Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission

Total Page:16

File Type:pdf, Size:1020Kb

Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission remote sensing Article Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission Peter Coppo 1, Alessio Taiti 1, Lucia Pettinato 1, Michael Francois 2,*, Matteo Taccola 2 and Matthias Drusch 2 1 Leonardo, Via A. Einstein, 35, Campi Bisenzio, 50013 Florence, Italy; [email protected] (P.C.); [email protected] (A.T.); [email protected] (L.P.) 2 ESA ESTEC, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk ZH, The Netherlands; [email protected] (M.T.); [email protected] (M.D.) * Correspondence: [email protected] Received: 10 May 2017; Accepted: 18 June 2017; Published: 23 June 2017 Abstract: The Fluorescence Explorer (FLEX) mission has been selected as ESA’s 8th Earth Explorer mission. The primary objectives of the mission are to provide global estimates of vegetation fluorescence, actual photosynthetic activity, and vegetation stress. FLEX will fly in tandem formation with Sentinel-3 providing ancillary data for atmospheric characterization and correction, vegetation related spectral indices, and land surface temperature. The purpose of this manuscript is to present its scientific payload, FLORIS, which is a push-broom hyperspectral imager, flying on a medium size platform. FLORIS will measure the vegetation fluorescence in the spectral range between 500 nm and 780 nm at medium spatial resolution (300 m) and over a swath of 150 km. It accommodates an imaging spectrometer with a very high spectral resolution (0.3 nm), to measure the fluorescence spectrum within two oxygen absorption bands (O2A and O2B), and a second spectrometer with lower spectral resolution to derive additional atmospheric and vegetation parameters. A compact opto-mechanical solution is the current instrument baseline. A polarization scrambler is placed in front of a common dioptric telescope serving both spectrometers to minimize the polarization sensitivity. The telescope images the ground scene onto a double slit assembly. The radiation is spectrally dispersed onto the focal planes of the grating spectrometers. Special attention has been given to the mitigation of stray-light which is a key factor to reach good accuracy of the fluorescence measurement. The absolute radiometric calibration is achieved by observing a dedicated Sun illuminated Lambertian diffuser, while the spectral calibration in flight is performed by means of vicarious techniques. The thermal stabilization is achieved by using two passive radiators looking directly to the cold space, counterbalanced by heaters in a closed loop system. The focal planes are based on custom developed CCDs. The opto-mechanical design is robust, stable vs. temperature and easy to align. The optical quality is very good as recently demonstrated by the latest tests of an elegant breadboard. The scientific data products comprise the Top Of Atmosphere (TOA) radiance measurements as well as fluorescence estimates and higher-level products related to the health status of the vegetation addressing a wide range of applications from agriculture to forestry and climate. Keywords: fluorescence imager; FLEX mission; Sentinel-3 1. Introduction and Objectives Observing the plant functional status from space represents a major interest for farming, forest management, and assessment of the terrestrial carbon budget. The measurement of solar induced chlorophyll fluorescence [1] directly addresses the photosynthetic efficiency of the terrestrial vegetation layer and complements traditional reflectance measurements used to infer parameters like Leaf Area Remote Sens. 2017, 9, 649; doi:10.3390/rs9070649 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 649 2 of 18 Index (LAI) or chlorophyll absorption [2]. Fluorescence estimates provide an early and more direct approach for diagnosis of the functioning and health status of vegetation. In fact the fluorescence emission is in competition with the photochemical conversion and may allow more accurate carbon assimilation estimation and earlier stress detection than is possible from only reflectance data [3]. The FLuorescence EXplorer (FLEX) mission has been selected for the ESA Earth Explorer EE8 program [4]. FLEX will fly in tandem with Sentinel 3 mission, making use of data synergy with other visible reflectance (from OLCI, [5]) and surface temperature data (from SLSTR, [6,7]). The FLuORescence Imaging Spectrometer (FLORIS) is the FLEX payload. It will be mounted on a medium/small size satellite and fly in a Sun synchronous orbit at a height of about 815 Km. Two different spectral channels with high spectral sampling (0.1–2 nm) have been implemented by means of two spectrometers with spatial co-registration enhanced by design using a common fore-optics with ground spatial sampling of 300 m and swath of 150 km. High efficient anti-reflection coatings, super-polished surfaces, tight particle contamination control and holographic gratings are essential to control the spatial and the spectral stray-light, which have a direct impact on the fluorescence measurement accuracy within the O2 absorption bands. The operative spectral region is selected by a band pass filter, placed in front of the scrambler. Out of band stray-light is also mitigated by using two additional filters, one for each channel, coated on two folding mirrors placed near the double slit assembly. The developed design is robust, stable versus temperature, easy to align and with good optical quality for the whole field of view including excellent corrections of transverse chromatic aberration and distortions (keystone and smile). A thermally stabilized optical bench and three cooled back-side illuminated high speed CCDs detectors are used to guarantee the required Signal to Noise Ratio (SNR) and stability accuracy (spectral and radiometric) between two consecutive on board calibrations. For the absolute radiometric calibration a dedicated Lambertian diffuser illuminated by the sun can be inserted as first element in the optical path by means of a rotating wheel, while spectral calibration is achieved by observing the atmospheric and/or the sun absorption lines (vicarious technique). The thermo-mechanical layout on a very thermal stable Al6061 alloy Optical Bench (OB) has been chosen in order to minimize volume and mass, thus reducing costs and impact on the satellite interfaces and simplifying the Assembly, Integration and Tests (AIT). All optics, detectors and Front End Electronics (FEEs) are attached with titanium/aluminum supports on the optical bench and there are two radiators in the upper position of the instrument completely in view of the cold space for an effective thermal control. These radiators are needed to dissipate heat from detector units and FEEs. The purpose of this paper is to present the state of art of the FLORIS instrument at the start of the phase B2/C/D. The principal requirements are discussed in Section2 in comparison with the foreseen achievable performance. In Section3 the instrument baseline design is presented, including the optical and the detector architecture. The mechanical layout and in-flight calibration architecture are reported respectively in Sections4 and5, while the on ground calibration/validation activites and the principal performance are described respectively in Sections6 and7. The paper will end with a brief discussion of the elegant breadboard activities (Section7), conclusions (Section8) and outlook (Section9). 2. Main Instrument Requirements The key requirements for the instrument design and sizing are summarized in Tables1 and2. Four spectral bands can be clearly identified in the requirements (Table2): - Low Resolution (LR): (500 nm–677 nm) & (697 nm–740 nm) -O 2-B: (677 nm–697 nm) -O 2-A: (740 nm–780 nm) Two spectrometers have been implemented to cover the required spectral range: the LR (Low Resolution) spectrometer for the Low Resolution bands (range 500–758 nm) with un-binned Spectral Remote Sens. 2017, 9, 649 3 of 18 Sampling Interval (SSI) of 0.6 nm/px and the HR (High Resolution) spectrometer for the two oxygen bands (range 677–697, 740–780 nm) with un-binned SSI of 0.0933 nm/px. A spectral binning ×3 and ×5 can be selected in some specific bands to meet the SSI requirement (Table2). The spectral range 677–697 nm and 740–758 nm is also acquired by the LR spectrometer for HR-LR spectral inter-band co-registration. Table 1. Principal FLORIS specification and performance. SSD = Spatial Sampling Distance, ARA = Absolute Radiometric Accuracy, RSRA = Relative Spectral Radiometric Accuracy, RXRA = Relative Spatial Radiometric Accuracy, ISRF = Instrument Spectral Response Function, FWHM = Full Width Half Maximum, ALT/ACT = ALong/ACross-Track, DOP = Degree Of Polarisation, SEDF = System Energy Distribution Function, p = ACT detector pitch, F = focal length, ts = sampling time, H = satellite altitude, GTO = Ground To Orbit, BOL = Begin Of Life, EOL = End Of Life., TBC = To Be Confirmed. Requirement Specification Performance Comments Mission lifetime 3.5/5 years 5 years - Sun zenith < 75◦, Coverage −56◦ < latitude < 75◦ −56◦ < latitude < 75◦ Observ. zenith < 15◦ Satellite height 805–830 km 805–830 km Sentinel 3 orbit. Swath width >150 km >151 km H > 805 km. <288 m (along-track) H < 830 km, p = 84 µm, SSD <300 m (nadir) <300 m (across-track) ts = 43.5 ms Image Quality <1.2 SSD 1.1 SSD FWHM of SEDF. Spatial co-registration Keystone negligible wrt telescope <0.15 SSD <0.15 SSD (HR or LR) lateral color. HR versus LR spatial <0.1 SSD 0.08 SSD At instrument level. co-registration knowledge Geo-location accuracy <0.4 SSD 0.24 SSD At instrument level. Smile (0.4 SSI) negligible wrt to Spectral co-registration <2 SSI 1.2 SSI O2A-O2B detectors alignment. <±0.1 SSI (orbit) <±0.1 SSI Stabilized optical bench (±1 ◦C) Spectral stability <±1 SSI (lifetime) <±1 SSI and detector (±0.1 ◦C). Incl. on-ground characterization, ISRF knowledge <2% 1.6% GTO and BOL-EOL variations. HR Straylight 0.2 (L0) <0.8 (L0) At 40 SSD from the edge of a bright (mW/m2/sr/nm) 0.04 (L1b) 0.04 (L1b) zone. L1b performance TBC. Absolute and Relative ARA/RSRA/RXRA 5%/1%/0.5% 5%/1%/0.5% Radiometric Accuracy.
Recommended publications
  • Astro2020 APC White Paper Another Servicing Mission to Extend Hubble Space Telescope’S Science Past the Next Decade
    Astro2020 APC White Paper Another Servicing Mission to Extend Hubble Space Telescope’s Science past the Next Decade Thematic Areas: Activity Project State of the Profession Principal Author: Name: Mercedes López-Morales Institution: Center for Astrophysics | Harvard & Smithsonian Email: [email protected] Phone: +1.617.496.7818 Co-authors: Kevin France (University of Colorado), Francesco R. Ferraro (University of Bologna), Rupali Chandar (University of Toledo), Steven Finkelstein (University of Texas at Austin), Stephane Charlot (Institut d’Astrophysique de Paris - CNRS/Sorbonne Université), Gilda Ballester (University of Arizona), Melina. C. Bersten (Instituto de Astrofísica de La Plata CONICET-UNLP; University of Tokyo), Jose M. Diego (Instituto de Fisica de Cantabria), Gastón Folatelli (Instituto de Astrofísica de La Plata CONICET-UNLP; University of Tokyo), Domingo García-Senz (Universitat Politécnica de Catalunya), Mauro Giavalisco (University of Massachusetts), Rolf A. Jansen (Arizona State University), Patrick L. Kelly (University of Minnesota), Thomas Maccarone (Texas Tech University), Seth Redfield (Wesleyan University), Pilar Ruiz-Lapuente (University of Barcelona), Steve Shore (University of Pisa), Nitya Kallivayalil (University of Virginia) Co-signers: Munazza K. Alam (Center for Astrophysics | Harvard & Smithsonian), Juan Manuel Alcalá (INAF – AO of Naples), Jay Anderson (Space Telescope Space Institute), Daniel Angerhausen (CSH, Bern University), Francesca Annibali (INAF – OAS of Bologna), Dániel Apai (University of Arizona), David Ardila (Jet Propulsion Laboratory), Santiago Arribas (Centro de Astrobiología CSIC-INTA), Hakim Atek (Institut d’astrophysique de Paris - CNRS/Sorbonne Université), Thomas R. Ayres, (University of Colorado), Francesca Bacciotti (INAF – OA of Florence), Beatriz Barbuy (Universidade de Sao Paulo), Joanna K. Barstow (University College London), Nate Bastian (Liverpool John Moores University), Natasha E.
    [Show full text]
  • The 2019 Joint Agency Commercial Imagery Evaluation—Land Remote
    2019 Joint Agency Commercial Imagery Evaluation— Land Remote Sensing Satellite Compendium Joint Agency Commercial Imagery Evaluation NASA • NGA • NOAA • USDA • USGS Circular 1455 U.S. Department of the Interior U.S. Geological Survey Cover. Image of Landsat 8 satellite over North America. Source: AGI’s System Tool Kit. Facing page. In shallow waters surrounding the Tyuleniy Archipelago in the Caspian Sea, chunks of ice were the artists. The 3-meter-deep water makes the dark green vegetation on the sea bottom visible. The lines scratched in that vegetation were caused by ice chunks, pushed upward and downward by wind and currents, scouring the sea floor. 2019 Joint Agency Commercial Imagery Evaluation—Land Remote Sensing Satellite Compendium By Jon B. Christopherson, Shankar N. Ramaseri Chandra, and Joel Q. Quanbeck Circular 1455 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials JACIE as noted in the text.
    [Show full text]
  • Small Satellites for Space Science: a COSPAR Scientific Roadmap
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Small satellites for space science: A COSPAR scientific roadmap Millan, Robyn M.; von Steiger, Rudolf; Ariel, Meir; Bartalev, Sergey; Borgeaud, Maurice; Campagnola, Stefano; Castillo-Rogez, Julie C.; Fléron, René; Gass, Volker; Gregorio, Anna Total number of authors: 19 Published in: Advances in space research Link to article, DOI: 10.1016/j.asr.2019.07.035 Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Millan, R. M., von Steiger, R., Ariel, M., Bartalev, S., Borgeaud, M., Campagnola, S., Castillo-Rogez, J. C., Fléron, R., Gass, V., Gregorio, A., Klumpar, D. M., Lal, B., Macdonald, M., Park, J. U., Sambasiva Rao, V., Schilling, K., Stephens, G., Title, A. M., & Wu, J. (2019). Small satellites for space science: A COSPAR scientific roadmap. Advances in space research, 64(8), 1466-1517. https://doi.org/10.1016/j.asr.2019.07.035 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • The ESA Perspective
    Mission status: the ESA perspective A. Heras (Project Scientist) and the PLATO Team 19/11/2019 ESA UNCLASSIFIED - For Official Use Project milestones 2018 H2 2019 H1 2019 H2 •Payload PDR •Payload PDR •Payload kick-off close-out unit PDRs •Spacecraft SRR •First CCD completion •Payload SW delivery •Spacecraft PDR SRR •Payload Units kick-off PDRs kick-offs •DMBB Test •DMBB Campaigns Manufacturing •Mission Requirements Critical Review ESA UNCLASSIFIED - For Official Use A. Heras (Project Scientist) and the PLATO Team | 19/11/2019 | Slide 2 Spacecraft status – SRR successful • Successful spacecraft System Requirements Review (SRR) (November 2018) • Issue: Excessive power dissipation of Fast cameras Front-End Electronics (F-FEE) • Technical solution found, based on conductive coupling between F-FEE and Optical Bench Assembly • Significant design work is being done on both spacecraft and F-FEE, which will be finished for spacecraft PDR and F-FEE PDR respectively ESA UNCLASSIFIED - For Official Use A. Heras (Project Scientist) and the PLATO Team | 19/11/2019 | Slide 3 Spacecraft status – Isostatic decoupling • Isostatic decoupling between Service Module and Optical Bench Assembly improved with flex joints (less risky solution with similar performance) instead of spherical bearings • Characterization tests close to completion ESA UNCLASSIFIED - For Official Use A. Heras (Project Scientist) and the PLATO Team | 19/11/2019 | Slide 4 Spacecraft status – DMBB Manufacturing and Test The investigation on the thermo-elastic distortion (TED) is considered one of the early key developments to confirm that the scientific requirements on the pointing stability of the instrument can be met. ESA UNCLASSIFIED - For Official Use A. Heras (Project Scientist) and the PLATO Team | 19/11/2019 | Slide 5 Spacecraft status – DMBB Manufacturing and Test Manufacturing and test of an early Development Model Breadboard (DMBB): 1.
    [Show full text]
  • Meteosat Third Generation Products and Applications
    Meteosat Third Generation Products and Applications Volker Gärtner, EUMETSAT Courtesy of Marianne König [email protected] Current EUMETSAT satellites METOP A-B JASON-2 (shared with CNES, NOAA) (LOW-EARTH, SUN – SYNCHRONOUS ORBIT) (LOW-EARTH, 63° INCL. NON SYNCHRONOUS ORBIT) EUMETSAT POLAR SYSTEM/INITIAL JOINT POLAR SYSTEM OCEAN SURFACE TOPOGRAPHY MISSION METEOSAT – 7 (1st GENERATION) nd METEOSAT 8-9-10 (2 GENERATION) (GEOSTATIONARY ORBIT) (GEOSTATIONARY ORBIT) INDIAN OCEAN DATA COVERAGE MISSION AT 57°5 E TWO-SATELLITE SYSTEM: (UNTILL END 2016) - METEOSAT-10: FULL DISK IMAGERY MISSION AT 0° (15 MN) - METEOSAT- 8: BACK UP AT 3.5°E - METEOSAT-9: RAPID SCAN SERVICE OVER EUROPE AT 9.5°E (5 MN) MTG to Secure Continuity and Evolution of EUMETSAT Services 1977 2002 2019 and 2021 MOP/MTP MSG MTG-I and MTG-S Observation missions: Flex.Comb. Imager: 16 channels Observation missions: Infra-Red Sounder Observation mission: SEVIRI: 12 channels Lightning Imager MVIRI: 3 channels GERB UVN Spinning satellite Spinning satellite 3-axis stabilised satellites Class 800 kg! Class 2 tons Twin Sat configuration Class 3.6 – 3.7 tons! Implementation of the EUMETSAT Mandate ! Atmospheric Chemistry Mission (UVN-S4): for the Geostationary Programme ! via Copernicus Sentinel 4 Slide: 3 MTG System Concept MTG Space Segment Configuration •" Twin Satellite Concept, based on 3-axis platforms Imaging Satellites (MTG-I) Sounding Satellites (MTG-S) •" The payload complement of the MTG-I satellite consists of The Flexible Combined Imager (FCI) The Lightning Imager (LI) The Data Collection System (DCS) and Search and Rescue (GEOSAR) •" The payload complement of the MTG-S satellite consists of The Infrared Sounder (IRS) The Ultra-violet, Visible and Near Infrared Sounder (UVN) UVN is provided as Copernicus Sentinel 4 Instrument Slide: 4 MTG Space Segment – Twin Satellite Concept MTG-I; 4 satellites MTG-S; 2 satellites Operational services call for long term commitments.
    [Show full text]
  • Design of a Lunar Rover Utilizing Hydrogen-Oxygen Fuel Cell Technologies
    Design of a Lunar Rover Utilizing Hydrogen-Oxygen Fuel Cell Technologies A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science for Aeronautical and Astronautical Engineering in the Graduate School of The Ohio State University By Michael Phillip Snyder Graduate Program in Aeronautical and Astronautical Engineering The Ohio State University 2011 Master's Examination Committee: Dr. Meyer J. Benzakein, Advisor Dr. Gerald M. Gregorek Copyright by Michael Phillip Snyder 2011 Abstract Future exploration of the solar system will depend on new designs and technologies that are efficient and versatile. Roving systems have explored the Moon and Mars but current means of supplying power are fragile and inefficient, or are considered hazardous to launch. NASA’s Glenn Research Center developed criteria necessary for the design of a robotic lunar rover with an extended exploration time. In order to satisfy these requirements a versatile rover equipped with a hydrogen-oxygen fuel cell with a 1 kilowatt nominal power output was designed to operate in the lunar environment for longer than 5 years continuously. Scaled testing of the rover was performed to predict the performance of the lunar rover. Testing was performed at the Ohio State University’s Aeronautical and Astronautical Research Laboratory in order to determined drawbar pull and sinkage of the rover. Regolith mitigation strategies were investigated in order to prolong the life of the rover by limiting and eliminating contamination caused by the lunar dust. ii Dedicated to To Diane, Walter, Andrea and everyone else who has helped me along to reach the starting point of my journey.
    [Show full text]
  • FLEX End-To-End Mission Performance Simulator
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 FLEX End-to-End Mission Performance Simulator Jorge Vicent, Neus Sabater, Carolina Tenjo, Juan Ramón Acarreta, María Manzano, Juan Pablo Rivera, Pedro Jurado, Raffaella Franco, Luis Alonso, Jochem Verrelst, and José Moreno, Member, IEEE Abstract—The FLuorescence EXplorer (FLEX) mission, industrial studies have analyzed and developed the engineering selected as the European Space Agency’s eighth Earth Explorer, issues of the FLEX platform and instrument. While these aims to globally measure the sun-induced-chlorophyll- studies helped to consolidate the mission specifications, the fluorescence spectral emission from terrestrial vegetation. In the frame of the FLEX mission, several industrial and scientific competitive ESA mission selection process is largely based on studies have analyzed the instrument design, image processing an analysis of the results as produced by an end-to-end mission algorithms, or modeling aspects. At the same time, a common performance simulator (E2ES). The E2ES must combine all tool is needed to address the overall FLEX mission performance the different mission aspects and be designed following the by combining all these features. For this reason, an end-to-end guidelines in [4] and [5]. For this reason, a FLEX E2ES (called mission performance simulator has been developed for the FLEX mission (FLEX-E). This paper describes the FLEX-E software FLEX-E) has been developed in order to test the accuracy of design, which combines the generation of complex synthetic the retrieved SIF and overall mission performance.
    [Show full text]
  • H2020 Pulsar D4.1 - D11.1B - Technology Review
    H2020 PULSAR D4.1 - D11.1B - TECHNOLOGY REVIEW Document reference D4.1 H2020_PULSAR-TAS-D11.1b Technology Review v2.6.docx Version 2.6 Delivery date 31/05/2019 Confidentiality Level Public Lead Partner ONERA Project reference Grant Agreement n 821858 Name Organisation Date Prepared by Consortium 28/02/2019 Reviewed by Vincent Bissonnette MAG 29/05/2019 Approved by Thierry Germa MAG 31/05/2019 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821858 Distribution Organisation Name EC Christos Ampatzis PSA Sabine Moreno (CNES) Michel Delpech (CNES) Javier Rodriguez (CDTI) Daniel Nolke (DLR) Daniel Jones (UKSA) Gianfranco Visentin (ESA) Magellium DLR Space Applications Graal Tech PULSAR Consortium ONERA CSEM DFKI Thales Alenia Space in France Ref.: D4.1 H2020_PULSAR-TAS-D11.1b Technology 31/05/2019 Page 2 of 158 Review v2.6.docx Document Change Record Ed. Vers. Date Change description 1 0 27/02/2019 Document created 1 1 5/03/2019 Draft skeleton 1 3 1/04/2019 Draft table of contents and initial contributions. 1 5 1/05/2019 Contributions from partners. 2 0 15/05/2019 Complete restructuration. Split in three volumes: D11.1a – Mission Analysis D11.1b – Technology Review D11.1c – System Requirement Document 2 1 22/05/2019 Contributions from Magellium and DFKI 2 2 22/05/2019 Merge of previous versions. Addition of I3DS section (TAS) 2 3 28/05/2019 Additional contributions from CSEM 2 4 28/05/2019 Additional contributions from SAS 2 5 28/05/2019 Additional contributions from ONERA 2 6 29/05/2019 Review by TAS-F and SAS Ref.: D4.1 H2020_PULSAR-TAS-D11.1b Technology 31/05/2019 Page 3 of 158 Review v2.6.docx Table of Contents 1 Introduction ...........................................................................................................
    [Show full text]
  • ESA Presentation
    ESA Earth Observation Programmes towards C-MIN 2012 Stephen Briggs Head of Programme Planning and Coordination Service Directorate of ESA Earth Observation Programmes Lisbon, Portugal 11 June 2012 EOP Towards C-MIN‟12 – P | 11 June 2012 | V1 | Page 1 ESA Unclassified – For Official Use C-MIN 12: EO programme proposals At C-MIN 12, a series of Earth Observation Programmes will be tabled for subscription: 1. EOEP-4 2. MetOp Second Generation 3. GSC-3 Additionally Earthnet and Long-Term Data Preservation programmes will be tabled as part of the LoR, as described in C(Min)2008. EOP Towards C-MIN‟12 – P | 11 June 2012 | V1 | Page 2 ESA Unclassified – For Official Use The ESA Earth Observation Envelope Programme History and overview EOP Towards C-MIN‟12 – P | 11 June 2012 | V1 | Page 3 ESA Unclassified – For Official Use ESA„s Earth Science Strategy The science strategy for ESA’s Living Planet Programme: . Launch a steady flow of missions addressing key science issues . Provide an infrastructure to allow quick and efficient satellite data exploitation . Contribute to global Earth Observation capabilities . Provide an efficient and cost-effective process for science priorities to be rapidly translated into space missions EOP Towards C-MIN‟12 – P | 11 June 2012 | V1 | Page 4 ESA Unclassified – For Official Use The Earth Observation Envelope Programme The Earth Observation Envelope Programme: 1. backbone of European Earth science 2. technology development, leading edge space missions, operations, science and exploitation 3. flexible and responsive definition of program content 4. offers recurrent opportunities in terms of proposed new calls for missions/activities EOP Towards C-MIN‟12 – P | 11 June 2012 | V1 | Page 5 ESA Unclassified – For Official Use The Functions of the EOEP .
    [Show full text]
  • Crimson Team Final Report
    STS.471/16.895/ESD.30 Engineering Apollo Crimson Team Final Report May 16th, 2007 Architecture Human Factors Friedman Brzezinski Gay Graham Leybovich Needham Yamamoto Operations GNC Bachmann Baker Fanchiang Brunet Gillespie Houghton Panish Table of Contents List of Figures ................................................................................................................................. ii List of Tables ................................................................................................................................. iii List of Acronyms ........................................................................................................................... iv Introduction ..................................................................................................................................... 1 Scope ........................................................................................................................................... 2 Goals ........................................................................................................................................... 2 Assumptions ................................................................................................................................ 2 Lunar Landing Procedure Overview ............................................................................................... 3 The Apollo Lunar Landing Procedure ........................................................................................ 3 Team Crimson Lunar
    [Show full text]
  • Earth Observation Technologies at the European Space Agency (ESA)
    Earth Observation Technologies at the European Space Agency (ESA) Presenter: Josep.Rosello @ esa.int EO Technology Coordination & Frequency Management Section (EOP-ΦMT) in ESA Location: ESTEC (NL) Plenary session on 23 June 2020 Make it simplesimple, but not simpler Quote: A. Einstein çè Earth Science Division çè Earth Observation Programme Directorate (D/EOP) ESTO çè Coordinated EOP & Corporate ESA Technology programmes Decadal Strategy for EO çè Living Planet Programme from space (Survey) çè çè No equivalent reality is not as simple at the Table above ! European Space Agency June 23, 2020 2 Contents: • Main ESA’s EO programme lines • Small Sats • EO technology drivers & examples European Space Agency June 23, 2020 3 Devising Earth Observation Missions Overall Feature: User Driven (Living Planet Programme) Research Missions Earth Watch Missions Member States EU EUMETSAT Industry Earth Explorers Copernicus Meteorology InCubed & Scouts (Sentinels) Climatology Ideas from science • User needs from institutional partners & industry partners in Member • Mission definition by ESA with industry, partners & users States (Open Calls) ESA UNCLASSIFIED – For Official Use European Space Agency European Space Agency A successful Track-Record ESA-Developed Earth Observation Missions FORUM New Sentinels (TBC): CO2M, LSTM, CIMR, CRISTAL, CHIME, ROSE-L EE10 Evolution: Harmony, Hydroterra, Daedalus Sentinel-1/2/3topo/3optical/6 NG EE-11 Scouts Cooperation (NASA): (small sats) Mass Change / Gravity Constellation European Space Agency June 23, 2020 5 European
    [Show full text]
  • Programme of Work for 2020 and 2021, and Related Procurement Plan
    EUROPEAN SPACE AGENCY INDUSTRIAL POLICY COMMITTEE Science Programme Technology Development Plan: Programme of Work for 2020 and 2021, and Related Procurement Plan SUMMARY This document presents the activities in the Science Core Technology Programme (CTP) and in the Technology Development Element (TDE, replacing the TRP) of the Discovery, Preparation & Technology Development Basic Activities supporting the implementation of ESA’s Science Programme. The national initiatives activities of relevance to the Science programme are provided for information. Activities funded through the Industrial Policy Task Forces (IPTFs) and of relevance to the Science Programme are also provided for information. June 2020 ESA UNCLASSIFIED – Releasable to the Public Page intentionally left blank ESA UNCLASSIFIED – Releasable to the Public 1 Background and Scope This document provides an update to the Science Programme Technology Development Plan (TDP). The plan contains the description of the technology development activities (TDAs) required for the technological preparation of all mission candidates in the Agency’s Science Programme. Critical mission-enabling developments that are generically applicable to several possible future space science missions are also addressed. This plan was first issued in 2008 as ESA/IPC(2008)33,add.1, and the last significant update was presented in ESA/IPC(2019)81.rev.1, approved by the IPC in November 2019. As regularly done for past versions of the plan, activities to be initiated by ESA in the year following the work plan approval are presented for a decision, while activities identified for potential implementation at a later stage are presented for information. When identified, national activities in support of payload developments are recommended for implementation under national funding.
    [Show full text]