmland Asurveywasdonetodeterminethespeciesofstinglessbeesvisitingbananasandtheir nesting sites. The survey was done in selected farms in Luwero, Mpigi, Mukono and Wakisodistricts(Figure7).Duringrandomwalksinthefarmsstinglessbeeswerecaught usingasweepnet.Simultaneouslywesearchedfornestingsites.Duetoinsufficienttime and resources, no attempt was made to quantify the abundance of each species on bananas. Also no attempt was made to count the total number of nests in each farm. Identification of the bees was done at the National Museums of Kenya by Dr. Mary Gikungu.

2.2 Foraging behavior of stingless bees in banana farms and the materials they collected 2.2.1 Foraging behavior and foraging duration Stingless bees foraging behavior on bananas was recorded in Mukono and Wakiso districts.InMukono,theforagingbehaviorwasrecordedineightPisangAwakbananas (5males,3females)forsevendays.InWakisoitwasrecordedonsevensweetbananas(6 male, 1 female) and one Highland (Matooke) banana for seven days. A forager was observedfromthetimeitlandedontheflowersuntilitleft.Thetotaltimeabeespenton theflowersandtheactivitiesitdidbefore flying away wererecorded. Whenaforager flew away from the banana plant under observation, it was recorded if it landed on bananaswithinthevicinity.Wealsomadeobservationtodetermineiftheforagersvisited the pseudostem, leaves, fruits and flower stalk of the bananas. When a forager flew away,theobserverwaitedforthenextstinglessbeeforagertoarriveontheflowersand observations began. The species of the forager under observation was recorded. No

21 attemptwasmadetorecordtheabundanceofeachspeciesontheflowers.Other visitorstotheflowerswererecordedwherepossible.

2.2.2 Collection of sap and bacterial ooze in the field On bananas in advanced Xanthomonas infection stages, we observed if stingless bees wouldtakeupbacterialoozewhichwasseepingout(Figure8).Tofindoutifstingless beescollectedbananasap,greenfruits,bracts,maleandfemaleflowerswerecuttoallow saptoseepout(Figure9a,b,c),thenweobservedifthebeeswouldtakeitup.Wealso observedwhetherthebeeswouldcollectsapfromnaturallyoccurringscarsontheflower stalkscausedbyfallofmaleflowersandbracts.

Figure 8:Ooze(arrow)seepingoutofabananabunchinfectedwith Xanthomonas.Weobservedifstinglessbeestookuptheooze

22 Figure 9a: Sap(arrow)seepingoutofhorizontallycutgreen bananas.Weobservedifstinglessbeestookupthesap

Figure 9b: Sap(arrow)seepingoutofhorizontallycutbracts.We observedifthebeestookupthesap.

23

Figure 9c: Sap(arrow) seepingout ofcut femaleflowers.We observedifthebeestookupthesap.

2.2.3 Uptake of nectar, sap, and bacterial ooze offered at the nest entrance of colonies reared in observation hives ThreecoloniesofHypotrigona gribodoiandfourcoloniesofPlebeina hildebrandtiwere rearedinwoodenobservationhivesatKawandaAgriculturalResearchInstitute(KARI) in Uganda. The colonies served for further experiments to determine if stingless bees would collect fresh/old sap from healthy bananas, ooze from bananas infected with Xanthomonasandbanananectarprovidedatthenestentrance.Bothsapandoozewere used in the experiment to determine if the bees would collect sap which was not contaminatedwithXanthomonasoroozewhichhadXanthomonas. The observation hives were wooden with transparent glass cover. The hives for P. hildebrandtiwere50cmlong,20cmwideand25cmhigh,whilefor H. gribodoi were 20cmlong,10cmwideand15cmhigh.Thehiveshadholesdrilledononesideinwhich silicontubeswereinsertedforexitandentranceofthebees.

24 Toholdnectar,sapandoozeattheentrance,asilicontube,3.8cmlongand2.5cmwide wascutopenandplacedattheedgeofthestinglessbeesexittube,suchthatitwrapped arounditandleft1.3cmextendingbeyondtheexittube(Figure10).Eachatatime,two dropsofnectar,sap,andoozewereplacedwithinthe1.3cmextensionofthesilicontube. ThenectarwasfromPisangAwakmaleflowerswith11%sugarconcentration. Immediatelyafterplacingeitheroftheabovesubstances,wecountedforfiveminutesthe numbersofbeesthatcametotheentrancetube.Thatisimmediately0min,at2.5minand at5min.Thebeesthatantennedortookupthesubstancesprovidedwererecordedwith theaidofadigitalvideocamera.Wedidnotdifferentiatewhetheritwasthesamebees comingtotheentrancetubefrominsidethehiveandreturningordifferentbeesthatwe counted at 0min, 2.5min and 5min. The silicon tube was changed every time a new substance was under observation. Observations were done for H. gribodoi and P. hildebrandti.Theexperimentwasrepeatedthreetimesforbothoozeandsap.

2.2.4 Offering banana sap within the hives Sincethesapprovidedtothebeesatthenestentrancetubewasfresh,wewantedtoknow ifthebeeswouldtakeupoldsaporsapleftexposedforsometimee.g.thesapwhich exudes from the scars caused by the fall (dehiscent) of male flowers and the flower bracts.Todothis,threesmallcontainerswerefilledwithbananasapandplacedinside threeP. hildebrandtihivesforsevenhours.Thesapwassqueezedfromthebaseofmale andfemalePisangAwakflowersimmediatelyafterpluckingthemfromtheflowerstalks. Aftersevenhoursweobservedifthebeeshadtakenupthesap. Thethreesmallcontainerswerethenremovedandplacedadjacenttothehivestofindout iftheforagerswouldtakeupthesubstanceswithinthem.

25 Figure 10:A3.8cmx2.5cmsilicontubecutopenandplacedattheedgeofthehiveexit tube,suchthatitwrappedaroundtheexittubeandleft1.3cmextendingbeyondthetube. Dropsofnectar,sapandooze(arrow)wereplacedonthe1.3cmextensionforuptakeby stinglessbeesforagers 2.2.5 Provision of banana bunches with male flower buds 50cm in front of the hives Threesweetbananabuncheswith atleasttwobractswithopenmaleflowerswerecut carefullyfromtheirmotherpseudostems.Thecutendwasimmediatelycoveredwithwet soilandwrappedwithwetcottonwoolandaplasticpapertopreventwaterlosshence withering and subsequent fall of the flowers. The bunches were suspended one meter fromthegroundand50cminfrontofH. gribodoi and P. hildebrandtihives.Thefruits andtheflowerstalkswerescratchedwithametalobjecttoallowsaptoseepout.The buncheshadameannectarsugarof17%,19%and15%.WeobservedifH. gribodoiand P.hildebrandticollectedsapandnectarfromthebunchesfor170minutes.

26 2.3 Determining the amount of nectar and the sugar concentration produced by male and female Pisang Awak flowers

The number of open bracts per banana in eight Pisang Awak bananas was counted in Mukonodistrict.Thenumberofflowersundereachopenbractwasalsocounted.The counting in the eight bananas was done within seven days. The flower buds were of differentage. Using micropipets (l l, 2 l, 5l, 10l, 100 l), nectar was extracted and volume measured,from29maleand8femaleflowers.Withahandheldsugarrefractometer,the nectarsugarineachflowerwasmeasured. 2. 4 Plebeina hildebrandti foraging behavior and foraging distance 2.4.1 Recruitment of nest mates to nectar sources These experiments were done to determine whether, when a forager finds nectar at a certainsource,nestmateswouldcollectnectarfromexactlythatsource.Thiswouldgive anindicationofhowthebeesarelikelytospreadXanthomonasduringforaging.Small containerswithcotton woolsoakedwithsugarsolutionswereused as feeders.Cotton wool was provided to prevent bees from drowning in the sugar solution. The sugar solutionsconsistedofhoneyfromApis mellifera,sugarandwater. Usingafeeder(feederone),foragersweretrainedtocometothefeederuptoadistance of30mfromthehive.Tofindoutifbeesscentmarkedfeederonewhichwasusedduring thetraining,asecondfeeder(feedertwo)wasplacedadjacenttofeederoneat30mfrom thehive.Athirdfeeder(feederthree)wasplacedonemeterfromfeederoneandtwo,but equaldistances(30m)fromthehivetodetermineifthebeeswouldcollectsugarsolution fromit(Figure11).Allthethreefeederswereidenticalsmallcontainerswithcottonwool soakedwith40%sugarsolution.Foragersarrivingatthethreefeederswerecountedand markedeveryfiveminutesforaperiodof60minutes.Beesarrivingatfeederthreewere captured.Attentionwaspaidonbeesflyingamongthethreefeeders.

27 2.4.1.1 Training of the bees AfewdropsofthesugarsolutionwereputatthesiliconexittubeofahiveinwhichP. hildebrandticolonywasreared.Aftertheforagerstookupthesolution,feederonewas placedinfrontoftheexittube.Thefeederwasincontactwiththetubesothatthebees which had previously taken up the sugar solution from the exit tube could find it. Foragerswereallowedtotakethesugarsolutionandreturntothehivetwicebeforethe feeder together with the bees on it could be moved for some centimeters from the entranceandwhenthebeeswerebackonthefeedertheyweremovedstepwisefor13 metersupto30mfromthehive. 30m feeder1 Hive feeder2 1m feeder3

Figure 11: FeederarrangementinanexperimenttodetermineifPlebeina hildebrandti foragersrecruitednestmatestoafoodsource

2.4.2 Resource switching 2.4.2.1 Experiment to determine if sugar solution collectors would switch to either resin or sap collection when sugar solution was taken away Theseexperimentsweredonetodetermineifstinglessbeescollectingnectarfrommale bananaflowerswouldswitchtosapcollectionwhenthemaleflowersfelldownleaving scarswetwithsap,orwhenbananasinadvanceddiseasestagehadbacterialoozeseeping out.Theresinusedintheexperimentwasfromwithinthestinglessbeenestsandwas usedasacontrol.

28 Usingasmallcontainerwithcottonwoolsoakedwitha40%sugarsolution,beeswere trainedupto30mfromthehive.Trainingofthebeestothesugarsolutionwasdoneas describedinsection2.4.1.1.Nestmatesrecruitedtothesugarsolutioneveryfiveminutes foraperiodof60minuteswerecountedandmarkedonthethorax.Attheendofthe60 minutes, the sugar solution soaked cotton wool was removed from the container and replacedwithbananasap.Beesarrivingonthecontainerwerecountedandmarkedevery five minutes for a period of 60 minutes. We made observations on whether the bees wouldcollectthesap.Theexperimentwasrepeatedbyreplacingsapwithresinextracted fromaP. hildebrandtinest.

2.4.2.2 Experiment to determine if resin collectors would switch to either sap or sugar collection when resin was taken away Anotherexperiment(asinsection2.4.2.1)wasdonetodetermineifbeeswouldrecruitto resinandthenswitchtonectarorsapcollectionwhenresinwasreplacedwitheitherof them.Trainingofthebeestoresinwasdoneasdescribedinsection2.4.1.1.

2.4.3 Foraging distance to sugar solutions of different concentrations To determine P. hildebrandti foraging distance and if sugar concentration influenced flight distance, bees were trained to 11%, 33%, 48% and 54% sugar solutions. The trainingwasdoneasinsection2.4.1.1.Thefeedertogetherwiththebeesonitwasmoved stepbystepfromthehiveuptothefurthestdistancewhenrecruitmentdiminishedandno more bees arrived on it. At every step new recruits were counted and marked on the thorax. The choice of 11% and 33% sugar concentrations was based on the knowledge that Pisang Awak, the banana variety most susceptible to Xanthomonas had nectar sugar concentrationsof0%to32%,withameanof12.5%.Thechoiceof48%and54%was based on the fact that stingless bees profit mostly from nectars with over 40% sugar concentration.

29 3. Statistical analysis Onewayanalysisofvariance(ANOVA)wasusedtodetermineifthereweredifferences in foraging duration among stingless bees’ species collecting nectar on bananas from morning to evening, and to compare foragers to the three feeders used to determine nestmates recruitment. Student Ttest was used to compare male and female flowers nectarvolumeandsugarconcentration,andtocomparestinglessbees´foragingduration on male and female flowers. Regression analysis was used to determine relationship between number of new foragers recruited to different sugar concentrations and the foragingdistance.AlltheanalysisweredoneusingJMP(2005)statisticalpackage.

30 4. Results

4.1 Stingless bee species and their nesting sites in banana farms Four stingless bees’ species, Hypotrigona gribodoi, Plebeina hildebrandti, Meliponula ferruginea (Lepeletier)andMeliponula sp.wererecordedvisitingbananaflowersinthe fourdistricts.Meliponula sp. wasrecordedonlyinMukonodistrict. Hypotrigona gribodoi nestedincavitiesintrees,andmanmadestructureslikewallsof mudhouses,blockeddrainagepipes,electricalsocketsandpolessupportingelectricity andtelephonewires.Plebeina hildebrandtinestedininhabitedtermitemounds.Thebees avoidedtermitemoundswithnovegetationcoverespeciallyinareaswithhighhuman presenceandactivities.Meliponula ferrugineanestedincavitiesintreeswithalmostall thenests(10nests)foundinCupressus lucitanica.Meliponula spnestswerenotfound. Howeverabout50workerswereobservedtorepeatedlyvisitacreviceunderacemented pavement.Theysealedthecrackandremovedsoilfromwithinthecrevice.Afteraheavy downpourtheworkersnevervisitedthesiteagain.

4.2 Foraging behavior of stingless bees on bananas and the materials they collected Foraging behavior Four stingless bees’ species visited banana flowers where they collected only nectar. Therewasnopollenvisibleinthebananasobservedandnobeeswereseencollecting pollen. Mostlythebeeswouldlandontopoftheflowersthencrawlinside.Occasionallythebees landedonthebractsthencrawltotheflowers.Morethanoneforagercouldeasilyaccess nectarinfemaleflowersastheflowersopenedwidely(Figure13a).Ontheotherhandthe bees had difficulties squeezing through the male flowers to reach the nectar, as the flowers were compressed together and did not open widely (Figure 13b). This was especiallysointheinnerrowsinwhichcasestinglessbeeswouldwaitforhoneybeesto squeezethroughtheflowerstoopenthemup.Occasionallysomehoneybeeswouldget

31 stuck as they forced their way, backwards from inside the flower. In male flowers, normally only one forager would collect nectar at a time, except for the small Hypotrigona gribodoi.Sometimesthebeeswouldcrawlatthebaseofthefloweronthe outsidebelowthespoonshapedpetaltoaccessnectar(Figure13b). As there were other animal visitors (honey bees, solitary bees, wasps, flies, beetles, drosophila,ants,weaverbirdsandsunbirds),competingfornectarorpredatingonother insectson/inflowers,astinglessbeeforagervisitedseveralflowersunderoneormore openbractsbeforeleavingabananaplant. Aftercollectingnectar,abeewouldcleanitswingsandlegswhileseatedontopofthe flowers or bracts before flying away. Occasionally the bees would fly on top of the bananaleavescleanthebodyandthenflyaway.Atonetimeabeewasseendryingthe nectar,passingitbetweenthemouthandthefrontlegswhileseatedonabananaleaf,it thenflewbacktotheflowersonthesameplanttocollectmorenectar. Inoneoccasion,aforagerwasobservedflyfromthebananaplantunderobservationtoa secondbananainaseparatestoolhangingtwometersaway.

32 Figure 13a:Astinglessbeeforagercollectingnectarfrominsideafemalebananaflower

ii

i

Figure 13b:Twostinglessbeestrytoreachnectarinamaleflower.Oneforager(i)tries togetinsidetheflowerwhileanother(ii)triestoaccessnectaroutside,attheflowerbase

33 4.2.1.1 Foraging duration from the time a bee landed on the flowers till it left Foraging time per visit to the banana flowers differed significantly among the four stingless bee species (one way ANOVA F3, 257 = 10.77, P < 0.01, Table 1) with Meliponula ferruginae spending more time per visit than the other three species (ContrasttestF=25.43,P<0.01).Byspendingmoretimeontheflowers,biggerspecies suchasM. ferruginaehadahigherpossibilityofgettingcontaminatedwithXanthomonas thansmallerforagerssuchasHypotrigona gribodoi.

Table 1: Species of stingless bees observed collecting nectar from banana flowers, numberofobservationsandmeantimeinsecondsspentonflowerspervisit Species Bodysize(mm) Averagetime(sec)spenton Eardley2004 flowerspervisit Meliponula ferruginae 5.15.9 272(n=54) Meliponula sp. * 174(n=83) Plebeina hildebrandti 3.35.2 119(n=76) Hypotrigona gribodoi 2.23.9 92(n=44) *SpeciesnotidentifiedbutapproximatelysamesizeasM.ferruginea

34 4.2.1.2 Foraging duration from morning to evening Therewasnosignificantdifferenceonthedurationthatforagersbelongingtothefour speciesspentpervisittotheflowersfrommorningtoevening(OnewayANOVAF9,247 =1.13P =0.46,Figure15).

350 P =0.46 300

250

200

150

Timespent(sec) 100

50

0 6 8 10 12 14 16 18 20 Timeofday Figure 15:Mean(±S.E)timespentpervisitbyfourspeciesofstinglessbees’foragers onbananaflowersfrom0800hto1800h.OnewayANOVA,P=0.46

4.2.1.3 Foraging duration on male and female flowers Acomparisonoftimespentonmaleandfemaleflowersbythreespeciesofstinglessbees Meliponula ferruginea, Meliponula sp. and Plebeina hildebrandti in Mukonodistrict, showedthatforagerstendedtospendmoretimeonfemaleflowersthanonmaleflowers (tTest=2.5,DF=108,P=0.01(Figure16).Byspendingmoretimeonfemaleflowers, foragershadhigherchancesofgettingcontaminatedwithXanthomonas onfemalethan onmaleflowers:ifXanthomonaswaspresentinfemaleflowers,orthroughcontactswith otherforagers

35 260

240

220

200

180

160 Timespentonflowers(Sec)

140

120 Female Male

Flowertype

Figure 16:Mean(±S.E)timespentbythreespeciesofstinglessbees’foragersonmale andfemalebananaflowers.N=1100bservations,48onfemaleand61onmaleflowers 4.2.2 Collection of sap and ooze in the field Stinglessbees’foragersdidnotcollectsapfromgreenfruits,bracts,maleandfemale flowerswhichwerecuttoallowsaptoseepout.Alsotheydidnotcollectsapfromscars ontheflowerstalkcausedbyfallofmaleflowersandbracts.Howeverinoneinstancea beewasfoundtryingtocollectsomedrybananasaponaflowerstalk(Figure17).The beepulledthedrysapwiththemouthbutleftafterashorttimewithoutpackinganysap onthecorbiculae.WouldXanthomonasbepresentinthedrysap?Stinglessbeesdidnot oozefrombananaplantsinfectedwithXanthomonas.

36 Figure 17: Astinglessbeeforagertriestocollectdrybananasap

4.2.3 Uptake of nectar, sap, and ooze offered at the nest entrance BothHypotrigona gribodoiandPlebeina hildebrandticollected11%PisangAwaknectar provided at the nest entrance tube. During three (5 min) observation periods, five H. gribodoi andsixP. hildebrandticollectedthenectar.Howevertherewerebeesatthenest entrancewhichdidnotcollectthenectar,whileothersjustantennedthenectarwithout taking it up (Table 2).The two species did not take up sap and ooze provided at the entrance.Somebeesatthenestentranceantennedthesapandtheoozewithouttakingit up(Table3and4).Afterantenningthesaporooze,thebeesintheentrancetubebecame agitated.

37 Table 2: Mean number of Hypotrigona gribodoi and Plebeina hildebrandti workers observed at the nest entrance tube in the presence of 11% Pisang Awak nectar during three (5min) observation periods, and the number of workers that either antenned or collectedthenectar Species Bees at the entrance Beesantenning Beescollecting tube nectar nectar 0min 2.5min 5min In5min In5min H. gribodoi 1 5 8 4 5 P. 1 10 10 1 6 hildebrandti

Table 3: Mean number of Hypotrigona gribodoi and Plebeina hildebrandti workers observed at the nest entrance tube in the presence of banana sap during three (5min) observationperiods,andthenumberofworkersthateitherantennedorcollectedthesap Species Beesattheentrancetube Beesantenningsap Beescollectingsap

0min 2.5min 5min In5min In5min H. gribodoi 2 6 6 1 0 P.hildebrandti 4 8 2 2 0

Table 4: Mean number of Hypotrigona gribodoi and Plebeina hildebrandti workers observed at the hive entrance tube in the presence of ooze during three (5min) observationperiods,andthenumberofworkersthateitherantennedorcollectedtheooze Species Beesattheentrancetube Beesantenningooze Beescollectingooze

0min 2.5min 5min In5min In5min H. gribodoi 2 5 8 3 0 P.hildebrandti 4 4 4 0 0

38 4.2.4 Treatment of sap introduced inside the hives InonePlebeina hildebrandtihivethebeesdidnottouchthesapthathadbeenputinside. Thesaphaddriedontopformingathinlayerbutbelowthelayerthesapwasstillfluid (Figure 18a). In the other two P. hildebrandti hives, the bees covered the sap with propolis collected from within the nests (Figure 18b). The sap below the propolis remainedfluid.

Figure 18a: Sap in small containers introduced inside P. hildebrandti hive showingsapnottouchedbythebees.Sticks(arrow)puttopreventthebees fromdrowninginthesap

39 Figure 18b: Sap in small containers introduced inside P. hildebrandti hive showingpropolislayersmearedontopofthesapbythebees WhenthesmallcontainerswereremovedfromPlebeina hildebrandtihivesandplaced nexttothem,thebeescollectedthepropolistheyhadsmearedontopofthesapbutthey didnotcollectthebananasap(Figure19).Usingmandibles,thebeesscrappedpropolis fromthesurface,andwiththehelpoftheforelegspushedtothecorbiculaeinthehind legs.Bothhindlegswereloadedinterchangeably.

b

a Figure 19: P. hildebrandtiforagersdidnotvisitthecontainerwithbananasap (a),butvisitedthecontainersmearedwithpropolis,andcollectedthe propolis(b)

40 4.2. 5 Reaction to banana bunches hung 50 cm in front of the hives BothH. gribodoi and P. hildebrandtiforagersflewfromthenesttocollectnectarfrom flowersonthebananabuncheshang50cminfrontofthehive.Theydidnotvisitfruits andflowerstalkswhichhadbeenscratchedtoallowsaptoseepout. 4.3 Determining the amount of nectar and the sugar concentration produced by male and female Pisang Awak flowers

Number of open bracts and flowers Onaverageonlyonebractwasopeninmaleflowerbudsperday,witharangeof13 openbracts.Whentherewerethreeopenbracts,twoofthemcontainedoldflowerswith nonectarbutrottingandfreelyfallingdownleavingabarestalkwithscars.Theseold flowerswerenotvisitedbyforagingbees.Theaveragenumberofmaleflowersperbract was19. Femaleflower budshadanaverageofeightopenbracts,withameanof16 flowers per bract. Most stingless bees and other insect visitors were concentrated on flowerclustersinthelastthreerecentlyopenedbracts.Flowerclustersinolderbractshad fewervisitorsroamingoverthem. Duetothehighernumberofbractsopeninthefemaleflowerbuds,thereweremoreopen flowersavailableforthebeesthaninthemaleflowerbuds.Consequentlymorestingless beesandotherinsectvisitorsvisitedfemaleflowersthanthemaleflowers. Pisang Awak nectar volume and sugar concentration OnaveragePisangAwakhadnectarwith12.5%sugarconcentrationwitharangeof0 32%.Themeannectarvolumeperflowerwas30.2mwitharangeof0.5102m.There wassignificantlylargervolumesandhighernectarsugarconcentrationinmaleflowers thaninfemaleflowersduringtheday(tTest=3.2,DF=41,P=0.01fornectarvolume andt=2.7,DF=41,P=0.01forsugarconcentration(Figure12).

41 50 16 A B 14 40

12

30 10

8 20

Nectarsugar(%) 6 Nectarvolume(m) 10 4

0 2 Female Male Female Male Flowertype Flowertype Figure 12:Mean(±S.E)in(A)nectarvolumeinmand(B)nectarsugar(percentage)in maleandfemalePisangAwakflowersduringtheday.N=43flowers 4.4 Plebeina hildebrandti foraging behavior and forage distance 4.4.1 Recruitment of nest mates to food sources

Significantlymorebeesarrivedonfeederone,thanonfeederstwoandthree(F 2, 33= 17.05;P<0.01)duringthe60minutesobservationperiod.Atotalof192bees(93.2%of thetotalbeestothethreefeeders)arrivedtofeederone,whichhadbeenusedintraining the bees from the nestentrance up to 30meters from the hive. Twelve bees (5.83%) arrived to feeder two, which had not been used in training the bees, but was placed adjacenttofeederone.Twobees(0.97%)arrivedtofeederthree,whichhadnotbeen usedintrainingthebees,butwasplacedonemeterfromfeederoneandtwo(Figure20). Ofthe12beesonfeedertwo,nineweredirectlyfromthenestwhilethreehadpreviously visitedfeederone.Thetwobeesthatarrivedtofeederthreehadpreviouslyvisitedfeeder one.

42 100

80

60

40 Foragers(%)

20

0 Feeder1 Feeder2 Feeder3

Feeders Figure 20:PercentageofPlebeina hildebrandtiforagersarrivingonthreefeederswith 40% sugar solution, placed 30m from the hive, for a period of 60 minutes. Feeder 3 placedonemeterfromtheothertwo.

4.4.2 Resource switching 4.4.2.1 Replacing sugar solution with either sap or resin Foragerssteadilyrecruitednewcomerstothe40%sugarsolutionplaced30mfromthe hive,duringa60minutesobservationperiod(Figure21). Whenthesugarsolutionwasreplacedwithbananasap,fivebeeslandedonthefeeder withinthefirstfiveminutesbuttheydidnotcollectsap.Theyeitherlandedonthefeeder, tastethesapwiththeproboscis,walkonandaroundthefeederorflyaroundthefeeder uptoonemeteraway.Thebeesinspectedwhetherthesugarsolutionhadbeenreturned. Bytheendofthe60minutesobservationperiod,nobeewaslandingonthefeeder,but flewaroundit(Figure21). When sap was replaced with resin, two bees collected the resin during a 60 minutes observationperiod(Figure21).

43

10 Landandcollect40%sugar Landatresinbutnocollection Landandcollectresin 8 Landatsapbutnocollection

6

4 Numberofbees

2

0 0 10 20 30 40 50 60 Observationduration(min) Figure 21: Number of Plebeina hildebrandti foragers that collected a 40% sugar solution,landedatbananasapwithoutcollecting,andthosethatlandedatresinwithor withoutcollectingitafter40%sugarsolutionwasreplacedwitheithersaporresin

4.4.2.2 Replacing resin with either sap or sugar solution Fourforagersweretrainedandcollectedresinonafeederplaced30mfromthehive.The fourforagersrecruitedthreebeeswhichcollectedresinduringthe60minutesobservation duration(Figure22). When resin was replaced with banana sap, none of the bees that came to the feeder collectedthesap(Figure22). Whensapwassubstitutedwith40%sugarsolution,thenumberofforagerslandingand collectingthesugarsolutionincreasedsteadily(Figure22).

44 10 Landandcollectresin Landatsapandnocollection Landandcollect40%sugar 8

6

4 Numberofbees

2

0 10 20 30 40 50 60 Observationduration(min) Figure 22: Number of Plebeina hildebrandti foragers that collected resin, landed at bananasapwithoutcollecting,andthosethatcollected40%sugarsolution,afterresin wasreplacedwitheithersaporsugarsolution.

4.4.3 Foraging distance of Plebeina hildebrandti when 11%, 33%, 48% and 54% sugar solutions were offered Beesrecruitedtothesugarsolutiondeclinedwithincreaseindistance.Forexampleto 48%sugarsolution,atthehiveentrance(0m)44beescametothefeederwhileat1220m fromthehiveonlyonebeecametothefeeder(Figure23). Recruitmentofnewcomersstoppedbeforetheexperiencedforagersstoppedforaging. Foragingdistancewasdependentontheconcentrationofthesugarsolution,withbees flyingshorterdistancesforlowsugarconcentrationandlongerdistancesforhighersugar concentration(Table5).

45 Table 5: Distancesfromthehiveatwhichrecruitmentofnewnestmatesandforagingby experiencedPlebeina hildebrandtiforagersstoppedwhenprovidedwithsugarsolutions ofvaryingconcentrations Sugarconcentrationofthe Distance(m),atwhich Distance(m),atwhich solutions(%) recruitmentofnewcomers experiencedforagers stopped stoppedcollectingthe sugarsolutions 11 1030 1050 33 1160 1200 48 1185 1220 54 1215 1230

50

40

30

20 Newlyrecruitedbees

10

0 0 200 400 600 800 1000 1200

Distancefromthehive(m) Figure 23: Number of Plebeina hildebrandti foragers to a feeder with 48% sugar solutionplacedvariousdistancesfromthehive.Fittedisalinearregression,analysisy= 2 27;r =0.69;F15=8.9,P=0.002

46 5. Discussion

Stingless bees foraging behavior and its implications to the spread of Xanthomonas Four stingless bees species collected nectar from bananas in central Uganda. They collectednectarfrombothmaleandfemalePisangAwakflowers.Itwaseasierforthe foragerstoaccessnectarinfemaleflowersastheyopenedwidelyincomparisontomale flowers.Thisallowedmorethanoneforagertosimultaneouslycollectnectarinafemale flower.Ontheotherhandmaleflowerswerenarrowandsomuchcompressedthatitwas difficultforthebeestogetinsideandonlyasingleforagercouldgetinatatime.Asa result lager quantities of nectar were recorded in male flowers than in female flowers duringtheday.Duetonectarremaininginthemaleflowersforalongertimewithout beingtakenbyinsects,evaporationofwatertookplaceleadingtohighersugarcontents thaninfemaleflowers.Thereforefemaleflowermorphologyencouragesinteractionsof morethanoneforagerwhichcouldenhancethespreadofXanthomonasascomparedto maleflowermorphology. The foragers neither collected ooze from bananas infected with Xanthomonas nor sap frominjuredpartsandmoistscarscausedwhenmaleflowersdehisced.Provisionofsap, ooze and nectar to Hypotrigona gribodoi and Plebeina hildebrandti reared in wooden observation boxes confirmed that stingless bees did not collect sap and ooze from bananas. In fact banana sap introduced inside the hives was embalmed with propolis. Embalmingisnormallydonetopredatorsandotherintruderswhichdieinsidestingless beeneststopreventbacteriagrowth(Ghilsalberti1979). Infact,intheabsenceofnectarforagersdidnotswitchtocollectingbananasaporooze infectedwithXanthomonas.ThereforeifXanthomonas isspreadthroughscarsleftbyfall ofmaleflowers,stinglessbeesarenotprimaryvectorsastheydidnotvisitorcollectany material from the scars. Other animal vectors or modes of transmission may be more importantinthespreadofthedisease.Forexample,sinceBananaXanthomonasWiltisa vasculardisease(Birumaet al.2007),bitingandsuckinginsectsmaybemoreimportant vectorsthanstinglessbees.

47 Possible accidental contamination of stingless bees with Xanthomonas ThereispossibleaccidentalcontaminationofstinglessbeeswithXanthomonas through contactwithbacterialooze.Inthiscase,thebacteriawouldbeontheirsurfaceandnot insidetheirbody. Also if Xanthomonas ispresent inthenectar,stinglessbeesarelikely togetcontaminated,eitherthroughcontactwiththenectaryorimbibingthenectarinto the nectar stomach. In this case Xanthomonas would be swallowed into the nectar stomach and also contaminate the outside of the foragers’ body. Some studies have reportedpresenceofXanthomonas innectar(Ssekiwokoet al.2006),whileothersfound noXanthomonasinnectar(Mwangietal.2007).IfXanthomonas ispresentinthenectar, thebacteriawouldeitherbecarriedtothebeenestortransportedtoanotherbananaplant.

Fate of Xanthomonas inside the stingless bee nest Inthenest,nectarfromforagersmayundergoseveralpathways.One,itisfedtonest mates(trophalaxis),inwhichcasethenectarispartlyeatenanddigested. Inthiscase Xanthomonas islikelytobedestroyedoritmaycomeoutwiththewasteproducts.Waste productsinstinglessbeenestsisstoredinonecornerfromwhereitslatercarriedout. Two,nectarisstoredinnectarpotswhereit’sdehydratedtohoneywithahighsugar concentrationofabout7080%.Nectarpotscontainpropolis(mixtureofwax,plantresins and gums) as a constituent building material. Propolis has been shown to have antimicrobial properties (Ghilsalberti 1979; Mereste & Mereste 1988; Marcucci 1995; Gilliam1997;DeCampusetal.1998.ThereforeXanthomonas wouldbeeliminatedfrom insidestinglessbeenestsbypropolisandfromhoneywithhighsugarcontentthrough desiccation.Furthermore,theperennialcoloniesofstinglessbeesdependonfoodstores in humid tropical environments and species living in the soil employ mechanism for preservationandforprotectionoffoodstoresfrommicroorganisms(Gilliamet al.1984; 1985). Honey bees and stingless bees in particular have an ancient relationship with Bacillus species which help to protect nest from microbialinvasions. Bacillus species produceantimicrobialcompoundsthatinhibitothermicroorganisms(Gilliamet al.1984; Canoet al.1994;Gilliam1997)

48 Fate of Xanthomonas in the banana fields Personalobservationsinthefieldshowedthatforagersvisitedasinglebananaplantper foragingtrip.Fromrecruitmentexperimentsforagers(93.2%)persistentlyvisitedfeeder one,whichhadbeenusedinrecruitingthebeesfromthenestentrance,whileonly5.83% arrived on feeder two placed adjacent to feeder one at 30 meters from the hive. Persistencyofforagersonfeederonefor60minutesshowsthat,eithertheforagerswere scentmarkingthefeedersothatnewcomersonlycametofeederone,ortheforagers were guiding the new comers from the nest to the feeder. Therefore, even in banana plantationsforagersfromonenestwouldcollectnectarfromonebananaplantandnot each forager goingtodifferentplants. IfXanthomonasispresentinabananaplant,it wouldbetransportedbetweentheplantandthebeenest.Thereforethehypothesisthat stinglessbeesareprimaryvectorsastheyliveinlargecolonies,andarelikelytospread Xanthomonasinmassneedreexamination. Furtherstudiesarerequiredtodetermineifthe0.97%foragers,whichmovedfromfeeder one to feeder three placed one meter away), can carry bacteria load enough to make stinglessbeestheprimaryvectors.

Plebeina hildebrandti forage distance Plebeina hildebrandti foragingrangedecreasedwithdecreaseinsugarconcentration.For examplefor11%sugarsolutionforagingstoppedat1050m,for33%at1215m,for48% at1220mandfor54%at1230m.Roubiket al.(1995)pointedoutthatthenectargathered by Meliponini averaged 44% sugar concentration with mean range of 2061%. An indicationthatalthough P. hildebrandti collected nectar from banana flowers, bananas maynotbeapreferredchoiceforoptimalforaging,hencethebeesmaynotbewillingto fly for long distances to collect banana nectar. Roubik et al. (1995) predicted that a sizeableproportionofflowersmusthavenectarofoptimalsweetnessforbees,regardless offlowernectarvolume.ForinstancePisangAwak,themostsusceptiblebananavariety toXanthomonas, hadcopiousnectarwithameanof12.5%sugarconcentration,whichis belowoptimalsweetnessforthebees.

49 Extrapolating Plebeina hildebrandti foraging rage to the other stingless bees species Threeotherspeciesofstinglessbeeswerefoundtocollectnectarfrombananaflowers. Hypotrigona gribodoi (Magretti)isasmallbeewithabodysizeof23mm,andlikelyto haveamuchshorterforagingdistancethanP. hildebrandti,whichhasabodysizeof3.3 5.2mm. Meliponula ferruginea (Lepeletier) with a body size of 5.15.9mm, and Meliponula sp areslightlylargerthan P. hilderbrandti,hencelikelytoforageslightly further. Studies have shown that there is a correlation between the bee size and the maximumforagingdistance(vanNieustadt&Iraheta1996;Araújoet al.2004).Maximal flightdistanceformediumsizedstinglessbeesisestimatedat11591710mwhilethatfor largerstinglessbeesisestimatedat2km(Araújoet al. 2004).Thisshowsthatifstingless bees were the vectors of Xanthomonas, they could only spread it locally and long distancetransmissionwouldbethroughothermeanswhichrequireinvestigations. Conclusion StinglessbeesarenottheprimaryvectorsofXanthomonas campestris pv. musacearum. They are likely to get accidental contamination just like any other moving object or animal.

50 6. Summary In Uganda, stingless bees were speculated to be the primary vectors in the spread of Xanthomonas campestris pv. musacearum (Xcm), responsible for a banana wilt which emergedinyear2001,andrapidlyspreadintheneighboringcountries.Xanthomonas is speculated to enter the banana plant through moist scars of recently dehisced male flowersandfloralbracts(Goldet al.2006;Tinzaaraet al.2006).Thespeculationisbased onthegroundsthatBananaXanthomonasWiltinUgandahassimilarsymptomstoother bananabacterialdiseasessuchasMokowhosevectorsareinsects(EdenGreen2007), and that Xanthomonas was recovered from stingless bees body (Tinzaara et al. 2006). However, no study has been done to show the role and mode of transmission of the bacteriabyinsectsortosupportthehypothesisthatstinglessbeesaretheprimaryvectors. We therefore determined the probable role of stingless bees in the spread of XanthomonasinUganda.

AsthereisnoculturemediumforrearingXanthomonas, weappliedindirectapproaches totestwhetherstinglessbeeswouldgetincontactandcarrythebacteria.Wetherefore documented the behavior of colonies in wooden observation boxes and their foraging behaviour in banana fields. We tested whether workers of Hypotrigona gribodoi and Plebeina hildebrandtiareattractedtosap,oozeandnectarandwouldtakethemupwhen offered at the entrance of observation nests. Nectar of banana flowers has low sugar content.ThereforeweinvestigatedifP. hildebrandtirecruitnestmatestoexperimental feederswith11%,33%,48%and54%sugarsolution.Furthermorewedeterminedthe distancethebeeswouldfly(foragerange)tocollectsuchsolutions.

In the banana farmlands we recorded four species of stingless bees, Hypotrigona gribodoi,Plebeina hildebrandti,Meliponula ferrugineaandMeliponula sp.Theynested incavitiesintrees,manmadestructuresandintermitemounds.Ourresultsshowthatall four species collected nectar from both male and female banana flowers. The banana variety (Pisang Awak) is the most susceptible to Xanthomonas. It had nectar with an averagesugarconcentrationof12.5%(range132%).Theforagingdistanceofworkers of P. hildebrandti decreased with decrease in sugar concentration. When 11% sugar

51 solutionwasofferedthebeesstoppedforagingat1050m,with33%sugarat1215m,with 48%at1220mandwith54%at1230m.Theforagerswouldthereforeflylessthan1215 metersfromthenesttocollect Pisang Awaknectar. If Xcm is present in nectar and incase the bees got accidentally contaminated with Xanthomonas,theyarelikelytospreaditovershortdistancesandforagersmaycarryitto theirnest.HoweverduetoanancientrelationshipbetweenstinglessbeesandBacillus species,whichproduceantimicrobialcompoundsthatinhibitothermicroorganismsfrom growthandthepresenceofpropoliswhichhasantimicrobialcompounds,Xanthomonasis likelytobeeliminatedinthestinglessbeesnest.Furthermore,apreliminarytestshowed thatXanthomonas couldnotgrowonpropoliscollectedfromP. hildebrandtinest. Noteworthyisthattheynevercollectedsaporoozeofferedatthenestentrance,neither fromhealthybananasnorfrombananasinfectedwithXanthomonas.IfXanthomonas can bespreadthroughnectarbothmaleandfemaleflowersarepossibleentrypoints,butif through scars caused by the fall of male flowers and flower bracts, stingless bees are unlikelyvectorsastheydidnotcollectsapfromthescars.Thereisthereforeneedfor furtherstudiesonpossiblelongdistancevectors.

52

PART TWO

NESTING BIOLOGY OF PLEBEINA HILDEBRANDTI AND HYPOTRIGONA GRIBODOI

53 1. Plebeina hildebrandti (Friese) Plebeina (Moure 1961) contains one variable species, Melipona denoiti (Type species Vachal, 1903), which may be divisible into several closely related species (Michener 2007).FurthersynonymsfoundinEardley2004are:Trigona hildebrandti(Friese1900), Trigona denoiti(VachalinFriese1909),Plebeina denoiti(VachalinFletcherandCrewe 1981)Meliplebeia denoiti(VachalinMoure1961andMichener1990),Trigona denoiti katagensis(Cockerell1934),Plebeinadenoiti katagensis(CockerellinMichener1990), Trigona clypeata(Friese1909),Trigona denoiti var. clypeata(FrieseinCockerell1920), Plebeina clypeate (Friese in Moure 1961), Trigona zebra (Strand 1911), Trigona clypeata var. zebra Strand (Friese 1912), Plebeina zebra (Friese in Moure 1961) and Hypotrigona denoiti. Plebeina hildebrandti workershaveabodysizeof3.35.2mm(Eardly2004).Thespecies has been recorded in South Africa, Botswana, Zimbabwe, Tanzania, Kenya, Uganda, Rwanda, D.R. Congo and Nigeria (Cockerell 1934; Smith 1954; Fletcher and Crewe 1981;Eardly2004).NestshavebeendescribedsofarfromTanzaniaandSouthAfrica.In Tanzania the nests were recorded either in occupied termite mounds or in the ground (Smith1954),whileinSouthAfricanestswererecordedintheground,althoughitis possible that the bees occupied cavities originally excavated by nonmound building termites(FletcherandCrewe1981). General structure of the termite mounds in which P. hildebrandti was found Termitemounds(termitaria)inAfricaarenormallyconstructedbytermitesbelongingto thefamilyTermitidae.Themoundshaveasubterraneanandabovegroundpart.Theycan besmallhalfburied(Cubitermes)tolargeabovegroundtermitariauptofourmetershigh (Macrotermes).Themoundsareconstructedfromsubsoilofloworganiccontentwith addedsalivarysecretions.Insidethemoundisanestwithinwhichroyalcellandnursery arefound.Macrotermitinae,asubfamilyfoundonlyinAsiaandAfrica,construct“fungus garden”; spongy greybrown combs constructed from chewed vegetable matter mixed with saliva and feacal pellets; that are scattered throughout the nest or surrounds the nursery.Variousgalleriesrunthroughthemound.

54 Humidityinsideamoundisalmostatsaturationpoint(Hesse1957;Krishnar&Weesner 1970;Darlington1985;1988,Bignell&Eggleton2000). 2. Hypotrigona gribodoi (Magretti) Hypotrigona gribodoioccurswidelyinsubSaharanAfricafromSenegaltoSouthAfrica (Bassindale1955;Tremblay&Halane1993;Eardly2004).InEasternAfricathespecies isfoundinKenya,Uganda,Tanzania,SomaliaandEthiopia.Hypotrigona gribodoiisa small bee with body sizes of workers ranging between 23mm (Eardly 2004; Kajobe 2007). Nests have been reported in cavities of Ficus umbellatus, Heeria insignis, Pseudocadia zambesiaca,Spirostachys africana,Acacia horrida,A. senegalensis,andin houses(Bassindale1955;Tremblay&Halane1993;Eardly2004).Thecavitiesareeither slender tubular or planiform. Hypotrigona gribodoi is a cluster builder (Pooley and Michener1969).Despitethemanynestingpossibilities,onlyafewnestsofH. gribodoi havebeendescribedinAfricaandfromfewnestingsites.ThespeciesofHypotrigonaare difficult to separate (Eardley 2004). Therefore if more nests of H. gribodoiandother speciesofHypotrigonaweredescribeditwouldhelpnotonlyintheiridentificationbut alsoinrearingthemforhoneyandpollinationpurposes. 3. Objectives of the study The aim of this study was to find the nesting sites, describe and compare the nests architectureofPlebeina hildebrandtiandHypotrigona gribodoiwithinUganda 4.Study area and methods Between November 2005 and July 2006, random searches of P. hildebrandti and H. gribodoinestswerecarriedoutinfarmlandsandhomesteadsinLuwero,Mpigi,Mukono andWakisodistrictsincentralUganda(Figure7).Vegetablecrops, fruitcrops,cereals, bananas,coffee,cassavasandsweetpotatoesaregrownwithinthestudyarea.Livestock isalsokept. Differenttypesoftermitemoundsrangingfromsmallsteepsidedmoundsupto50cm high(subfamilyTermitinae),widedomeshapedupto50cmhigh,tomassivestructures

55 abovethreemetershigh(subfamilyMacrotermitinae)occurredwithinthefarms(Figure 24ad). TennestsofP. hildebrandtiweredugoutfromtermitemoundsbelongingtosubfamily Macrotermitinae; Macrotermes sp. Odontotermes sp. and Pseudocanthotermes sp. The termite mounds were in Wakiso district at Kawada Agricultural Research Institute (KARI) farm, latitude 0o 22’ 39 N, longitude 32o, 32’11 E, altitude 1193 meters. Kawanda receives annual rainfall of 1218mm and 2263 hours of sunshine. Detailed measurementsofthearchitectureofthenestsintheirnaturalsiteweretaken.Tostudythe innestbehavior,fivecolonieswerekeptinwoodenobservationhivesplacedonbenches inaroofedshelterwithinKARIresearchfarm.Thehiveshadglasscover.Theymeasured 50cmlong,20cmwideand25cmhigh. Six nests of H. gribodoi in Wakiso and Mpigi district were opened up and the architecturedescribed.Fourcolonieswererearedinwoodenobservationhiveswithglass cover.Thehivesmeasured20cmlong,10cmwideand15cmhigh.

56 5. Results: Plebeina hildebrandti nesting sites and nest architecture

5.1 Nesting sites Nestsof P. hildebrandti werefoundininhabitedtermitemounds.Thetermitemoundsin whichthebeeshadbuilttheirnesthadheightsrangingfrom40cmtoover200cm,and diameters ranging from 30cm to over 300cm (Figure 24ac). One nest (without brood cells)wasfoundinasmall(upto40cmhigh)steepsidedmound,whileanothernestwas inalowdomeshapedmoundof300cmindiameter,andfivesmallconicaldomesarising fromit(Figure24a).Themoundhad12stinglessbeenests.Alltheothernestswerein steepsidedmoundswithdiametersofabout60cmandheightsofabout150cm.Mostof themoundswerecoveredwithvegetationwhichwaseitherscatteredordense.Inafew cases, bushes and trees rooted from the sides of mounds. Plebeina hildebrandti nests werefoundatthecoreofthemoundsadjacenttothetermitenest(Figure24d).

ii

i

Figure 24a: Alowdome shapedtermitemound(i) withfivesmallconical domes(ii).Vegetation clearedtorevealthe mound.

57 Figure 24b:A vegetationcovered lowdomeshaped termitemound

Figure 24c: Asteep sidedtermitemound

58 Figure 24d: A stinglessbeesnest locatedwithinthecore ofatermitemound. Belowthebeenesta termitequeen(arrow) exposedintheroyal cell

5.2 Nest architecture Themainneststructuresandtheirmeasurements(Table6)were: 1. externalentrancetube 2. nestcavity 3. involucrum 4. storagepots 5. broodcombs 6. drainagetube

59 5.2.1 Nest entrance Thenestentranceswerecomposedofexternaltubeswhichprojectedabovethesurfaceof thetermitemoundsandranthroughthemoundstoconnecttothenestcavity.Thetubes didnotenterintothenestcavity(toforminternalentrancetube)butbroadenedsothat theirwallsjoinedthewallofthecavities.Thetubesweretermitegalleriesbutmodified bythebeesandlinedwithresin.

60 Table 6: MeasurementsofPlebeina hildebrandtineststructuresintermitemounds Structure Length Average Diameter Average Samplesize (cm) length range(cm) diameter (cm) (cm) Externalentrance tuberisingabove 025 9.5 11.5 1.1 50 thetermitemound Tubepassing throughthemound 43.5120 72.3 11.4 1.1 5 Nestcavity 16.5 21.6 18.8 6.517 12.4 4 Liningbatumen 0.15* 10 Batumenlayer 0.3* 1 Involucrum 0.3* 10 Pollenpots 0.91.6 1.28 0.81.7 0.87 26 Nectarpots 1.11.3 1.23 1.01.9 1.37 5 Pillarsconnecting 1.08.8 4.4 0.10.6 0.2 13 pots Combs 0.3 0.45 816***2 11 6 0.5***1 Pillarsbetween 0.50.8 0.6 0.10.6 0.3 3 combs Broodcells 0.30.5 0.45 0.20.3 0.26 1564 Queencells 0.70.9 0.8 0.50.6 0.54 6 Drainagetube 1082 38.3 1 1 3 Numberofbrood 33003775** cells Adultbees(1nest) 3091 * referstothicknessofliningbatumen,batumenlayerandinvolucrumlayer **countedintwonests ***1combthickness,***2combdiameter

61 External tube above the termite mound Theexternaltubesvariedinlength(Table6),withsometubeslessthanacentimeterlong in bare mounds (Figure 25a) to relatively long, sometimes to over 20cm in termite mounds covered with vegetation (Figure 25b). Measurements and observations were doneforover50externalentrancetubes.Tube concealmentwaseither throughcolor, wherethetubecolormergedwiththecolorofthesurroundings(Figure25c)orthrough addition of soil and plant material (Figure 25d). Intruders to the nest were barred by placingstickyresindropletsonandaroundthetube(Figure25e)orsmearingalayerof stickyresinonandaroundthetube(Figure25f).Sometubeshadperforationsallround towardstheapex(Figure25g).Thesetubesweremadeofbrittlecerumen.Insomenests therewerecasesoftwoentrancetubesbutonlyoneinuse;howeveracolonyrearedina woodenobservationhivewasabletousetwoexittubessimultaneously.Allthetubes werecylindricalwithmainlycircularlipsalthoughirregularlipswerealsoencountered (Figure25f).

Figure 25a: Ashort entrancetubeona termitemound withoutvegetation cover

62 Figure 25 b: Along nestentrancetubeon atermitemound coveredwith vegetation

Figure 25c: Anest entrancetube camouflagedby soilcolour

63 Figure 25d: Anest entrancetube camouflagedbya mixtureofmudand plantmaterial

Figure 25e:Anest entrancetubewith stickyresindroplets onandaroundit

64 Figure 25f: Anest entrancetubewitha thinstickyresinlayer smearedonand aroundit

Figure 25g: Anest entrancetubewith perforations(arrows) aroundthetubeapex

65 Tube passing through the termite mound Thetubespassingthroughthetermitemoundhadwallslinedwithresin(Figure26a,and b), with lengths ranging from 43.5cm to 120cm (Table 6). Pieces of resin structures (Figure26b)werelocatedatvariouspositionswithintheentrancetubes(Table7). Table 7: Measurementsandpositionsofresinstructureslocatedwithinstinglessbees nestentrancetubes passingthroughtermitemounds Resin Length Diameterof Entrancetube Distancefrom pieces ofresin resinpieces diameterand thesurfaceof piece(cm) (cm) lengthatthe thetermite pointthe moundtothe resinpiece positionofthe waslocated resinpiece(cm) (cm) Nest1 a * * 1.5x1 7 b 3 0.3 3x2 53 c 6 3 4x3 59 d 2 0.5 59.8 Nest2 a 3 0.3 3x2 58 Nest3 a 4.5 1.5 4.5x3.5 90 b * * 10x6 101 c * * * 116 Nest4 a 3 2 3.5x2 28.5 Nest5 a 3 0.5 30 *Measurementsoftheresinpiecenottaken,duetotheshape(amorphousstructure)

66

Figure 26a:Anestentrancetubelinedwithresinpassingthroughatermitemound.On thelowerleftisanamorphousresinstructure.Fungusgarden(arrowontheright)visible withinthemound

Resinstructure

Resinliningtube walls

Figure 26b: Aresinstructure withinadilatedpart ofthenestentrance tubepassingthrough atermitemound

67 5.2.2 Nest cavity Thenestcavityrangedfrom16.521.6cmlongand6.517cmwide.Thenestcavitywas alwayswithinthecoreofthetermitemound(Figure24d).Thecavitieshadbeentermite chambers but modified by the bees through digging and lining with 0.1 0.2cm thick liningbatumen.Inonenewlyestablishedbeenest,aheapofsoilwasfoundbelowthe entrancetubeandworkerswerebringingsoilfrominsidethenesttotheoutsideofthe termitemound,anindicationofbeesdigging. Lining batumen on walls of the nest cavities Thecoloroftheliningbatumenonwallsofthenestcavitieswasbrownish(Figure27a) todarkbrown(Figure27b).Thethicknessofthelayerrangedfrom0.10.2cm.Insome nestsshortpillarsoriginatedfromtheliningbatumentosupportstoragepots(Figure 27a),whileinothernestswherethestoragepotsweresurroundedbyasoftbatumenlayer whichseparatedthemfromliningbatumen,therewerenopillars(Figure27b).

68

Figure 27a:Anestcavitywithshortpillars(arrows)emergingfromliningbatumen onthewallsofthenestcavity

69 Figure 27b: Anest cavitywithnopillars emergingfromthelining batumenonthewallsof nestcavity

5.2.3 Batumen layerseparating the lining batumen and the storage pots Insomenestsasoftbatumenlayersurroundedtheentirenestseparatingitfromthelining batumen on the walls of nest cavity (Figure 28a) while in others the batumen layer separatedthenestfromliningbatumenonlyatthebottom.Onthesideshorizontalpillars joinedstoragepotsandtheliningbatumen(Figure29a).Stillsomenestsdidnothaveany batumenlayerseparatingthenestandtheliningbatumenonthenestcavity.Inthiscase short pillars separated storage pots and lining batumen. In colonies reared in wooden boxes,softlaminatebatumenenclosedthenestwithpillarsandconnectivesoriginating fromthebatumentothewallsofthebox(Figure28b).

5.2.4 Involucrum separating brood combs from storage pots Inallthenests,alayerofsoftinvolucrumsurroundedthebroodcombsseparatingthem fromstoragepots(Figure28c).

70

Figure 28a: Asoftbatumenlayersurroundthenestseparatingitfromthenestcavity

71 Figure 28b:LaminatebatumencoveringanestinaPlebeina hildebrandticolonyreared inawoodenobservationhive.Pillarsandconnectivesjointhewallsandtopofthehive

72

Figure 28c: Aninvolucrumlayer(arrow)separatebroodcombsfromstoragepots. Theinvolucrumisbrokentorevealbroodcombs

73 5.2.5 Storage pots Pollenandnectarpotssurroundedtheinvolucrumcoveringbroodcombs(Figure29a), althoughinsomeneststhepotswerelackingbelowthecombs.Thepollenandnectar pots were in groups interconnected by pillars. The pollen pots were ovoid with an average height of 1.2cm and width of 0.87cm while the nectar pots were circular to spherical with a mean height of 1.2cm and width of 1.3cm. Pots within a group had cerumen added on the outside between the walls. Pillars interconnecting groups of storagepotshadameanlengthof4.4cmandwidthof0.2cm(Table6).Afewstorage potscontainedwastematerialsfromthenest(Figure29b).

74 Figure 29a: Groupsofpollenandnectarpotsinterconnectedbypillarssurroundthe involucrumwhichenclosesthebroodcombs.Onthesidespillarsconnectstoragepots toliningbatumen,whileatthebaseasoftbatumenlayer(arrow)ispresent

75 Figure 29b: Ahalf waycompletedor halfwaydestroyed storagepotusedfor wastedeposition

5.2.6 Brood combs The brood nest consisted of horizontal combs arranged into layers, enclosed by an involucrumsheet.Thecombsconsistedofcellswithameanheightof0.45cmandwidth of0.26cm(Table6).Therewere612combsinthedifferentnestsstudied,witheach combseparatedbyshortpillars.Thepillarshadameanlengthof0.6cmandwidth0.3cm. Combdiameterandthicknessvariedindifferentnests(Table6).Theshapeofcombsand directioninwhichnewcellswereaddedvariedfromnesttonest. Queencellsofvarioussizes(Table6)werefoundintheholeatthecenterofthecombs. Inonenesttherewere13queencells.

76 5.2.6.1 Brood comb architecture in different nests Nest 1 Inthefirstnest(Figure30)horizontalcircularcombswerearrangedintolayerswithshort pillars separating them. The smallest and the youngest comb, with newly constructed cells,wasatthetop.Newcellswereaddedrotationallythroughanadvancingedgeof each comb to replace old cells. Although the advancing edge in each comb was not progressingatthesameratewiththecombsaboveandbelow,asideviewofthenest fromtoptobottomshowedonesideofthecombstocontainoldercellswithwaxalready removedandtheothersidetocontainyoungercells.Therewerenodiscerniblequeen cells.

Figure 30: Nest1:Circularcombsarrangedintolayers.Cellsontherightsideofcombs fromtoptobottomareyoungerthancellsontheleftsideofthecombs. Nest number 2 Inthesecondnest,therewerehorizontalcircularcombsinlayerswithacentralholeand a radial gap which narrowed and extended to the edge of the combs. There were few

77 queencellsinthegapandworkersusedthisspacetomovefromtoptobottomofthe nest.Newcellswereaddedinananticlockwiseorderreplacingcocoonsbeingremoved. Nest number 3 In the third nest (Figure 31), the center of the combs had a hole but no radial gap extendingtotheedgeofthecombs.Inthecentralholeworkershadconstructedqueen cellssupportedbypillars.Thecellshadatendencytowardsspiralformationwherecell progressionwasintheorderofoldcellsatthebeginningofthecomb(Figure31arrowa) andyoungercellsforminganadvancingedge(Figure31arrowb).Howeverthespiraldid notprogresstoformanewcombbeloworabovethepresentcomb,insteadtheadvancing edgedevelopedanticlockwisereplacingthespaceleftbycocoonsbeingremoved.

b

a

Figure 31: Nest3:Circularcombswithacentralholewithqueencells.Newcellsadded inananticlockwisedirection, (arrowa)indicatesoldcellsmarkingthebeginningofthe comb,and(arrowb)indicatesyoungcellsontheprogressingfront

78 Nest number 4 Inthefourthnest(Figure32),thecombshadaholeatthecenterfilledwithqueencells. Therewasnoradialgaptotheedgeofcombs.Newcellswereaddedtoeachcombto replacetheonesremovedineitherclockwise(a)oranticlockwisedirection(b)

a

1 b

2

1

Figure 32: Nest4:Acentralholewithqueencells:the topcomb(1)showingnewcells beingaddedinaclockwisedirection(arrowa),andthecombbelowit(2)newcellsbeing addedinanticlockwisedirection.Thenewcellsaddedwereattachedslightlybelowthe oldercells(arrowb)

79 Nest number 5 Inthefifthnest(Figure33),combswerearrangedintwogroupsleavingaholeatthe centerwithqueencells.Therewasnoradialgapinthesecombs.Onegroupononeside was composed of semicircular combs with cells containing old pupae and old larvae (Figure 33 arrow a) while the other group on the opposite side was composed of trapezoidalcombswithcellscontainingyounglarvaeandeggs(Figure33arrowb).For thetrapezoidalcombswithyoungcells,thetopcombwasthesmallestandthecombsize increaseddownwards.Additionofcellsinthetoptrapezoidalcombseemedtohadbeen started by a single cell supported by pillars from the comb below. In the second trapezoidal comb, attachment to the semicircular combs was on one edge. It was not possibletotellwhethercellsinthesecondtrapezoidalcombhadbeenaddedfromthe edgeofthesemicircularcombsinaclockwisedirection,orhadbeenstartedbyasingle cell supported by pillar from the comb below it. The third trapezoidal comb was connectedtothesemicircularcombsonbothedges.Itwasalsonotpossibletotellfrom whichsidetheadditionofcellshadstarted

80 b

a

Figure 33:Nest5:Twogroupsofcombs:onegroupsemicircularcombswitholdercells (arrow a) and the other group trapezoidal combs with younger cells (arrow b). At the centeraholewithqueencells Nest number 6 Inthesixthnest(Figure34)thecellandcombarrangementwasasinnest5,butthehole atthecenterwasempty.Therewerenodistinguishablequeencells.

81 ii

i

Figure 34: Nest 6: Showing cells in two groups: semicircular combs with older cells (arrow i) and trapezoidal combs with younger cells(arrow ii). A central hole without queencells

82 Nest number 7 Intheseventhnest(Figure35)therewascompleteseparationofoldandnewcells.A verticalgapthroughthecenterofthenestseparatedthecombsintotwoparts.Therewere 12combswithsixcombscomposedofyoungcellsformingastairwayononesideand theothersixcombswitholdcellsforminganotherstairway.Thecombsweretrapezoidal andarrangedslightlyslantingwiththesmallestcombontopandthelargestatthebottom. Therewerenodistinguishablequeencells.Cerumenandpillarshadbeenremovedfrom the older cells making the stairway to collapse (Figure 35). The cells were not synchronicallybuilt.

83 ii i

Figure 35:Nest7:Trapezoidalcombs withcompleteseparationofold(arrowi)and newcombs(arrowii).Thecombsareslantingandformingastairway.

84 5.2.7 Drainage tube Allthenestshaddrainagetubesoriginatingfromthebaseofthenestcavity.Thetubes were lined with thin layer of cerumen. The tube either run vertically below the nest beforeslantingorslanteddirectlyfromthebase(Figure36)

Figure 36: Aslantingdrainagetube.Apieceofgrassindicatesthetube

85 5.3 Behavior of the bees at the nest entrance When the nests were opened within the termite mounds, workers did not show any aggressive behavior. During the day about four workers guarded the nest entrance. Duringthenightthenestentrancewasopenandunguarded.Theguardsretreatedintothe nestwhenobjectspassedinfrontofthenest.Whenantsinvadedthenestguardsalerted nest mates. They exhibited two types of defense behavior. Those bees who carried pebbles of resin in their corbiculae deposited them at the rim ofthe entrance tube or aroundthebaseofthenestingbox,thuscreatingastickybarrier.Otherbeesbroughta singlepebblebetweentheirmandibles.Thesebeesapproachedtheantsandimmobilized them by gluing their legs and antennae to the ground. We observed that such guards foughtbacktermitesoldiersbygluingvariousresinpebblesontheirlongmandiblesso thattheycouldnotopenthemanymore(Figure37and38).

a

b

Figure 37: Plebeina hildebrandti workers respond to an invasion by ants at the nest entrance by carrying pebbles of resin on their corbiculae (arrow a) or between their mandibles (arrow b) and depositing it around the tube or sticking on the legs and antennaeoftheants

86

a

a

Figure 38: Plebeina hildebrandti workers respond to an invasion by ants at the nest entrance on a termite mound by carrying pebbles of resin on their corbiculae and depositing it on and around the tube. Some bees wait outside the entrance tube for invadingantswithresinonbothcorbiculae(arrowa)

87 5.4 Discussion Plebeina hildebrandtinestswerefoundinoccupiedtermitemoundsatthecoreofthe mound.Thechoiceofthelocationmaybeadvantageoustothebeesinseveralways.The mound shields the nest from rain, flooding, fire, and attack by large enemies. Nest locationinthenurserypartofinhabitedtermitemoundshasadditionaladvantages.One, termite nests are enclosed systems (Krishnar and Weesner, 1970), with the nursery maintainedatatemperatureof36oCandarelativehumiditywhichdoesnotdropbelow 96.2%(Howse,1970).Therefore,thechoiceofthenurseryisadvantageoustothebeesas itensuresastablemicroclimate. Nevertheless,thebees’nestshaveathinliningbatumenonthewallsofthenestcavity which waterproofs the nest (Wille and Michener, 1973), preventing infiltration of moisture into or out of the nest. As a result, there is a danger of moisture saturation withinthenestduetothebees’respirationandthedehydrationofnectartohoney.Water wouldcondenseonthewallsofthenestcavityifnotremoved,increasinghumidityto saturation. To solve the problem of water accumulation, a long drainage tube at the bottomofthebeenestservestogetridofexcesswaterthatwouldotherwiseaccumulate (Smith, 1954; PortugalAraujo, 1963; Wille and Michener, 1973; Camargo and Wittmann, 1989). The lining of the drainage tube with resin, ensures that water is channeledalongdistanceawayfromthebeenestbeforeitinfiltratesthelowerpartsof the termite mound. Besides, the bees ensure that the run off water from their nest is conductednotonlydownwardsbutalsosidewardsthroughslantingtubes.Otherwisethis watermaymoveupby capillaryforcesandpassbacktothenest, especiallywhenthe termitemoundisheatedupduringperiodsofhightemperatures. Secondly,nestlocationinthenurserypartofinhabitedtermitemoundshasanadditional advantagetothebeesinthattheycaneasilydigandmodifynestcavities.Thenursery region of the termite mound is typically soft due to more organic material which is hygroscopic;hencehighmoistureabsorbingcapacitythantheinnerandtheouterwallsof themound.Theouterwallismadeupofanimperviouslayerofsandandclayparticles cementedtogetherwiththetermites’salivarysecretion(Howse,1970).

88 Unlike the termite nests, the stingless bee nests had direct contact with the outside environment through the open external entrance tube. The tube may be used for thermoregulationespeciallyduringperiodsofhightemperatures.AstudybyFletcherand Crewe (1981) showed that Plebeina denoiti nesting in the ground was capable of thermoregulationthroughtheentrancetube. Variationinthesize,shape,camouflageandfirmnessoftheentrancetubeindicateda defenserole.Thiswasmorepronouncedontermitemoundswithoutvegetationcover, wherealltheentrancetubeswereshortandbrown,orhadmudaddedsothatthecolorof thetubemergedwiththecolorofthemound.Thecoloroftheaddedplantmaterialalso mergedwiththecolorofthetermitemoundcamouflagingtheentrancetube.Ontermite moundswithvegetationcover,thetubesweredarkatthebaseandonlylightcoloredat theapex,makingitdifficulttodistinguishthemfromplantstemsandbranches.Addition defense strategies were gluing resin droplets on and around the tubes as well as depositinglargequantitiesofresinindifferentpartsinsidetheentrancetubes.Theresin actedasabarriertointrudersandwasalsousedtoimmobilizethem. Insomenestsasoftbatumenlayerseparatedthenestandtheliningbatumen,whilein othersthebatumenlayerwasabsent.Inthelatter,pillarsconnectedthenestandthenest cavity.Itwasnotclearwhysomenestshadabatumenenvelopewhileothersdidnot.In coloniesrearedinwoodenobservationhives,softbatumenlayercoveredtheentirenest withpillarsoriginatingfromthelayertothewallsofthehive.Thisisanindicationthat thebatumenlayermayservethreepurposes:tosupportthenest,controlmicroclimate withinthenestandfillspaceswithinthenestfornestfirmness.Thebroodcombswere separatedfromthestoragepotsbyaninvolucrumlayerwhichservedtoprobablyprotect thebroodcellsandcontrolmicroclimatewithinthebroodchamber. Highvariationsoccurredinthearrangementofthebroodcombswithsomenestshaving circular horizontal combs, others combination of semicircular horizontal combs and trapezoidalcombs,whileothershadonlytrapezoidalcombs.Althoughnestarchitecture conditionscanbeadaptationstovariouskindsofcavities,itisalsoaspeciesspecifictrait

89 whichcansupportidentificationofspecies.Plebeina hildebrandtimaythereforerequire taxonomicreexaminationtodetermineifit’sonespeciesormore. ColoniesofP. hildebrandti rearedinwoodenobservationboxesdidnotadaptwell.This wasprobablyduetoproblemsoftemperatureandhumidityregulationinthehives,asthe workersspentmuchtimebuildingsoftinvolucrumsheetsaroundthenest.Nobroodcells wereconstructedduringthisperiod,andthequeendidnotlayeggs,althoughforaging andconstructionofstoragepotscontinued.AsP.hildebrandti hasashortforagedistance, itcanberearedforpollinationpurposesinplantations

90 6. Results: Hypotrigona gribodoi nesting sites and nest architecture

6.1 Nesting sites Morethanahundrednestsof Hypotrigona gribodoi werefoundincavitiessuchaswalls ofmudhousesbetweenwindowframes,doorframes,roofingtimber,electricsockets,dry drainagepipes,electricandtelephonepoles,andcavitiesintrees.Mostnestswerefound inwallsofmudhousesandincavitiesintimberusedforconstruction.Inareaswithstone or brick houses, nests were found between window frames, door frames and roofing timber.Inareaswithoutmanmadestructuresnestswerefoundincavitiesintrees.

6.2 Nest in walls of mud houses and in dry drainage pipes 6.3 Nest architecture Themainneststructuresandtheirmeasurements(Table8)were: 1. externalentrancetube 2. nestcavity 3. involucrum 4. storagepots 5. clustersofbroodcells

6.3.1 Entrance tube Theexternalentrancetubeshadameanlengthof2cmanddiameterof0.4cm(Table8). Theshapeofthetubeapexvariedfromtampering(Figure39a),circular(Figure39band c),tofunnelshaped(Figure39d).Thetubesapexesweredarkbrown(Figure39aande), lightbrown(Figure39b)milkywhiteortransparent(Figure39candd).Inonenestthere weretwotubessimultaneouslyinuse(39a).Coloniesnestedinproximity(Figure39e). Internalentrancetubewasrecordedonlyinonenestrearedinawoodenobservationhive (Figure39f).

91 Table 8: Measurements of Hypotrigona gribodoineststructureinmudwallsandtree trunks. Structure Length Average Diameter Average Sample (cm) length(cm) (cm) diameter size (cm) Externalentrance 0.52.5 2 0.30.5 0.4 32 tube Entrancetube 4 0.3 1 throughthecavityin trunks Nestcavityinwalls 515 10 510 8 5

Nestcavityintrunks 21 8.5 1

Resinliningnest 6 cavity Involucrum* 6 surroundingbrood combs Pots 0.50.74 0.59 0.430.6 0.49 6 Pillarsbetween 0.2 clusters Broodcells 0.20.47 0.32 0.130.32 0.23 60 Queencells 0 0 0 0

Drainagetube 0 0 0 0 0 No.ofbroodcells 570 <1000** Adultbeescounted 101 in 516** * Absent **countedintwonests

92 i

Figure 39a: Hypotrigona gribodoidouble nestsentrancetube withtampering shape.Brittle batumen(i)conceal thedirectionofthe entrancetubeinto thenest

Figure 39b: Hypotrigona gribodoi funnelshapednest entrancetube

93 Figure 39c: Hypotrigonagribodoi circularnestentrance tubewithamilky whitetotransparent apexandalowerdark brownpart

Figure 39d: Hypotrigona gribodoifunnel shapednestentrance tubewithadark resinousring(arrow) separatinga transparentapex fromthelowerdark brownpart

94 batumen

Figure 39e: TwocoloniesofHypotrigona gribodoinestinginproximityinawall.In betweenthetwoentrancetubes,hardbatumenmixedwithsoilusedtofillthecrevices.

Figure 39f:Internalentrancetubeina Hypotrigona gribodoinestrearedinawooden observationhive

95 6.3.2 Nest cavity Lengthanddiameterofthenestcavitiesvariedwithmeansof10cmand8cmrespectively (Table8). Lining batumen on the walls of the nest cavity Alessthan1mmtransparentliningbatumenlinedthewallsofthenestcavities(Figure 40a).

Figure 40a:ThintransparentshinyliningbatumenonthewallsofaHypotrigona gribodoi nestcavity

96 Figure 40b:Alayerofstickyresin,resindropletsandresindepositsusedtosmearonants whichwereattacking aHypotrigona gribodoinest

6.3.3 Batumen layer In a nest constructed in a drainage pipe blocked by soil, a brittle batumen layer was constructedtosealthepipeafterthesoilblockingthepipewasremovedexposingthe colony.Pebblesofresinwereaddedaroundthebatumenlayer(Figure41a).Asthebee nestoccupiedonlyasmallportionofthepipe,ontheoppositeendofthepipe(awayfrom thenestentrancetube)amixtureofresin,soilandsandwasusedtoprotectthenestby blockingentryofwater,soilandintruders(Figure41b). Hard brittle batumen mixed with soil was also seen on the wall of mud houses, concealingthedirectionoftheentrancetubeintothenest(Figure39a)andoncrevicesin thewalls(Figure39e).

97 Exittube

Figure 41a: AbrittlebatumenlayerconstructedtoprotectaHypotrigona gribodoinestin adrainagepipeafterthesoilcoverwasremovedexposingthecolony.

Figure 41b: Abatumenlayer,withsadandsoiladdedtoprotectaHypotrigona gribodoicolonyontherearsideofadrainagepipe

98 Involucrum Therewasnoinvolucruminallthenests. 6.3.4 Storage pots Pollenandnectarpotswereingroupsnormallyclosetotheexittube(Figure42).There were no distinct groups forpollen or nectarpots,but thepots were located randomly withinthegroups.Therewerenopillarsbetweenthepots;insteadcerumenwasadded betweenthewallsofthepotstoholdthemtogether.Thecolorofthepollenandnectar potswascreamandopaque,anindicationthattheywerenotmadeofwaxalone.Thepots hadameanheightof0.6cmandwidthof0.5cm(Table8).Storagepotslayontheresin liningthenestcavity.Nopotswereusedforwastestorage.Inthecoloniesrearedinthe woodenhives,wastefromwithinthenestwascollectedandputintooneormoreheaps withinthehiveandlatercarriedoutfromthenestbytheworkers.Thewasteconsistedof finepowder,pollenremainsanddeadbees.

6.3.5 Brood cells Broodcellswereinclusterswhichlayontheresinliningthenestcavity(Figure42).Two tothreebroodcellswerebuiltwiththeirwallsincontacttoformasmallcluster.The smallclustersweretheninterconnectedbyshortpillarstoformbiggerclusters.Addition ofnewcellswasinalldirectionsaslongasspacepermitted(Figure42).Thecellshada meanheightof0.5cmandwidthof0.3cm(Table8).Therewerenorecognizablequeen cells.Thecolorofthecellswascreamindicatingthatthecellswerenotmadeofwax alone.

99 Figure 42:ClustersofcreamcoloredHypotrigona gribodoibroodcellsontheleft,and clustersofstoragepotsontheright Drainage tube Therewasnodrainagetubeinallthenests. 6.4 Behavior of the bees at the nest entrance The nest entrance remained open during the day and at night. Two to four workers guarded the entrance. When the nest was opened, a few workers showed mild aggressivenessandattackedbybitinghandsandhead.Intruderstothenestaresmeared withresinsandmud(Figure43).Inanestwhichwasunderattackbyantsnestingaround thebeenest,thecavitywaslinedwithalayerofresinandresindropletswerescattered alloverthecavity.Alsotherewerelargeresindepositsontheedgesofthenestcavity (Figure40b)

100

Figure 43: A wasp(arrow)smearedwithamixtureofresinandmud onenteringa Hypotrigona gribodoinestwhendrillingitsownnest.

6.5 Colony size A Hypotrigona gribodoi nest can have about a hundred to thousands of workers and broodcells(Table8).Newlyconstructednestsorunhealthynestscanhavelessthana hundredbroodcellsandworkers,whileanoldandhealthynestcanhavethousandsof cellsandworkers.

101 7. Hypotrigona gribodoi nest in cavities in tree trunks Hypotrigona gribodoinestswerefoundincavitiesintrunksofSapium ellipticum

7.1 Entrance tube Thenestsconsistedofanexternalentrancetubewithalengthof3cmabovethesurfaceof the trunk and a diameter of 0.3cm. The tubes were funnel shaped consisting of dark cerumen(Figure44).Dropletsofstickyresinwerescatteredontheoutsideofthetubein somenests.Thetubeintothetreetrunkhadalengthof4cmandadiameterof0.3cm.It waslinedontheedgeswithstickyresin.Therewasnointernalentrancetube

Figure 44:AHypotrigona gribodoidarkfunnelshapednestentrancetubeinatreecavity

102 7.2 Nest cavity Thenestcavitywasinatrunkwhichhadrottenanddriedupparts.Thecavitywaslong andshallow.Theareacoveredbythebeenestwas21cmlongand8.5cmbroad(Figure 45).Thecavitywasdelimitedby0.2cmthickstickyresin.

iii

Figure 45:Location ofHypotrigona gribodoinectarpots i (i),pollenpots(ii),and broodcells(iii),ina treetrunk.Note transparentpots

ii

i

103 Batumen and involucrum layer Therewasnobatumenorinvolucrumlayerseen. 7.3 Storage pots Storagepotswereingroupspositionedclosetotheentrancetube.Thepotsweresoftand transparentmakingthecolorofthepollenandnectarwithinthemvisible(Figure45).This anindicationthatthepotsweremadefromwaxalone.Thereweredistinctgroupsof pollenandnectarpots. Thepotwallswereindirectcontactwithoneanotherandno pillarsbetweenthepotsorbetweenthegroupsofstoragepots(Figure45) 7.4 Brood cells Brood cells were soft and arranged into clusters. New cells were transparent with the larvalfoodvisible,anindicationthatthecellsweremadefromwaxalone.Groupsoftwo tothreecellswereinterconnectedbyshortpillarstoformtheclusters(Figure45).The clusterslayonthenestcavity.Therewerenodistinguishablequeencells

Drainage tube Thenestsdidnothavedrainagetubes.

104 7.5Discussion Nests of Hypotrigona gribodoi were found in areas like walls of houses protected by roofs,treetrunksprotectedbythecanopyorindrywood(poles)whichinsulatesthenest. Probably due to nests being in protected areas, extreme temperature changes were not experienced,henceH. gribodoididnotrequireverywelldevelopedprotectivelayersof batumen and involucrum. Although it could be that H. gribodoi can tolerate high temperaturevariations.Forexamplecoloniesrearedinwoodenobservationhivesadapted easily and the colony multiplied within a short time. Unlike Plebeina hildebrandti colonies in wooden hives, H. gribodoi colonies did not build involucrum layers. However, in their study Moritz & Crewe (1988) reported that H. gribodoi brood is particularly sensitive to high nest temperatures. They showed by determining the fluctuations of oxygen concentration in the nest that H. gribodoi actively ventilate its nests. Presenceoftransparent broodcells andextremelysoftandtransparentstoragepotsin nestintreecavityisanindicationthatthepotsandcellswereconstructedfromwaxwith noothermaterialssuchasresinsandgumsadded.Itwasnotpossibletodeterminewhy onlywaxhadbeenusedforpotsandcellsconstructionintreecavity,whileinwallsa mixtureofwaxandothermaterialswasused.InhisstudyBassindale(1955),reported that H. gribodoiusesonlywaxinnestconstructionwhilePooley& Michener(1969) reported that they use cerumen. Pooley & Michenerworked on H. gribodoi in Natal South Africa, whose range is from Natal to Ethiopia, while Bassidale worked on a conspecificspecies“braunsi”whoserangeisAngolatoGhana(andprobablySenegal) PooleyandMichener(1969).Presenceofnestswithbroodcellsandstoragepotsmadeof purewaxandothersmadeofamixtureofwaxandothermaterials,showsthatmorenests needtobedescribedtodetermineifHypotrigona gribodoi inUgandaisonespeciesor more. Lackofdrainagepipes,whichservetodrainexcesswaterandmoisturefromthenest, especiallyafterdehydrationofnectar(Camargo&Wittmann1989),couldbeexplained by the fact that H. gribodoi normally collects very concentrated nectar to reduce the

105 energyneededtoevaporatethenectartonormalconcentration(Kajobe2007).However in our study H. gribodoi collected banana nectar which had low sugar concentration, sometimeslessthan10%.It’sthereforelikelythat,sincetheentrancetubeswereshort; 0.52.5cmonwallsand6cmontrunk,waterlossthroughtheentrancetubewaspossible. Constructionofnestsinproximityespeciallyonwallsofhousesisanindicationthatthere waslessaggressionwithinthespecies.IntheirstudyKirchner&Friebe(1999)foundout thatnestmatesdiscriminationinH. gribodoiisnonaggressive.

106 GENERAL CONCLUSION InAfrica,thereisinsufficientinformationonthebiologyandthediversityofheAfrican stinglessbees.Duetothehighmedicinalvalueoftheirhoney,stinglessbeesarehighly soughtafterbylocalcommunities.Asthere arenodevelopedMeliponariesinAfrica, honey harvesting involves destruction of entire bee colonies and cutting of trees. Additionally the role of the bees as pollinators, pests or vectors of disease remains unknown.ThespeculationthatstinglessbeesweretheprimaryvectorsofXanthomonas campestris pv. musacearum (Xcm) responsible for Banana Xanthomas Wilt (BXW) in Uganda is an indicator of the urgent need to study and document the biology of the Africanbees. IthadbeenhypothesizedthatstinglessbeesspreadXcmfromonebananaplanttoanother andtothenestastheycollectednectarandexudatessuchassapandoozefrominfected bananas.Thenestwasthereforeconsideredtoactasareservoirforthebacteria.However from our study stingless bees did not collect banana sap and ooze. They were only interestedinnectar.Banananectarhaslowsugarconcentration,whichisnotpreferredfor optimalforagingbystinglessbees.Inparticular,PisangAwak,thebananavarietymost susceptibletoXcm,hadameannectarsugarconcentrationof12.5%(range032%),yet stingless bees gather nectar with an average of 44% sugar concentration. This means banananectarisnotapreferredchoiceforstinglessbeesoptimalforaging. Nevertheless if stingless bees got contaminated with Xcm, either through nectar or contactwithbacterialoozeonbananas,theywouldspreaditovershortdistances.We found out that the four species of stingless bees (Hypotrigona gribodoi, Plebeina hildebrandti, Meliponula ferruginea and Meliponula sp.) that collected nectar from bananas would fly up to 1220 meters from their nest to collect 33% nectar. This is because,thereexistarelationshipbetweenforagingdistance,abeebodysizeandnectar sugarconcentration.Thereisthereforeneedforfurtherstudiesonpossiblelongdistance vectors.

107 IncasethebeescarriedXcmtotheirnests,Xcm wouldbeeradicated,asstinglessbees havearelationshipwithBacillus species.Bacillus sp.producesantimicrobialcompounds that inhibit other microorganisms from growth. Furthermore Xcm is likely to be eliminated in the stingless bees nest due to the presence of propolis. Propolis is a constituentbuildingmaterialinstinglessbeenestswhichhasantimicrobialcompounds. A preliminary test showed that Xcm could not grow on propolis collected from P. hildebrandtinest.

Nests of P. hildebrandtiwerefoundininhabitedtermitemounds.Themainstructures were:externalentrancetubewithelongatebarsofresininthetubesrunningthroughthe termitemound,broodchamberwithcircular,bothcircularandtrapezoidal,ortrapezoidal combssurroundedbyaninvolucrumlayer,groupsofinterconnectedpollenandnectar potssurroundingbroodcombs,andslantingdrainagetube.

NestsofH. gribodoiwerefoundinmanmadestructuressuchaswallsofmudhouses,in spacesinwindowsanddoorframes,roofingtimber,electricsockets,drydrainagepipes, electricandtelephonepolesandcavitiesintreetrunks.Themainneststructureswere shortentrancetubes,clustersofbroodcellsandmassesofstoragepotsadjacentthebrood cells,absenceofinvolucrumanddrainagetube.Auniquefeatureinthenestintreetrunk wasbroodcellsandstoragepotsconstructedofonlywax. Althoughnestarchitectureconditionscanbeadaptationstovariouskindsofcavities,itis alsoaspeciesspecifictraitwhichcansupportidentificationofspecies.Thereisaneed formoreresearchontheofPlebeina hildebrandtiandHypotrigona gribodoi. BothP.hildebrandtiandH.gribodoicanberearedinwoodenhivesforhoneyproduction andforpollinationpurposes.However P. hildebrandti rearing is not easy and requires goodhivestoensurestablemicroclimate.

108 OUTLOOK Since the initial distribution of Banana Xanthomonas Wilt in Mukono and the neighboringdistrictswaslocalizedandpatchy(EdenGreen2004),andthatalthoughthe diseaseemergedinyear2001,itwasstillrestrictedtoaradiusoffivekilometerinyear 2002fromthefarmwherethediseasehadbeenreported(Tushemereirwe etal.2003),it wouldbeinterestingtofindoutwhatchangesoccurredinyear2004whenthedisease startedspreadingrapidlyandfillingthegaps.Giventhatthestinglessbeesarenotnewto Uganda,andtheyhadbeentheresincethediseasewasfirstreported,itcouldbepossible thatothervectorswereresponsiblefortheentryofthediseaseinMukonodistrict,andin combinationwithvariousfactorsledtotherapidspreadinyear2004.

Todeterminethelongdistancevectors,itwouldbeimportanttofindoutwhatchanges occurredinUgandawhichfacilitatedXanthomonas tocrossfromEthiopiaandestablish inMukonodistrictinyear2001,yetXanthomonas hadbeeninEthiopiasince1968.In additionitwouldbeimportanttofindoutwhathappenedinD.R.Congoinyear2001 that caused Xanthomonas to infect bananas from enset from within the country, yet beforethenXanthomonasdidnotinfectbananas.

109 REFERENCES 1. Acland,J.D.(1971)EastAfricanCrops.Longman,London. 2. AraújoE.D.,Costa,M.,ChaudNetto,J.andFowler,H.G.,(2004).Bodysizeand flight distance in stinglessbees (hymenoptera: meliponini): inference of flightrangeandpossibleecologicalimplications. Braz. J. Biol., 64(3B): 563568. 3. Addies T., Handoro F., and Blomme G. (2004). Bacterial wilt (Xanthomonas campestris pv.musacearum)onensetandbananainEthiopia.InfoMusa: TheInternationalJournalonBananaandPlantain.Vol.13No.2 4. BassindaleR.(1955).ThebiologyoftheStinglessBee Trigona (Hypotrigona) gribodoi Magretti (Meliponidae). Proc.Zool.Soc. Lond. Vol.125, part 1, pp.4962 5. BegoL.R.(1983).OnsomeaspectsofbionomicsinMelipona Bicolor Bicolor Lepeletier(Hymenoptera,Apidae,Meliponinae).Revta.Bras.Ent.Vol27 (3/4):211224. 6. Bignell D.E and Eggleton P. (2000). Termites in Ecosystems. In Termites:Evolution,Sociality,Symbiosis,Ecology.Editors(T.Abeet. al.). KluwerAcademicPublishers,Netherlands. 7. Biruma M., Pillay M., Tripathi L., Blomme G., Abele S., Mwangi M., BandyopadhyayR.,MuchunguziP.,KassimS.,NyineM.,Turyagyenda L.,SimonEdenGreenS.(2007).BananaXanthomonas wilt:areviewof thedisease,managementstrategiesandfutureresearchdirections.African Journal of Biotechnology Vol. 6 (8), pp. 953962, Available online at http://www.academicjournals.org/AJB. 8. BuddenhagenI.,ElsasserT.(1962).Aninsectspreadbacterialwiltepiphytoticof ‘Bluggoe’banana.Nature194:164165 9. BoaE.(2004).WhereisBananaBacterialWiltDiseaseinUganda.INBAP Info. Fact sheet2004.

110 10.CamargoM.F.andWittmannD.(1989).Nestarchitectureanddistributionofthe Primitive stingless bees, Mourella caerulea (Hy menoptera, Apidae, Meliponinae):EvidencefortheOriginofPlebeia(s.lat.)ontheGondwana continent.Stud. Neotrop. Fauna and Environ.Vol.24:No.4,213229. 11.CanoR.J.,BoruckiM.K.,HigbyScheitzerM.,PoinarH.N.,PoinarJr.,G.O.and PollardK.J.,(1994).BacillusDNAinfossilbees:anancientsymbiosis? Appl. Environ. Microbiol.60.21642167. 12.Cobley, L.S. and Steele, W.M. (1976). An Introduction to the Botany of Tropical Crops.2ndedition.Longman,London. 13.Cockerell T.D.A. (1934). Some African Meliponine Bees. Rev. Zool. Bot. Afr. Vol,26,pp4662 14.DarchenR.andDarchenD.(1971).LeDéterminismedescasteschezlesTrigones (HyménopteresApidés).Insectes Sociaux.Vol.18.No.2:121134. 15.Darlington J.P.E.C. (1985). The structure of Mature Mounds of the Termite Macrotermes michaelseni in Kenya. Insect Science and Applications vol.6,No.2,pp149156 16.Darlington J.P.E.C. (1988).The structure of Mature Mounds of the Termite Macrotermes herusinKenya.Insect Science and Applications vol.9,No.3, pp339345 17.DeCampus,R.O.,PaulinoN.,DaSilvaC.H.,ScreminA.,CalixtoJ.B.(1998). Antihiperalgenic effect of Naethanolic extract of propolis on mice and rats.JournalofPharmacyandPharmacology50:11871193 18.EardleyC.D.(2004).TaxonomicrevisionoftheAfricanstinglessbees(Apoidea: Apidae::Meliponini.African Plant ProtectionVol.10,No.2,pp63 96. 19.EdenGreen S. (2004). How can the advance of banana xanthomonas wilt be halted?InfoMusa:TheInternationalJournalonBananaandPlantain.Vol. 13No.2

111 20.FletcherD.J.CandCreweR.M.(1981).Neststructureandthermoregulationin the stingless bee Trigona (Plebeina) denoiti Vachal (Hymenoptera: Apidae). Journal of entomological Society of Southern Africa, Vol.44, No.2,pp183196). 21.Frison E. and Sharrock S. (1998). The economic, social and nutritional importance of banana in the world. Proceedings: INIBAP; Bananas and Food Security International Symposium, Douala, Cameroon, 1014th Novemeber1998.EditorsPicqc.,FouréE.,andFrisonE.A. 22.GhilsalbertiE.L.(1979).Propolisareview,Bee World,60.Vol.2:5484 23.Gilliam M., (1997). Identification and roles of nonpathogenic microflora associatedwithhoneybees.Microbiology Letters155:110 24.Gilliam M., Buchmann S. L., and Lorenz B. J. (1984). Microbial flora of the larvalprovisionsofthesolitarybees,Centris pallidaandAnthrophora sp. Apidologie15,110. 25.Gilliam M., Buchmann S. L., Lorenz B. J. and Roubik D.W. (1985). Microbiology of the larvae provisions of the stingless bee, Trigona hypogea,anobligatenecrophage.Biotropica 17:2831 26.Gold, C.S., OgengaLatigo, M.W., Tushemereirwe, W., Kashaija, I. and Nankinga, C. (1993) Farmer perceptions of banana pest constraints in Uganda.ResultsfromanintegratedcontroloftheHighlandbananapests andDiseasesinAfrica.Cotonou,1214November. 27.Gold C.S., Bandyopadhyay R., Tinzaara W., Ssekiwoko F. and EdenGreen S. (2006). Identifying insect vectors and transmission mechanisms for banana Xanthomonas wilt. DFID Crop Protection Programme, Final Technical Report, Project R8484. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria; NARO Kawanda Agricultural ResearchInstitute(KARI),Uganda;andEGConsulting,Kent,UK.36pp 28.Hesse P.R. (1957). Fungus combs in termite mounds. The East African Agricultural Journal. 29.INIBAP: International Network for the Improvement of Banana and Plantain (2004).ConservingonfarmdiversityinEastAfrica

112 30.Inoue T., Salmah S., Abbas I. and Yusuf E. (1985). Foraging behaviour of individualworkersandforagingdynamicsofcoloniesofthreeSumatran Stinglessbees.Res. Popul. Ecol.Vol.27:373392 31.JMP(2005).StatisticsandGraphicsGuide.Version3.1SASInstituteInc.,Cary, NC,USA. 32.Johnson K.B., Stockwell V.O, Burgett D. M., Sugar D, Loper J. E, (1993). DispersalofErwinia amylovora andPsuedomonas flourescencsbyhoney beesfromhivestoappleandpearblossoms.Phytopathology83:no5pp 478484 33.Kajobe R. (2007). Botanical sources and sugar concentration of the nectar collected by two stingless bee species in a tropical African rain forest. Editor:VassièreB.andPierreJ. Apidologie38;110121 34.KangireA.(1998).Fusarium wilt (Panama disease) of exotic bananas and wilt of East African highland bananas (Musa, AAA-EA) in Uganda. Thesis submitted for the degree of Doctor of Philosophy. Department of Agriculture,ReadingUniversity.304pp. 35.KangireA.,GoldC.,KaramuraE.B.andRutherfordM.A.(2000).Fusariumwilt of banana in Uganda, with special emphasis on wilt like symptoms observedonEast Africanhighlandcooking cultivars(Musa, AAAEA). ProceedingsoftheFirstInternationalSymposiumonBananaandPlantain forAfrica.Acta Horticulturae540:343353. 36.Karamura E.B. 1992. Banana/plantain production constraints as a basis for selectingresearchpriorities.Pp.2125in INIBAP:RegionalNetworkfor EasternAfrica.INIBAP,Montpellier,France. 37.Karamura D. A, E.B. Karamura & C.S. Gold. 1996. Cultivar distribution in primarybananagrowingregionsofUganda.MusAfrica9:35. 38.KaramuraD.A.1998.NumericalTaxonomicstudiesoftheEastAfricanhighland (Musa AAAEastAfrica)inUganda.Ph.D.Thesis,UniversityofReading, UK.

113 39.Karamura E. Frison E., Karamura D.A. and Sharrock S. (1998). Banana productionsystemsineasternandsouthernAfrica.Proceedings:INIBAP; BananasandFoodSecurityInternationalSymposium,Douala,Cameroon, 1014thNovember1998.EditorsPicqc.,FouréE.,andFrisonE.A. 40.Kirchner W.H. and Friebe R. (1999). Nestmate discrimination in the African stingless bee Hypotrigona gribodoi Magretti (Hymenoptera: Apidae). Apidologie30:293298 41.KrishnarK.andWeesnerF.M.(1970).BiologyofTermitesVol.2.Editors.New YorkandLondonAcademicPress. 42.Kyobe, D.A. (1981) Survey of banana varieties in Uganda with regard to distributionandtaxonomy.Proceedingsofthe13thInternationalBotanical Congress,p.332.Sydney,Australia. 43.Lawrence,G.H.M. (1951)TaxonomyofVascularPlants.Macmillan,NewYork. 44.MarcucciM.G.(1995).Propolis:Chemicalcomposition,biologicalpropertiesand therapeuticactivity.Apidologie26:8399 45.MeresteL.andMeresteL.(1988).SensitivityofBacilluslarvaetoanextractof propolisinvitro.MedycynaWeterynayjna,44vol.3161170 46.MichenerC.D. (1974). The social behavior of the bees.A comparativestudy. HarvardUniversityPress,Cambridge,Mass.USA. 47.MichenerC.D.(2007).The bees of the of the World.Secondedition.TheJohns HopkinsUniversityPress,BaltimoreUSA. 48.Molina A. (1999). Fruit rot diseases of cooking banana in Southeast Asia. InfomusaVol.8.No.1 49.Molina G.C. (1996). Intergrated management of `Tibaglon` (another name of `Bugtok`, a bacterial bacterial fruit rot disease ofcooking bananas under farmers´field.Philippine PhytopathologyVol.32.No.2pp183191. 50.MoritzR.F.AandCreweR.W.(1988).Airventilationinnestsoftwo African stingless bees Trigona denoiti and Trigona gribodoi. Experientia 44, BirkhäuserVerlag,Switzerland

114 51.Mwangi M., Mwebaze M., Bandyopadhyay R., aritua V., Edengreen S., Tushemereirwe W., Smith J., (2007). Development of a semiselective medium for isolating Xanthomonas campestris pv.musacearum from insectvectors,infectedplantmaterialandsoil.Inpress:Plant Pathology 52.Ndungo V., Bakelana K., EdenGreen S., Blomme G. (2004). An outbreakof bananaXanthomonas wilt(Xanthomonas campestris pv.musacearum) in theNorthKivuprovinceoftheDemocraticRepublicofCongo.InfoMusa 13(2):4344. 53.NurN.(1976).StudiesonPollinationinMusaceae.Ann.Bot.40:167177 54.PooleyA.C.andMichenerC.D.(1969).Observationsonnestsofstinglesshoney beesinNatal(Hymenoptera:Apidae) 55.Price, N.S. (1994). The origin and development of banana and plantain cultivation.In:Gowen,S.(ed.)BananasandPlantains,pp.112Chapman andHall,London. 56.Purseglove, J.W. (1972). Tropical Crops. Monocotyledons. Vol. 2 Longmans, London. 57.Roubik D.W., Aluja M. (1983). Flight ranges of Melipona and Trigona in tropicalforest,J. Kans.Entomol. Soc.56,217–222. 58.RoubikD.W,YanegaD.,AlujaS.M,BuchmannS.L.,InouyeD.W.(1995).On optimal nectar foraging by some tropical bees (Hymenoptera; Apidae). Apidologie,26:197211. 59.SakagamiS.F.(1982).StinglessBees.In:Social Insects.VolumeIII.Editedby H.R.Herman.AcademicPress,NewYork. 60.SakagamiS.F.andZucchiR.(1974).Ovipositionbehavioroftwodwarfstingless bees,Hypotrigona(Leurotrigona)muelleri andHypotrigona(Trigonisca) duckei,withnotesonthetemporalarticulationofovipositionprocessin stinglessbees.J.Fac.Sci,HokkaidoUniv.Ser.VI,Zool.19,361421 61.Sakagami S.F. and Inoue T. (1990). Oviposition behaviour of two Samatran stingless bees Trigona (Tetragonula) fuscobalteata, in: Sakagami S.F., OhgushiR.,RoubikD.W.(eds),NaturalHistoryofsocialwaspsandbees inSumatra,OkkaidoUniv.Press,Sapporo,Japanpp.201217.

115 62.SimmondsN.W.1966.Bananas.2ndedition.Longmans,London. 63.SmithF.G.(1954).NotesontheBiologyandWaxesofFourSpeciesofAfrican Trigona Bees (Hymenoptera: Apidae). The Proceedings of the Royal EntomologicalSocietyofLondon.SeriesA.GeneralEntomologyVol.29, Parts46,June30th,1954 64.SsekiwokoF.,TuryagyendaL.F.,MukasaH.,EdenGreenS.J.andBloomeG., (2006).Systemicityof Xanthomonas campestris p.v. musacearum (Xcm) in flower – infected banana plants. The 4th International Bacterial Wilt Symposium.17th–20thJuly.York,UK. 65.TinzaaraW.,GoldC.S.,SsekiwokoF.,TushemerirweW.,BandyopadhyayR., EdengreenS.J.(2006).Thepossibleroleofinsectsinthetransmissionof Banana Xanthomonas Wilt. The 4th International Bacteria Wilt Symposium.17th–20thJuly.York,UK 66.Tremblay E. and Halane A. J. (1993). Su un insolito caso di nidificazione di Hypotrigona gribodoi Magretti (Hymenoptera Apidae) in Somalia. Apicolt.mod.84:4754 67.Tushemereirwe W.K., Kangire A., Smith J., Ssekiwoko F., Nakyanzi M., Kataama D., Musiitwa C., Karyaija R. (2003). An outbreak of bacterial wiltonbananainUganda.Info. Musa 12(2):68. 68.vanNieuwstadtM.G.L.,RuanoIrahetaC.E.(1996).Relationbetweensizeand foragingrangeinstinglessbees. 69.Vera L. (1972). Subterranean nest structure of a Stingless Bee (Paratrigona subnuda Moure) (Meliponinae, Apidae, Hymenoptera). Ciéncia E Cultura.Vol.24:No7. 70.WilsonO.(1971).The Insect Societies.HarvardCollege.USA. 71.WittmannD.(1984).AerialdefenseofthenestbyworkersoftheStinglessbee Trigona (Tetragonisca) angustula (Latreille) (Hymenoptera: Apidae). Behav. Ecol. Sociobiol.Vol.16:111114.

116 72.WittmannD.(1989).Nestarchitecture,nestsitepreferencesanddistributionof Plebeia Wittmanni (Moure & Camargo, 1989) in Rio Grande do Sul, Brazil(Apidae:Meliponinae).Stud. Neotrop. Fauna and Environ.Vol.24: No.1,1723. 73.Yirgou D., Bradbury J.F. (1968). Bacterial wilt of Enset (Ensete ventricosa) incitedbyXanthomonas musacearum. Phytopathology 58:111112.

117 ACKNOWLEDGEMENTS Thisstudywouldnothavebeenpossiblewithoutthehelpandsupportofmanypeople. Prof.Dr.DieterWittmannwasawonderfulteacherwhoguidedmeuptothecompletion ofthiswork. Prof.Dr.RichardSikoraintroducedmetoworkingwithXanthomonas,andgavemethe opportunitytotraininhislaboratory. Many thanks to Dr. Clifford Gold and Dr. Tushemereirwe who invited me to do this studyinUgandaandforallowingmetoworkinKawandaAgriculturalResearchInstitute inadditiontoprovidingworkingspace. IamgratefultoDr.WilliamTinzaaraandDr.MainaMwangifortheirhelpduringthe studyinUganda. IamthankfultoDr.MaryGikungu,NationalMuseumsofKenya,fortheidentificationof thebees. IwouldliketothankallthepeopleIinteractedwithinUgandaandplayedanimportant roletowardsthecompletionofthisworkandtheirencouragement.I’mgreatlyindebted tomyfieldassistantEduwhonotonlyhelpedwiththeworkbutalsoactedasatranslator whenIdidnotunderstandthelocallanguage. Iwouldliketothankallthemembersofthedepartment,AnimalEcologyINRES,for theirguidanceandsupportduringmystaythere. I’m grateful to Dr. Manfred Kraemer, the E10 team and the entire BIOTA team for givingmeanopportunitytoworkwiththem.

118 This work was made possible through financial support provided by Katholisher AkademisherAusländerDienst(KAAD)andtheGermanFederalMinistryofEducation andResearchwithintheframeworkofBIOTAEastAfrica.Iwouldliketothankthem forfunding.I’mgratefultotheUgandangovernment,MinistryofScience&Technology forpermissiontocarryoutthestudyandKawandaAgriculturalResearchInstitutefor allowingmetoworkwithinthere.IalsothankBonnUniversity,FacultyofAgriculture foracceptingmeasoneoftheirstudent

119