1,25-Dihydroxyvitamin D3-Induced Genes in Osteoblasts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds
molecules Review Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds Danuta Wojcieszy ´nska , Ariel Marchlewicz and Urszula Guzik * Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiello´nska28, 40-032 Katowice, Poland; [email protected] (D.W.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +48-3220-095-67 Academic Editors: Urszula Guzik and Danuta Wojcieszy´nska Received: 10 September 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation. Keywords: EDCs; hormones; degradation; immobilization; microorganisms 1. Introduction The development of modern tools for the separation and identification of chemical substances has drawn attention to the so-called micropollution of the environment. Many of these contaminants belong to the emergent pollutants class. According to the Stockholm Convention they are characterized by high persistence, are transported over long distances in the environment through water, accumulate in the tissue of living organisms and can adversely affect them [1]. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
On the Turning of Xenopus Retinal Axons Induced by Ephrin-A5
Development 130, 1635-1643 1635 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00386 On the turning of Xenopus retinal axons induced by ephrin-A5 Christine Weinl1, Uwe Drescher2,*, Susanne Lang1, Friedrich Bonhoeffer1 and Jürgen Löschinger1 1Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany 2MRC Centre for Developmental Neurobiology, King’s College London, New Hunt’s House, Guy’s Hospital Campus, London SE1 1UL, UK *Author for correspondence (e-mail: [email protected]) Accepted 13 January 2003 SUMMARY The Eph family of receptor tyrosine kinases and their turning or growth cone collapse when confronted with ligands, the ephrins, play important roles during ephrin-A5-Fc bound to beads. However, when added in development of the nervous system. Frequently they exert soluble form to the medium, ephrin-A5 induces growth their functions through a repellent mechanism, so that, for cone collapse, comparable to data from chick. example, an axon expressing an Eph receptor does not The analysis of growth cone behaviour in a gradient of invade a territory in which an ephrin is expressed. Eph soluble ephrin-A5 in the ‘turning assay’ revealed a receptor activation requires membrane-associated ligands. substratum-dependent reaction of Xenopus retinal axons. This feature discriminates ephrins from other molecules On fibronectin, we observed a repulsive response, with the sculpturing the nervous system such as netrins, slits and turning of growth cones away from higher concentrations class 3 semaphorins, which are secreted molecules. While of ephrin-A5. On laminin, retinal axons turned towards the ability of secreted molecules to guide axons, i.e. -
Benefits of Cancerplex
CancerPlexSM is a comprehensive genetic assessment of a patient’s tumor that guides oncologists towards effective treatment options. What is CancerPlex? CancerPlex is a next generation DNA sequencing test for solid SM tumors. The specific coding regions of over 400 known cancer Potential outcomes from CancerPlex genes are simultaneously determined using a small amount of Identification of variants associated with response or resis- DNA extracted from tumor samples, including formalin-fixed, tance to an FDA-approved therapy for the patient’s disease. paraffin-embedded (FFPE) tissue and cell blocks from fine-needle aspirates or effusions. This analysis is performed in a single assay, Identification of variants associated with response or resis- simplifying and streamlining the test ordering process, and eliminat- tance to a therapy associated with another clinical indication. ing time consuming serial testing. Clinically actionable information unique to each patient’s tumor is consolidated into a simple report. Identification of variants associated with a therapy(s) in CancerPlex reveals missense changes, insertions and deletions, clinical development. and previously described rearrangements of ALK, RET, and ROS. Benefits of CancerPlex: CancerPlex genes were selected because of their importance in tumor The average turn-around-time for CancerPlex is under 10 biology. Analyzing more genes increases the chance of discovering business days, dramatically shortening the waiting period for actionable findings that lead to more choices for treatment. Our initial the start of treatment. results indicate that CancerPlex analysis identifies actionable findings up to 20% more frequently than previously published studies. CancerPlex ordering is simple: KEW provides all necessary shipping materials, can facilitate tissue retrieval and return with Since knowledge of tumor biology changes rapidly, CancerPlex pathologists, and manages 3rd party payment for the test. -
Endothelin-2 Signaling in the Neural Retina Promotes the Endothelial Tip Cell State and Inhibits Angiogenesis
Endothelin-2 signaling in the neural retina promotes PNAS PLUS the endothelial tip cell state and inhibits angiogenesis Amir Rattnera,1, Huimin Yua, John Williamsa,b, Philip M. Smallwooda,b, and Jeremy Nathansa,b,c,d,1 Departments of aMolecular Biology and Genetics, cNeuroscience, and dOphthalmology and bHoward Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Jeremy Nathans, August 20, 2013 (sent for review February 19, 2013) Endothelin signaling is required for neural crest migration and time lapse imaging studies of vascular development in zebrafish homeostatic regulation of blood pressure. Here, we report that and mammalian EC dynamics in explant culture show that the tip constitutive overexpression of Endothelin-2 (Edn2) in the mouse cell and stalk cell states are highly plastic, with frequent retina perturbs vascular development by inhibiting endothelial cell exchanges between the two cell states (8, 9). migration across the retinal surface and subsequent endothelial Several other signaling pathways are also essential for retinal cell invasion into the retina. Developing endothelial cells exist in vascular development. Norrin, a Muller-glia–derived ligand, and one of two states: tip cells at the growing front and stalk cells in its EC receptor Frizzled4 (Fz4), coreceptor Lrp5, and receptor the vascular plexus behind the front. This division of endothelial chaperone Tspan12 activate canonical Wnt signaling in de- cell states is one of the central organizing principles of angiogen- veloping ECs (10). In humans and mice, defects in any of these esis. In the developing retina, Edn2 overexpression leads to components lead to retinal hypovascularization. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Part I Biopharmaceuticals
1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays -
Evolution of the Bile Salt Nuclear Receptor FXR in Vertebrates
Supplemental Material can be found at: http://www.jlr.org/cgi/content/full/M800138-JLR200/DC1 Evolution of the bile salt nuclear receptor FXR in vertebrates † † † †† †† Erica J. Reschly,* Ni Ai, Sean Ekins, ,§,** William J. Welsh, Lee R. Hagey, Alan F. Hofmann, and Matthew D. Krasowski1,* † Department of Pathology,* University of Pittsburgh, Pittsburgh, PA 15261; Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854; Collaborations in Chemistry,§ Jenkintown, PA 19046; Department of Pharmaceutical Sciences,** †† University of Maryland, Baltimore, MD 21202; and Department of Medicine, University of California-San Diego, San Diego, CA 92093-0063 Abstract Bile salts, the major end metabolites of cho- Bile salts are water-soluble, amphipathic end metabolites lesterol, vary significantly in structure across vertebrate of cholesterol that facilitate intestinal absorption of lipids species, suggesting that nuclear receptors binding these (1), enhance proteolytic cleavage of dietary proteins (2), Downloaded from molecules may show adaptive evolutionary changes. We com- and have potent antimicrobial activity in the small intestine pared across species the bile salt specificity of the major (3). In addition, bile salt signaling via nuclear hormone re- transcriptional regulator of bile salt synthesis, the farnesoid X receptor (FXR). We found that FXRs have changed speci- ceptors (NHRs) is important for bile salt homeostasis (4). ficity for primary bile salts across species by altering the Bile salts have not been detected in invertebrate animals. shape and size of the ligand binding pocket. In particular, In contrast to steroid hormones and vitamins, whose struc- the ligand binding pockets of sea lamprey (Petromyzon marinus) tures tend to be strongly conserved, bile salts exhibit www.jlr.org and zebrafish (Danio rerio) FXRs, as predicted by homology marked structural diversity across species (5–7). -
Intrinsically Disordered Meningioma-1 Stabilizes the BAF Complex to Cause AML
Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Graphical abstract Authors Simone S. Riedel, Congcong Lu, Hongbo M. Xie, ..., Gerd A. Blobel, Benjamin A. Garcia, Kathrin M. Bernt Correspondence [email protected] In brief Meningioma-1 (MN1) translocations result in overexpression of MN1 through enhancer hijacking, or expression of an MN1 fusion protein. MN1 is an intrinsically disordered polyQ protein. MN1 overexpression is sufficient to cause malignant transformation via over- stabilization of the BAF complex at critical enhancers. Highlights d MN1 translocations in AML result in MN1 overexpression due to enhancer hijacking d MN1 interacts with the myeloid progenitor BAF complex d MN1 over-stabilizes the BAF complex at critical enhancers d Overexpression of the polyQ protein MN1 is sufficient to cause AML Riedel et al., 2021, Molecular Cell 81, 1–17 June 3, 2021 ª 2021 Elsevier Inc. https://doi.org/10.1016/j.molcel.2021.04.014 ll Please cite this article in press as: Riedel et al., Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML, Molecular Cell (2021), https://doi.org/10.1016/j.molcel.2021.04.014 ll Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Simone S. Riedel,1 Congcong Lu,2 Hongbo M. Xie,3 Kevin Nestler,1 Marit W. Vermunt,4 Alexandra Lenard,1 Laura Bennett,5 Nancy A. Speck,5 Ichiro Hanamura,6 Julie A. Lessard,7 Gerd A. Blobel,4,8 Benjamin A. Garcia,2 and Kathrin M. Bernt1,8,9,* 1Division of Pediatric Oncology, Children’s Hospital -
Immuno 2014 No. 1
Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 1, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 1, 2014 CONTENTS R EPORT 1 Indirect antiglobulin test-crossmatch using low-ionic-strength saline–albumin enhancement medium and reduced incubation time: effectiveness in the detection of most clinically significant antibodies and impact on blood utilization C.L. Dinardo, S.L. Bonifácio, and A. Mendrone, Jr. R EV I EW 6 Raph blood group system M. Hayes R EPORT 11 I-int phenotype among three individuals of a Parsi community from Mumbai, India S.R. Joshi C A SE R EPORT 14 Evans syndrome in a pediatric liver transplant recipient with an autoantibody with apparent specificity for the KEL4 (Kpb) antigen S.A. Koepsell, K. Burright-Hittner, and J.D. Landmark R EV I EW 18 JMH blood group system: a review S.T. Johnson R EPORT 24 Demonstration of IgG subclass (IgG1 and IgG3) in patients with positive direct antiglobulin tests A. Singh, A. Solanki, and R. Chaudhary I N M EMOR ia M 28 George Garratty, 1935–2014 Patricia A. Arndt and Regina M. Leger 30 A NNOUNCEMENTS 34 A DVERT I SEMENTS 39 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M. Ness, MD Pomona, California Baltimore, Maryland M A N AG I NG E D I TOR James P. -
Mir-146A Regulates Migration and Invasion by Targeting NRP2 in Circulating-Tumor Cell Mimicking Suspension Cells
G C A T T A C G G C A T genes Article MiR-146a Regulates Migration and Invasion by Targeting NRP2 in Circulating-Tumor Cell Mimicking Suspension Cells Yeojin Do 1, Jin Gu Cho 1, Ji Young Park 1, Sumin Oh 1, Doyeon Park 1 , Kyung Hyun Yoo 1,2 , Myeong-Sok Lee 1,2, Byung Su Kwon 3,* , Jongmin Kim 1,2,* and Young Yang 2,* 1 Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; [email protected] (Y.D.); [email protected] (J.G.C.); [email protected] (J.Y.P.); [email protected] (S.O.); [email protected] (D.P.); [email protected] (K.H.Y.); [email protected] (M.-S.L.) 2 Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea 3 Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, 23, Seoul 02447, Korea * Correspondence: [email protected] (B.S.K.); [email protected] (J.K.); [email protected] (Y.Y.); Tel.: +82-2-958-8837 (B.S.K.); +82-2-710-9553 (J.K.); +82-2-710-9590 (Y.Y.) Abstract: Cancer metastasis is the primary cause of cancer-related death and metastatic cancer has circulating-tumor cells (CTCs), which circulate in the bloodstream before invading other organs. Thus, understanding the precise role of CTCs may provide new insights into the metastasis process and reduce cancer mortality. However, the molecular characteristics of CTCs are not well understood due to a lack of number of CTCs.