The Diverse Role of the ETS Family of Transcription Factors in Cancer Commentary Re: B

Total Page:16

File Type:pdf, Size:1020Kb

The Diverse Role of the ETS Family of Transcription Factors in Cancer Commentary Re: B Vol. 7, 451–453, March 2001 Clinical Cancer Research 451 The Biology Behind The Diverse Role of the ETS Family of Transcription Factors in Cancer Commentary re: B. Davidson, Ets-1 Messenger RNA Expression Is a Novel Marker of Poor Survival in Ovarian Carcinoma. Clin. Cancer Res., 7: 551–557, 2001. D. Gary Gilliland1 with Ewing’s sarcoma and the TLS/ERG (12) and ETV6/MN1 Howard Hughes Medical Institute, Brigham and Women’s Hospital, (13) fusion associated with human leukemia. In addition, there Harvard Institutes of Medicine, Harvard Medical School, Boston, is a broad spectrum of hematological malignancies in which the Massachusetts 02115 PNT oligomerization motif is involved in chromosomal trans- locations with a diverse group of partners that include transcrip- Oncogenicity potential was a defining characteristic of tion factors, tyrosine kinases, and genes of unknown function. v-ets, the first of the large family of ETS transcription factors to For example, the ETS translocation variant 6 (also known as Ͼ be cloned. v-ets was discovered as an oncoprotein fusion with TEL) gene is known to be involved in 40 different transloca- gag and myb in the E26 avian erythroblastosis virus (1). There tions in human hematological malignancies. In most of these are now more than 25 ETS family members defined by a DNA cases, balanced reciprocal chromosomal translocations result in binding or ETS domain, which is highly conserved among expression of a fusion protein in which the PNT domain is fused family members, and binds to the core DNA binding motif C/A in-frame to the respective partners. Examples of TEL fusions to GCA A/T. In addition, a subset of ETS family members have a tyrosine kinases include TEL/PDGF␤R (14, 15), TEL/TRKc highly conserved PNT domain that, at least in some contexts, (16–19), TEL/ABL (20–22), and TEL/JAK2 (23–26), among acts an as oligomerization motif (2). others. TEL may also be fused to transcription factor partners ETS family members play an important role in mammalian such as AML1 (27–31), EVI1 (32), and others. In these exam- development. For example, targeted disruption of the Fli-1 gene ples, there is strong epidemiological support for a direct role in results in hemorrhage from the dorsal aorta to the lumen of the transformation of cells. Although these diseases are rare, with an neural tube and brain ventricles on embryonic day 11.0 (E11.0; incidence of approximately 1 per 100,000 individuals/year, the Ref. 3). Deficiency of Ets2 causes day E8.5 embryonic lethality, chromosomal translocations are highly conserved and in most with defects in extraembryonic tissue gene expression and func- cases result in expression of identical in-frame fusions. In ad- tion and failure of ectoplacental cone proliferation (4). Loss of dition, in some cases it has been possible to demonstrate that the function of ETV6/TEL2 causes E9.5 embryonic lethality with ETS fusion protein is both necessary and sufficient for disease severe defects in yolk sac angiogenesis and apoptosis of neural pathogenesis. For example, the TEL/PDGF␤R, TEL/TRKc, crest-derived ganglia (5). In addition, ETS family members play TEL/ABL, and TEL/JAK2 fusion proteins are each capable of important roles in hematopoietic development. Disruption of causing myeloproliferative disease in murine bone marrow Ets-1 causes defects in natural killer cell development (6), loss transplant models of leukemia. These observations have of function of PU.1 causes defects in myelopoiesis as well as prompted further analysis of downstream targets that may con- B-lymphopoiesis (7–9), and loss of ETV6/TEL causes inability tribute to malignant transformation of cells. For example, TEL/ for the transition of definitive hematopoietic cells from the liver JAK2 and other TEL tyrosine kinase fusion molecules activated to the bone marrow (10). STAT5, a member of the STAT family of latent cytoplasmic In addition to playing an important role in mammalian transcription factors. In the case of TEL/JAK2, activation of development, ETS family members have been directly impli- STAT5 is both necessary and sufficient to transform hemato- cated in the pathogenesis of a spectrum of human cancers; ETS poietic cells. STAT5, in turn, is known to transactivate a number involvement in human malignancy is notable for pleiotropic of genes that regulate cellular proliferation and survival, such as structural and functional contributions to the contributions to the oncostatin M, Bcl-Xl, cyclin D1, and Pim1 (26). Thus, direct or malignant phenotype (Fig. 1). For example, there is a spectrum indirect transcriptional targets of the ETS fusion proteins con- of cancers that include soft tissue sarcomas and leukemias in tributes directly to the transformed phenotype of the cells. which balanced reciprocal translocations result in fusion pro- Loss of function of ETS family members may also con- teins that contain the ETS DNA binding domain. Examples tribute to the pathogenesis of human cancers. For example, in include the EWS-FLI1 and EWS-ERG (11) fusion associated TEL/AML1 leukemias, there is nearly invariable deletion of the residual TEL allele (27–31, 33, 34). Thus, as a consequence of translocation and deletion, there is no functional TEL present in leukemic cells, suggesting that TEL may have tumor suppressor function. Recently, Mueller et al. (35) have reported the pres- 1 To whom requests for reprints should be addressed, at Howard Hughes ence of mutations in PU.1 associated with human leukemias, Medical Institute, Brigham and Women’s Hospital, Harvard Institute of indicating that the loss of function of PU.1 may also contribute Medicine, Harvard Medical School, 4 Blackfan Circle, Room 418, Boston, MA 02115. to the pathogenesis of disease. 2 The abbreviations used are: TEL, translocation ETS leukemia; In the current report, Davidson et al. (see this issue, pp. PDGF␤R, platelet-derived growth factor ␤ receptor. 551–557) have provided new and important clinical therapeutic Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2001 American Association for Cancer Research. 452 ETS Family Members and Cancer that the overexpression of ETS-1 in ovarian cancer not only activates transcription of genes required for potentiation of metastasis but contributes directly to the transformation of cells. This study also suggests that it may be of value to analyze the expression of other ETS family members in solid tumors. In addition, it will be important to determine the molecular mech- anisms whereby ETS-1 or other family members are overex- pressed. Are these downstream effectors of transformation me- diated by aberrant trans-acting elements, or are their cis-acting mutations that confer are responsible for the overexpression of ETS-1. Finally, these data, with the limited spectrum of target genes analyzed, suggest that efforts to identify global gene expression signatures for epithelial tumors characterized by ETS-1 overexpression may identify additional target genes that Fig. 1 Diverse mechanisms for contributing to the cancer phenotype are potential prognostic factors or targets for therapy. by ETS family members. These include fusion of the PNT oligomer- Taken together, this analysis has identified a new potential ization motif to a spectrum of partners, including tyrosine kinases such marker for prognosis in ovarian carcinomas and provides indi- as PDGF␤R, ABL, JAK2, and TRKC, as well as transcription factors rect support for the hypothesis that ETS-1 expression regulates such as AML1. In addition, the ETS, or DNA binding domain, is fused to partners that are thought to confer transactivating function, such as expression of proteinases and angiogenic factors that impact EWS, in soft tissue sarcomas and in some leukemias. There is evidence clinical behavior and response to therapy. The study provides that loss of function of ETS family members may contribute to trans- fertile new ground for investigation of the molecular basis of the formation, including the loss of function of both TEL (ETV6) alleles in correlation between ETS-1 expression and genes that may po- TEL/AML1 pediatric acute lymphoblastic leukemias and loss of func- tion mutations of PU.1 in acute myeloid leukemia. Finally, there is tentiate the malignant phenotype, as well as testing these obser- evidence, as described by Davidson et al. in this report, that overex- vations in cell culture and vertebrate models of disease patho- pression of ETS family members and transactivation of their down- genesis. stream target genes contribute to the malignant phenotype. These studies also provide a cogent reminder that the ability to transform an epithelial cell is only a part of the spectrum of biological activities that a transforming oncoprotein insights into another role of ETS family members in human confers on the malignant phenotype. Further investigations of cancer. In addition to direct contributions to the transformed the spectrum of genes that are expressed in tumor cells using phenotype, aberrant overexpression of ETS family members sophisticated global expression analysis may shed additional may influence metastatic potential and response to therapy of insights on transcriptional regulatory networks that contribute to certain human epithelial tumors. Davidson et al. assayed ETS-1 disease pathogenesis. expression using mRNA in situ hybridization from 66 primary ovarian carcinomas and metastatic lesions obtained from 41 References patients diagnosed with advanced stage ovarian carcinoma. 1. Nunn, M., Seeburg, P. H., Moscovici, C., and Duesberg, P. H. ETS-1 expression was detected in 42 and 33%, respectively, of Tripartite structure of the avian erythroblastosis virus E26 transforming carcinoma and stromal cells, respectively. There was a statisti- gene. Nature (Lond.), 306: 391–395, 1983. cally significant correlation between ETS-1 and VEGF expres- 2. Wasylyk, B., Hahn, S. L., and Giovane, A. The Ets family of sion in carcinoma and stromal cells, basic fibroblast growth transcription factors. Eur. J. Biochem., 211: 7–18, 1993.
Recommended publications
  • Hippo/YAP Signaling Pathway: a Promising Therapeutic Target In
    Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia To cite this version: Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia. Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers?. Can- cers, MDPI, 2020, 12 (3), pp.645. 10.3390/cancers12030645. inserm-03004096 HAL Id: inserm-03004096 https://www.hal.inserm.fr/inserm-03004096 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. cancers Review Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer and Franck Verrecchia * INSERM, UMR1238, Bone Sarcoma and Remodeling of Calcified Tissues, Nantes University, 44035 Nantes, France; [email protected] (S.M.); geoff[email protected] (G.D.); [email protected] (F.R.); [email protected] (B.B.-L.-R.) * Correspondence: [email protected]; Tel.: +33-244769116 Received: 4 February 2020; Accepted: 7 March 2020; Published: 10 March 2020 Abstract: Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors.
    [Show full text]
  • FLI1 Gene Fli-1 Proto-Oncogene, ETS Transcription Factor
    FLI1 gene Fli-1 proto-oncogene, ETS transcription factor Normal Function The FLI1 gene provides instructions for making the FLI protein, which controls the activity (transcription) of genes. Transcription is the first step in the process of producing proteins. The FLI protein is part of a group of related proteins, called the Ets family of transcription factors, that control transcription. The FLI protein attaches (binds) to certain regions of DNA and turns on (activates) the transcription of nearby genes. The proteins produced from these genes control many important cellular processes, such as cell growth and division (proliferation), maturation (differentiation), and survival. The FLI protein is found primarily in blood cells and is thought to regulate their development. Health Conditions Related to Genetic Changes Ewing sarcoma Mutations involving the FLI1 gene cause a type of cancerous tumor known as Ewing sarcoma. These tumors develop in bones or soft tissues such as nerves and cartilage. There are several types of Ewing sarcoma, including Ewing sarcoma of bone, extraosseous Ewing sarcoma, peripheral primitive neuroectodermal tumor, and Askin tumor. The mutations that cause these tumors are acquired during a person's lifetime and are present only in the tumor cells. This type of genetic change, called a somatic mutation, is not inherited. The most common mutation that causes Ewing sarcoma is a rearrangement (translocation) of genetic material between chromosome 11 and chromosome 22. This translocation, written as t(11;22), fuses part of the FLI1 gene on chromosome 11 with part of another gene called EWSR1 on chromosome 22, creating an EWSR1/FLI1 fusion gene.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • ERG Dependence Distinguishes Developmental Control of Hematopoietic Stem Cell Maintenance from Hematopoietic Specification
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification Samir Taoudi,1,2,6 Thomas Bee,3 Adrienne Hilton,1 Kathy Knezevic,3 Julie Scott,4 Tracy A. Willson,1,2 Caitlin Collin,1 Tim Thomas,1,2 Anne K. Voss,1,2 Benjamin T. Kile,1,2 Warren S. Alexander,2,5 John E. Pimanda,3 and Douglas J. Hilton1,2 1Molecular Medicine Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 2Department of Medical Biology, The University of Melbourne, Melbourne, Parkville, Victoria 3010, Australia; 3Lowy Cancer Research Centre, The Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia; 4Microinjection Services, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 5Cancer and Haematology Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development.
    [Show full text]
  • Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
    International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes.
    [Show full text]
  • Inducible Transgene Expression in PDX Models
    Liu et al. Biomarker Research (2020) 8:46 https://doi.org/10.1186/s40364-020-00226-z RESEARCH Open Access Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL Wen-Hsin Liu1, Paulina Mrozek-Gorska2, Anna-Katharina Wirth1, Tobias Herold1,3, Larissa Schwarzkopf1, Dagmar Pich2, Kerstin Völse1, M. Camila Melo-Narváez2, Michela Carlet1, Wolfgang Hammerschmidt2,4 and Irmela Jeremias1,5,6* Abstract Background: Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods: We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results: With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4.
    [Show full text]
  • Benefits of Cancerplex
    CancerPlexSM is a comprehensive genetic assessment of a patient’s tumor that guides oncologists towards effective treatment options. What is CancerPlex? CancerPlex is a next generation DNA sequencing test for solid SM tumors. The specific coding regions of over 400 known cancer Potential outcomes from CancerPlex genes are simultaneously determined using a small amount of Identification of variants associated with response or resis- DNA extracted from tumor samples, including formalin-fixed, tance to an FDA-approved therapy for the patient’s disease. paraffin-embedded (FFPE) tissue and cell blocks from fine-needle aspirates or effusions. This analysis is performed in a single assay, Identification of variants associated with response or resis- simplifying and streamlining the test ordering process, and eliminat- tance to a therapy associated with another clinical indication. ing time consuming serial testing. Clinically actionable information unique to each patient’s tumor is consolidated into a simple report. Identification of variants associated with a therapy(s) in CancerPlex reveals missense changes, insertions and deletions, clinical development. and previously described rearrangements of ALK, RET, and ROS. Benefits of CancerPlex: CancerPlex genes were selected because of their importance in tumor The average turn-around-time for CancerPlex is under 10 biology. Analyzing more genes increases the chance of discovering business days, dramatically shortening the waiting period for actionable findings that lead to more choices for treatment. Our initial the start of treatment. results indicate that CancerPlex analysis identifies actionable findings up to 20% more frequently than previously published studies. CancerPlex ordering is simple: KEW provides all necessary shipping materials, can facilitate tissue retrieval and return with Since knowledge of tumor biology changes rapidly, CancerPlex pathologists, and manages 3rd party payment for the test.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • Hsa-Mir-125B-2 Is Highly Expressed in Childhood ETV6&Sol;RUNX1
    Leukemia (2010) 24, 89–96 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53 N Gefen1,2,8, V Binder1,3,8, M Zaliova4, Y Linka3, M Morrow6, A Novosel3, L Edry5, L Hertzberg1,2,7, N Shomron5, O Williams6, J Trka4, A Borkhardt3 and S Izraeli1,2 1Section of Functional Genomics and Leukemia Research, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel-Hashomer, Israel; 2Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Department of Pediatric Hematology, Oncology and Immunology, Heinrich Heine University, Duesseldorf, Germany; 4Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Childhood Leukemia Investigation Prague, Prague, Czech Republic; 5Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Institute of Child Health, University College London, London, UK and 7Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel MicroRNAs (miRNAs) regulate the expression of multiple characterized by an intrachromosomal amplification of a small proteins in a dose-dependent manner. We hypothesized that region within the long arm of chr 21 (iAMP21) around the increased expression of miRNAs encoded on chromosome 21 4 (chr 21) contribute to the leukemogenic function of trisomy 21. RUNX1 locus. In contrast to ETV6/RUNX1 and HHD ALL, it is The levels of chr 21 miRNAs were quantified by qRT–PCR in associated with poor prognosis.
    [Show full text]
  • Intrinsically Disordered Meningioma-1 Stabilizes the BAF Complex to Cause AML
    Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Graphical abstract Authors Simone S. Riedel, Congcong Lu, Hongbo M. Xie, ..., Gerd A. Blobel, Benjamin A. Garcia, Kathrin M. Bernt Correspondence [email protected] In brief Meningioma-1 (MN1) translocations result in overexpression of MN1 through enhancer hijacking, or expression of an MN1 fusion protein. MN1 is an intrinsically disordered polyQ protein. MN1 overexpression is sufficient to cause malignant transformation via over- stabilization of the BAF complex at critical enhancers. Highlights d MN1 translocations in AML result in MN1 overexpression due to enhancer hijacking d MN1 interacts with the myeloid progenitor BAF complex d MN1 over-stabilizes the BAF complex at critical enhancers d Overexpression of the polyQ protein MN1 is sufficient to cause AML Riedel et al., 2021, Molecular Cell 81, 1–17 June 3, 2021 ª 2021 Elsevier Inc. https://doi.org/10.1016/j.molcel.2021.04.014 ll Please cite this article in press as: Riedel et al., Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML, Molecular Cell (2021), https://doi.org/10.1016/j.molcel.2021.04.014 ll Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Simone S. Riedel,1 Congcong Lu,2 Hongbo M. Xie,3 Kevin Nestler,1 Marit W. Vermunt,4 Alexandra Lenard,1 Laura Bennett,5 Nancy A. Speck,5 Ichiro Hanamura,6 Julie A. Lessard,7 Gerd A. Blobel,4,8 Benjamin A. Garcia,2 and Kathrin M. Bernt1,8,9,* 1Division of Pediatric Oncology, Children’s Hospital
    [Show full text]