A Metallurgical Investigation of the Bath Smelting of Composite Organic and Ferrous Wastes Stuart John Street University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

A Metallurgical Investigation of the Bath Smelting of Composite Organic and Ferrous Wastes Stuart John Street University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1997 A metallurgical investigation of the bath smelting of composite organic and ferrous wastes Stuart John Street University of Wollongong Recommended Citation Street, Stuart John, A metallurgical investigation of the bath smelting of composite organic and ferrous wastes, Doctor of Philosophy thesis, Department of Materials Engineering, University of Wollongong, 1997. http://ro.uow.edu.au/theses/1479 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. A Metallurgical Investigation of the Bath Smelting of Composite Organic and Ferrous Wastes A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Stuart John Street, B.E (Hons), M.E (Hons) Department of Materials Engineering 1997 Candidates Certificate This is to certify that the work presented in this thesis was carried out by the candidate in the Department of Materials Engineering, University of Wollongong, and has not been submitted to any other university or institution for a higher degree. Stuart Street "I may not care but that doesn't mean I don't understand." - Homer.J.Simpson "The Simpsons" Acknowledgements It has been said that: "Sometimes a scream is better than a thesis" - Ralph Waldo Emerson (1803-1882) to all those that heard me scream, thanks. Abstract Bath smelting has recently been the focus of several large research and development programs investigating alternative ironmaking processes. Fundamental studies have contributed to the understanding of smelting- reduction processes however these have not been entirely applicable to the smelting of composite pellets. Recently, bath smelting has also been evaluated for its potential for processing metallurgical wastes, the driving force being to develop suitable alternatives to traditional disposal methods such as dumping in landfills; one such technology is the EnvlRONment process. In general, many pyrometallurgical waste processes have been developed but few have been commercialised successfully. It is evident many processes have suffered economically because of poor understanding and control of process fundamentals. Although the EnvlRONment process, which smelts composite organic and ferrous waste pellets in a single vessel reactor, had been developed to the pilot plant stage, the mechanisms of smelting-reduction were not fully understood. Pilot plant trials highlighted critical aspects of the process but did not provide sufficient information to quantify process fundamentals, clearly further investigation was warranted. Smelting, Xray, and thermogravimetric experiments provided foundation for an in-depth study of reaction kinetics and mechanisms, while also allowing other relevant issues of waste processing, using bath smelting technology, to be addressed. Supporting the experimental investigations an extensive heat transfer model was developed which was used to predict temperature profiles and smelting times. The bath smelting reactor was modelled in 2 distinct stages, a falling gas region and an in-slag smelting region, heating was determined to be controlled by internal resistance. The general smelting behaviour of composite pellets was observed during pilot plant and laboratory trials. Smelting of composite pellets, as performed in the EnvlRONment process, was simulated in the laboratory by smelting composite pellets in crucibles containing slag at 1500°C; to allow for accurate experimental interpretation, and to increase the degree of experimental control, process pellets were replicated by surrogate laboratory pellets with a simplified number of components. Cellulose was trialled as a surrogate component for organic waste. Further experiments were performed using Xray fluoroscopy and radiography techniques to observe the progress of the smelting-reduction reactions in slag at 1500°C. Examination of the smelting reaction with the Xray techniques also allowed observation of the effect of composite smelting on slag foaming. The kinetics and mechanisms of reduction of composite pellets was investigated using non-isothermal thermogravimetric techniques to 1200°C. Thermal analysis via this route was selected because the experimental techniques are the most suited means to investigate temperature dependant phenomena of self-reducing systems. Smelting experiments provided significant fundamental information relevant to an understanding of smelting reactions in composite smelting. Analysis and interpretation of the experiments corroborated with the heat transfer model predictions, which was used together with the thermogravimetric results to clearly identify reaction mechanisms and explain other process phenomena. Key process reactions in composite smelting were identified as: - thermal decomposition of volatiles - direct reduction and carburisation of iron - pellet ablation through melting and dissolution - reduction of dissolved oxides in slag. Predicted temperature profiles within the composite pellets suggest that much of the volatile matter is lost during the falling gas region by thermal decomposition. For the surrogate pellets containing cellulose upto 78% of the volatile matter is lost during the falling gas region. The heat transfer model predicted sensible melting times, for a 1.5cm diameter pellet a melting time of 92s was predicted, similar times were observed in smelting trials. An important finding of the heat transfer work was that although the in-slag smelting stage was based on a fully submerged object experimental observations show that an immersion crust does not form on the pellet during its initial contact with the slag bath, and that the composite pellet is not submerged during smelting. Thermogravimetry revealed the complexity of internal reduction in iron oxide- carbon systems when high and low volatility carbon sources contribute towards reduction. The contribution to reduction from the high volatility carbon being influenced by heating rate and the presence of secondary non-volatile material, measured charring levels for cellulose varied between 13 and 22%. The main steps in the thermogravimetric reaction profiles were attributed to thermal decomposition of cellulose between 280 and 320°C and stepwise reduction of hematite above 550°C. The dominant reduction mechanism in composite bath smelting was identified as internal reduction within the pellet. Approximately 90% of the total reduction occurs within the pellet, the extent of which is sufficient that much of the iron is also carburised before pellet ablation is complete. The other significant finding of the study was that slag foaming was shown not to be a critical issue for process control of composite smelting. CONTENTS Acknowledgements iv Abstract v Table of Contents viii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 STEELWORKS DUST 6 2.1 Introduction. 6 2.2 Origin of Steelworks Dust. 7 2.3 Dust Characterisation. 12 2.4 Considerations for Recycling and Disposal of Steelworks Dust. 36 2.5 Dust Treatment Technology. 42 2.5.1 Encapsulation. 43 2.5.2 Pyrometallurgical Processes. 48 2.5.3 Hydrometallurgical Processes. 79 2.5.4 Miscellaneous. 83 2.5.5 Summary of Dust Treatment Technologies. 88 CHAPTER 3 BATH SMELTING OF IRON 93 3.1 Introduction. 93 3.2 Thermodynamics of Smelting. 95 3.2.1 Reduction of Oxides. 95 3.2.2 Reduction of Iron Oxides. 103 3.3 Bath Smelting Reactions. 111 3.3.1 Dissolution of Pellets in Bath Smelting. 111 3.3.2 Function of the Slag Layer. 129 3.3.3 Slag Foaming. 132 3.3.4 Reduction of Iron. 147 3.3.5 Function of Carbonaceous Material in Bath Smelting. 168 3.3.6 Post Combustion. 177 3.4 Bath Smelting Processes. 188 3.4.1 Corex Process. 193 3.4.2 DIOS Process. 197 3.4.3 AISI Process. 200 3.4.4 Hlsmelt Process. 201 3.4.5 LRP/Romelt Process. 205 3.4.6 Miscellaneous Processes. 207 CHAPTER 4 PILOT PLANT TRIAL OF THE BATH SMELTING OF COMPOSITE WASTE PELLETS 213 4.1 Introduction. 213 4.2 EnvlRONment Process History 213 4.3 Process Description. 217 4.4 EnvlRONment Process Thermodynamics. 228 4.5 EnvlRONment Process Commercialisation. 230 4.6 100kg DC Arc Furnace Pilot Plant Smelting Trial. 231 4.6.1 Trial Description 233 4.6.2 Carbon Balance 235 4.6.3 Discussion of the Pilot Plant Trial 237 4.6.5 Conclusion 243 CHAPTER 5 Reactor Stoichiometry and Enthalpy Balance Equations 245 5.1 Introduction 245 5.2 Model Development 245 5.3 Discussion 251 5.4 Conclusion 253 CHAPTER 6 HEAT TRANSFER CONSIDERATIONS 254 6.1 Introduction. 254 6.2 Model Formulation. 269 6.2.1 Modes of Heat Transfer in the EnvlRONment Process. 269 6.2.2 Heat Flow. 270 6.2.3 Heat Transfer Formulation. 272 6.2.3.1 Falling Gas Region. 272 6.2.3.2 In-Slag Smelting Region. 287 6.3 Discussion. 295 6.4 Conclusion. 325 CHAPTER 7 ENVIRONMENT PROCESS COMPOSITE PELLET CHARACTERISATION. 328 7.1 Introduction. 328 7.2 Characterisation Techniques. 329 7.3 Results and Discussion. 330 7.4 Conclusions. 337 CHAPTER 8 EXPERIMENTAL 346 8.1 Introduction. 346 8.2 Smelting Experiments. 347 8.2.1 Apparatus. 347 8.2.2 Materials. 349 8.2.3 Experimental Procedure. 351 8.3 Xray Fluoroscopy and Radiography Experiments. 362 8.3.1 Apparatus. 362 8.3.2 Materials. 365 8.3.3 Experimental Procedure. 365 8.4 Thermogravimetric Experiments. 368 8.4.1 Apparatus. 368 8.4.2 Materials. 377 8.4.3 Experimental Procedure. 377 CHAPTER 9 RESULTS 382 9.1 Smelting Experiments. 382 9.1.1 Introduction.
Recommended publications
  • Corrosion of Refractories in Lead Smelting Reactors
    CORROSION OF REFRACTORIES IN LEAD SMELTING REACTORS By LINGXUAN WEI B.Sc, Wuhan University of Science & Technology, China 1986 M.Sc, University of Science & Technology Beijing, China 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF METALS AND MATERIALS ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH .UMB1A DECEMBER 2000 ©Lingxuan Wei, ZO0O UBC Special Collections - Thesis Authorisation Form http://www.library.ubc.ca/spcoll/thesauth.html In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. v 3 The University of British Columbia Vancouver, Canada Date lof 1 3/19/01 2:36 PM ABSTRACT Corrosion of refractories by slag is a complex phenomenon which, depending on the particular system, involves many processes, such as chemical wear (corrosion) and physical or mechanical wear (erosion), which may act synergistically. No single model can explain all cases of corrosion nor can it explain all corrosion mechanisms of a particular refractory in different environments, but the knowledge of the microstructure combined with the chemistry of the systems are necessary to understand the corrosion mechanism of a refractory material.
    [Show full text]
  • Table of Contents
    Table of Contents Preface ........................................... xi Chapter 1. Physical Extraction Operations .................... 1 1.1. Solid-solid and solid-fluid separation operations .............. 1 1.1.1. Flotation ................................... 1 1.1.2. Settling under gravity ........................... 3 1.1.3. Centrifugation ................................ 3 1.1.4. Filtration ................................... 4 1.2. Separation operations of the components of a fluid phase ........ 5 1.2.1. Condensation ................................ 5 1.2.2. Vacuum distillation ............................. 5 1.2.3. Liquation ................................... 6 1.2.4. Distillation .................................. 8 1.2.5. Extractive distillation ........................... 11 1.3. Bibliography ................................... 12 Chapter 2. Hydrometallurgical Operations .................... 15 2.1. Leaching and precipitation operations .................... 15 2.1.1. Leaching and precipitation reactors ................... 15 2.1.2. Continuous stirred tank reactor (CSTR) ................ 18 2.1.3. Models of leaching and precipitation operations ........... 20 2.1.4. Particle-size distribution (PSD) functions ............... 21 2.2. Reactor models based on particle residence time distribution functions ........................................ 24 2.2.1. Performance equations for a single CSTR ............... 24 2.2.2. Performance equations for multistage CSTRs ............. 28 2.3. Reactor models based on the population balance
    [Show full text]
  • Hg on Periodic Table
    Hg On Periodic Table Cameron never westernize any stairs carnalize externally, is Thomas unlovely and muddled enough? gloomingPeridermal backstage, Aubert regales: uncontrolled he globe-trots and coequal. his costrels contentiously and impassively. Martie buck her How is left over the california, on hg could melt quickly by electronic strain gauge sensors have very fine flakes of Mercury than the chemical element with symbol Hg and atomic no 0 Mercury was a transition metal A transition metal is feast of the elements found between Groups. Mercury news a naturally occurring element found an air, corps and soil. This website under most abundant elements into minamata bay, or out that immediately contained in a product can cause damage, as a highly poisonous. Starship like the plane? Mercury compound thimerosal is used to our wonder leave you. It has been shown significantly more about a periodic table is liquid form alloys, switches like from countries are kidneys damage a periodic table live in terms are there is. Mercury chemical symbol Hg is an liquid metallic element that historically was used in many medicines but has now restricted due for legitimate concerns about. Cinnabar was rubbed together with policy in paper clay dish. Glad you liked this one, Jordan! Some forms of tame are particularly potent poisons. Why take some elements on the Periodic Table represented by letters that have only clear connection to their names? Mif signatures in antiseptics, facts about being replaced by where did you think about chemical sedimentation may also. Doesn't the periodic table define it Not got is overcome an element.
    [Show full text]
  • Molecular Modeling of the Thermal Decomposition of Polymers
    DOT/FAA/AR-05/32 Molecular Modeling of the Thermal Office of Aviation Research Decomposition of Polymers Washington, D.C. 20591 October 2005 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-05/32 4. Title and Subtitle 5. Report Date MOLECULAR MODELING OF THE THERMAL DECOMPOSITION OF October 2005 POLYMERS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Stanislav I. Stoliarov1, Phillip R. Westmoreland2, Huiqing Zhang2, Richard E. Lyon3, and Marc R. Nyuden4 9. Performing Organization Name and Address 3 10. Work Unit No. (TRAIS) Federal Aviation Administration 1SRA International, Inc. William J. Hughes Technical Center 3120 Fire Road Fire Safety Branch Egg Harbor Twp., NJ 08234 Atlantic City International Airport, NJ 08405 11.
    [Show full text]
  • Thermal Decomposition of Nitrous Oxide on a Gold Surface
    AN ABSTRACT OF THE THESIS OF JEREMY BROOKE HALLADAY for theDOCTOR OF PHILOSOPHY (Name) (Degree) in CHEMICAL ENGINEERING presented on 9- LI- 70 (Major) (Date) Title: SIMULTANEOUS HOMOGENEOUS AND HETEROGENEOUS CHEMICAL REACTION KINETICS: THERMAL DECOMPOSI- TION OF NITROUS OXIDE ON A COLD SURFACE Abstract approved: Redacted for Privacy Robert V. Mr4ek A general technique has been proposed for the determination of rates for reactions which occur simultaneously by homogeneous and heterogeneous paths.This technique requires determining the effect on the observed rate of varying the amount of catalyst in the reactor. If S is the amount of catalyst and f(S/V) is the dependence of the total rate on S/V, then r,r = rH +rs f(S/ V) where rT = total reaction rate, moles -time-1-volume-1 rH = homogeneous reaction rate r = the concentration dependent function of the heterogeneous rate. Values of rH and rcan then be found from a plot of rT versus f(S /V), all other variables being held constant, except if f(S/V) = (S/V)0 The proposed method has been applied to the simultaneous homo- geneous and heterogeneous thermal decomposition of nitrous oxide to the elements. Gold was used as the catalyst.Data were taken in the temperature range 700-800oCwith a backmix reactor; this type ofre- actor allowed the direct determination of rate.The reaction products were analyzed with a gas chromatograph.It was found that the de- composition to the elements is described by the expression 2 k[N20] -r 1 + kS [N20] (S/V) 1 1 + k[N20] 2 By varying S/ V, the surface rate was caused to range from 0% to 80% of the total reaction rate.
    [Show full text]
  • Toxicological Profile for Zinc
    TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • Thermal Decomposition of Ethylene Oxide on Pd( 111): Comparison of the Pathways for the Selective Oxidation of Ethylene and Olefin Metathesis R
    730 Langmuir 1994,10, 730-733 Thermal Decomposition of Ethylene Oxide on Pd( 111): Comparison of the Pathways for the Selective Oxidation of Ethylene and Olefin Metathesis R. M. Lambert,+R. M. Ormerod,* and W. T. Tysoe*p% Department of Chemistry, University of Cambridge, Cambridge CB2 lEW, U.K., Department of Chemistry, University of Keele, Keele, Staffordshire ST5 5BG, U.K.,and Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin, Milwaukee, Wisconsin 5321 1 Received August 3, 1993. In Final Form: December 16,199P The product distribution detected in the multimass temperature-programmeddesorption of a saturated overlayer of ethylene oxide adsorbed on Pd(ll1) at - 180 K indicates that it decomposes to yield ethylene and acetaldehyde. These observations are interpreted by postulating that ethylene oxide reacts to form an oxymetallocycle. This is proposed to thermally decompose in a manner analogous to carbometallocycles that form during olefin metathesis catalysis by the reaction between an alkene and a surface carbene. Thus, the metallocycle can decompose to yield ethylene and deposit adsorbed atomic oxygen or undergo a 8-hydrogen transfer to form acetaldehyde. Introduction Scheme 1 Ethylene epoxidation is a catalytic process of great industrial importance where the most selective catalysts are based on It has been unequivocally demon- T\ 2L + CAUI XCH, strated that both partial and total oxidation products arise from the reaction of ethylene with adsorbed atomic oxygen and desorbs intact at -175 K.g Ethylene oxide adsorbed and that the presence of dissolved subsurface oxygen on oxygen-precovered silver does thermally decompose enhances the selectivity to ethylene oxide.3~~It has been by reaction with oxygen, and this has been suggested as proposed that this facilitates electrophilic attack of a pathway to the formation of total oxidation products.3 ethylene by adsorbed atomic oxygen by reducing its negative charge.
    [Show full text]
  • Pb-Rich Slags, Minerals, and Pollution Resulted from a Medieval Ag-Pb Smelting and Mining Operation in the Silesian-Cracovian Region (Southern Poland)
    minerals Article Pb-Rich Slags, Minerals, and Pollution Resulted from a Medieval Ag-Pb Smelting and Mining Operation in the Silesian-Cracovian Region (Southern Poland) Jerzy Cabała 1,*, Rafał Warchulski 1, Dariusz Rozmus 2, Dorota Srodek´ 1 and Eligiusz Szeł˛eg 1 1 Faculty of Natural Sciences, University of Silesia, Bedzinska 60 Street, 41-200 Sosnowiec, Poland; [email protected] (R.W.); [email protected] (D.S.);´ [email protected] (E.S.) 2 The City Museum ”Sztygarka”, Legionów Polskich 69, 41-300 D ˛abrowa-Górnicza, Poland; [email protected] * Correspondence: [email protected] Received: 25 November 2019; Accepted: 24 December 2019; Published: 28 December 2019 Abstract: Since the 12th century in the Silesian-Cracovian area, lead, litharge, and silver have been produced by the pyrometallurgical processing of Pb-Ag-Zn ore. Slags and soils contaminated with heavy metals (Zn, Pb, Cd, Fe, Mn, As) were the subject of this research. Samples were collected during archaeological works in the area of early medieval metallurgical settlement. The main goals of the analyses (Scanning Electron Miscroscopy-Energy Dispersive Spectroscopy (SEM-EDS), Electron Probe Microanalyzer (EPMA), X-ray diffraction (XRD), Atomic Absorption Spectroscopy (AAS)) were the determination of the mineralogical composition of furnace batches and smelting temperatures and conditions. In soils, the anthropogenic phases enriched in Pb, Zn, Fe, Mn, P, and primary minerals like goethite, ferrihydrite, sphalerite, galena, smithsonite, minrecordite, cerussite, gypsum, anglesite, jarosite, and hemimorphite were identified. The soil from former metallurgical settlements contained up to 1106 mg kg 1 Pb, 782 mg kg 1 Zn, 4.7 mg kg 1 Cd in the fine fraction.
    [Show full text]
  • Study on Mercury Sources and Emissions, and Analysis of Cost and Effectiveness of Control Measures “UNEP Paragraph 29 Study”
    UNITED NATIONS ENVIRONMENT PROGRAMME Study on mercury sources and emissions, and analysis of cost and effectiveness of control measures “UNEP Paragraph 29 study” Division of Technology, Industry and Economics (DTIE) Chemicals Branch, Geneva, Switzerland, November, 2010 Disclaimer The designation employed and the presentation of material in this report do not imply any expression of any opinion whatsoever on the part of the United Nations or UNEP concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any delimitation of its frontiers or boundaries. Any views expressed in the document do not necessarily reflect the views of UNEP. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by UNEP, nor preferred compared to others of a similar nature that are not mentioned. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. Material in this publication may be freely quoted or reprinted, but acknowledgement is requested together with a reference to the document. A copy of the publication containing the quotation or reprint should be sent to UNEP Chemicals. The electronic version of this document is available from: http://www.unep.org/hazardoussubstances/Mercury/tabid/434/Default.aspx , or is available from: UNEP Chemicals 11-13, chemin des Anémones CH-1219 Châtelaine, Geneva Switzerland Phone: +41 22 917 1234 E-mail: [email protected] UNEP Chemicals is part of UNEP’s Division of Technology, Industry and Economics (DTIE) This report has been produced with the generous support from, among others, The Nordic Council of Ministers and the US Environmental Protection Agency.
    [Show full text]
  • Metallurgy of Zinc, High-Tin Bronze and Gold in Indian Antiquity: Methodological Aspects
    Indian Journal of History of Science, 51.1 (2016) 22-32 DOI: 10.16943/ijhs/2016/v51i1/48374 Metallurgy of Zinc, High-tin Bronze and Gold in Indian Antiquity: Methodological Aspects Sharada Srinivasan* (Received 18 August 2015; revised 19 December 2015) Abstract There are inherent challenges in attempting to explore the trajectory of knowledge production vis-a-vis the use of metals in antiquity. Metallurgical innovations, falling as they would have largely done in the domain of empirical knowledge and expertise, would not necessarily have left a systematic written record in the sense of knowledge production. This enquiry is perhaps even more convoluted in the Indian context where in the first place, there are not many detailed records that have readily come to light concerning mining and metallurgy and in the second place, not much systematic archaeometallurgical research has been undertaken. Nevertheless, this paper attempts to demonstrate the role of archaeometallurgical studies, coupled with ethnoarchaeological studies on continuing artisanal technologies, in such enquiries.The paper also seeks to explore the interplay between functional and cultural imperatives through which one may explain the preferential emergence of certain technologies with respect to debates on knowledge production. It restricts itself to selected case studies providing insights into the archaeometallurgy of high-tin bronzes especially from Iron Age Tamil Nadu, zinc smelting evidence at Zawar, Rajasthan, gold working with respect the Nilgiris, and the high-tin bronze mirror craft of Aranmula, Kerala. Key words: Archaeometallurgy, Ethnoarchaeology, High-tin bronze, Iron Age, Megaliths 1. INSIGHTS FROM PROTOHISTORY: SKILLS IN factors may have also played a role in the early MINIATURE AND STANDARDISATION experimentation and discovery of metals and The earliest metallurgists of pre-history materials.
    [Show full text]
  • In German Zinc and Lead Production FINAL DRAFT
    Report on Best Available Techniques (BAT) in German Zinc and Lead Production FINAL DRAFT Deutsch-Französisches Institut für Umweltforschung (DFIU) French-German Institute for Environmental Research University of Karlsruhe (TH) o. Prof. Dr. O. Rentz Dipl.-Ing. Stephan Hähre, Dr. Frank Schultmann Karlsruhe, February 1999 On behalf of the German Federal Environmental Agency, Berlin (UBA) in the frame of the Research Project 109 05 006 Contents 3 Contents PREFACE.............................................................................................................................................................13 1 GENERAL INFORMATION.......................................................................................................................... 15 1.1 PRODUCTION AND USE OF ZINC AND LEAD ................................................................................................... 15 1.1.1 Zinc ..................................................................................................................................................... 15 1.1.2 Lead .................................................................................................................................................... 16 1.2 FIRST INDICATION OF ENVIRONMENTAL CONCERNS REGARDING THE PRODUCTION OF ZINC AND LEAD ........ 19 1.2.1 Emissions into the atmosphere............................................................................................................ 19 1.2.2 Potential releases into water..............................................................................................................
    [Show full text]
  • Draft Annotated Outline of the Study Report on Mercury from Non-Ferrous Metals Mining and Smelting
    UNITED NATIONS EP UNEP (Economy Division)/Hg/PAG.11/5 Distr.: General 14 December 2020 English only United Nations Environment Programme UNEP Global Mercury Partnership Advisory Group Eleventh meeting Virtual meeting, 15-16 December 2020 Draft annotated outline of the study report on mercury from non-ferrous metals mining and smelting for consideration by the Global Mercury Partnership Advisory Group at its eleventh meeting Note by the secretariat 1. At its tenth meeting held in Geneva on 23 November 2019, the UNEP Global Mercury Partnership Advisory Group (PAG) decided to initiate work on the issue of mercury from non- ferrous metals mining and smelting, identified as a cross-cutting topic amongst different Partnership Areas1. The PAG requested the Secretariat of the Partnership to convene targeted discussions with interested Partnership Area leads, partners as well as other relevant stakeholders, to identify the needs and challenges, the information currently available as well as the possible aspects where the Partnership may have a useful contribution and move the issue forward. 2. In response to this request, expert consultations were launched through an online meeting held on 29 April 20202, with the overall objective to identify potential useful contributions from the Partnership, within the context of its mission and its existing areas of work. Participants were invited to attend in their expert capacity, to share views and ideas, and any useful background information. 3. Interested Partnership Area leads subsequently agreed to guide a process for developing a study report on the topic. As per their guidance, the report should be concise, i.e. not exceed 40 to 50 pages, benefit from global experience, and aim to better understand the mercury mass balance globally between supply, storage, and waste treatment related to non- ferrous metals mining and smelting operations.
    [Show full text]