Canadian Space Agency 2009-2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2014 OUR VISION
AMOS Centre for Autonomous Marine Operations and Systems Annual Report 2014 Annual Report OUR VISION To establish a world-leading research centre for autonomous marine operations and systems: To nourish a lively scientific heart in which fundamental knowledge is created through multidisciplinary theoretical, numerical, and experimental research within the knowledge fields of hydrodynamics, structural mechanics, guidance, navigation, and control. Cutting-edge inter-disciplinary research will provide the necessary bridge to realise high levels of autonomy for ships and ocean structures, unmanned vehicles, and marine operations and to address the challenges associated with greener and safer maritime transport, monitoring and surveillance of the coast and oceans, offshore renewable energy, and oil and gas exploration and production in deep waters and Arctic waters. Editors: Annika Bremvåg and Thor I. Fossen Copyright AMOS, NTNU, 2014 www.ntnu.edu/amos AMOS • Annual Report 2014 Table of Contents Our Vision ........................................................................................................................................................................ 2 Director’s Report: Licence to Create............................................................................................................................. 4 Organization, Collaborators, and Facts and Figures 2014 ......................................................................................... 6 Presentation of New Affiliated Scientists................................................................................................................... -
An Introduction to the NASA Robotics Alliance Cadets Program
Session F An Introduction to the NASA Robotics Alliance Cadets Program David R. Schneider, Clare van den Blink NASA, DAVANNE, & Cornell University / Cornell University CIT [email protected], [email protected] Abstract The 2006 report National Defense Education and Innovation Initiative highlighted this nation’s growing need to revitalize undergraduate STEM education. In response, NASA has partnered with the DAVANNE Corporation to create the NASA Robotics Alliance Cadets Program to develop innovative, highly integrated and interactive curriculum to redesign the first two years of Mechanical Engineering, Electrical Engineering and Computer Science. This paper introduces the NASA Cadets Program and provides insight into the skill areas targeted by the program as well as the assessment methodology for determining the program’s effectiveness. The paper also offers a brief discussion on the capabilities of the program’s robotic platform and a justification for its design into the program. As an example of the integration of the robotic platform with the program’s methodologies, this paper concludes by outlining one of the first educational experiments of NASA Cadets Program at Cornell University to be implemented in the Spring 2007 semester. I. Introduction To be an engineer is to be a designer, a creator of new technology, and the everyday hero that solves society’s problems through innovative methods and products by making ideas become a reality. However, the opportunity to truly explore these key concepts of being an engineer are often withheld from most incoming engineering students until at least their junior year causing many new students to lose motivation and potentially leave the program. -
@Ggjuliepayette @Ggjuliepayette @Ggjuliepayette H.E. Julie Payette
H.E. Julie Payette Governor General and Commander-in-Chief of Canada Before becoming Governor General, Julie Payette was an astronaut, engineer, scientific broadcaster and corporate director. From 1992 to 2013, Ms. Payette worked as an astronaut and flew two missions in space. She also served many years as CAPCOM (Capsule Communicator) at NASA’s Mission Control Center in Houston, Texas, and was Chief Astronaut for the Canadian Space Agency. She is well respected for her work in developing policies to promote science and technology. From 2011 to 2013, she worked as a scholar at the Woodrow Wilson International Center for Scholars in Washington, D.C., and was appointed scientific authority for Quebec in the United States. Between July 2013 and October 2016, @GGJuliePayette she served as Chief Operating Officer of the Montréal Science Centre. @GGJuliePayette Ms. Payette is active in multiple facets of the community. She has produced several @ggjuliepayette scientific outreach short programs on Radio-Canada and is a member of McGill University’s Faculty of Engineering Advisory Board. She has served on the boards of the Montréal Science Centre Foundation, Robotique FIRST Québec, Drug Free Kids Canada, and the Montreal Bach Festival. She has long served on the board of Own The Podium, a granting organization dedicated to high performance sport in Canada, and was recently appointed to the International Olympic Committee Women in Sport Commission. She has served as a director of Développement Aéroport Saint-Hubert de Longueuil and of the National Bank of Canada. Ms. Payette is a member of the Ordre des ingénieurs du Québec and a fellow of the International Academy of Astronautics. -
REPORT Table of Contents
WITHIN A GENERATION, EVERY INDIGENOUS STUDENT WILL GRADUATE 2019 – 2020 ANNUAL REPORT Table of Contents 02 MESSAGE FROM THE CHAIR 03 MESSAGE FROM THE CEO 05 BY THE NUMBERS 06 RESEARCH KNOWLEDGE NEST (RN) 08 RIVERS TO SUCCESS (R2S) Enriching Canada through 10 NATIONAL GATHERING FOR INDIGENOUS EDUCATION 11 GUIDING THE JOURNEY: INDIGENOUS EDUCATOR AWARDS Indigenous education and 12 SOARING: INDIGENOUS YOUTH EMPOWERMENT GATHERING by inspiring achievement. 14 BUILDING BRIGHTER FUTURES: BURSARIES, SCHOLARSHIPS AND AWARDS 16 INDSPIRE AWARDS 18 FULL-TIME EMPLOYEES 19 BOARD OF DIRECTORS 20 SPONSORS AND DONORS ($100K+) 21 2019 NATIONAL GATHERING FOR INDIGENOUS EDUCATION 22 2020 SOARING: INDIGENOUS YOUTH EMPOWERMENT CONFERENCE – OTTAWA 24 2020 INDSPIRE AWARDS 25 2020 A FEAST IN THE FOREST 26 BUILDING BRIGHTER FUTURES SUPPORTERS $100,000+ 28 ANNUAL DONORS 02 Indspire 2019–2020 INDSPIRE ● ANNUAL REPORT 2019–2020 1 MESSAGE FROM THE CHAIR David Tuccaro MESSAGE FROM THE PRESIDENT AND CEO Roberta L. Jamieson On behalf of Indspire’s Board of Directors, it is her intention to step away from her roles as my pleasure to share with you this report which President & CEO of Indspire and Executive highlights the achievements of Indspire over the Producer of the Indspire Awards. Since 2004, past 12 months. under Roberta’s leadership, financial support to First Nation, Inuit, and Métis students has At Indspire, we always challenge ourselves to are connected with Indigenous mentors who In 2019-2020, Indspire awarded an unprece- increased eightfold: 42,500 scholarship and lead with relevance and innovation. We firmly help them prioritize their own development, dented $17.8 million in scholarships, bursaries bursaries valued at over $132 million have been believe that improving educational attainment seek out exciting opportunities, and ultimately and awards to First Nations, Inuit and Métis distributed. -
Science Gc Ca Book 5 Second
Science.gc.ca Activity Book 5 Welcome to the FIFTH edition of the Science.gc.ca Activity Book! Science is all around us and can be discovered, explored and used in so many ways! This new Activity Book showcases the diversity of the world of science through activities in health, biology, environment, agriculture, meteorology, astronomy, engineering, the living world and much more! Science.gc.ca is the official Government of Canada website for Science and Technology (S&T) information and resources. We have put together this Activity Book to stir your inner scientist. Whether you are in elementary, intermediate or secondary school there are activities for all ages and skill levels. These activities can be done individually or with friends in class, at camp, at home or with your Girl Guides of Canada or Scout Canada clubs. If you would like to learn how to make invisible ink, build a mechanically powered launcher or even find out our mystery phrase, you’ll find it all inside this Activity Book! For more activities, you can visit Science.gc.ca and download our previous Activity Books. While you are there, don’t forget to check out Videos, Games and Educational Resources for more science and technology experiments, activities and facts. You can even submit a question to “Ask a Scientist”. Science.gc.ca challenges you to go out, explore and look for science everywhere you go. We would like to thank our funding partners for their ongoing participation and support: • Aboriginal Affairs and Northern Development Canada • Agriculture and Agri-Food -
The Chirps Prototyping System
Digital Commons @ George Fox University Faculty Publications - Department of Electrical Department of Electrical Engineering and Engineering and Computer Science Computer Science 2011 The hirC ps Prototyping System Gary Spivey George Fox University, [email protected] Follow this and additional works at: http://digitalcommons.georgefox.edu/eecs_fac Part of the Electrical and Computer Engineering Commons Recommended Citation Spivey, Gary, "The hirC ps Prototyping System" (2011). Faculty Publications - Department of Electrical Engineering and Computer Science. Paper 9. http://digitalcommons.georgefox.edu/eecs_fac/9 This Article is brought to you for free and open access by the Department of Electrical Engineering and Computer Science at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications - Department of Electrical Engineering and Computer Science by an authorized administrator of Digital Commons @ George Fox University. For more information, please contact [email protected]. The Chirps Prototyping System Abstract Oregon State University has been a pioneer in developing a “Platform for Learning” using their TekBots platform as a fundamental part of their electrical and computer engineering curriculum. At George Fox University, we fundamentally affirm this concept of a “Platform for Learning,” but we additionally desire a “Platform for Prototyping.” By “Platform for Prototyping,” we mean a platform that will enable our engineering students to create significant engineering projects as part of a myriad of service-learning projects, student research, course projects, and the senior capstone experience. To be effective across our curriculum, this system must not only be usable by mechanical, electrical and computer engineers, but by engineering students at the end of their first year in the engineering program. -
Autonomous Underwater Surveillance Robot
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. IV (May - Jun.2015), PP 53-61 www.iosrjournals.org Autonomous Underwater Surveillance Robot Shruti Nautiyal1, Anshuman Mehta2 1(UG Student, Department of ECE, Seemant Institute of Technology, Pithoragarh, Uttrakhand, India) 2(UG Student, Department of Mechanical Engineering, Sikkim Manipal Institute of Technology, India) Abstract: The main objective is to create an interface that allows a person to drive a robot in water and capturing the view through a night camera (360 degrees). Mobile robotic platforms are becoming more and more popular, both in scientific research and in commercial settings. Robotic systems are useful for going places or performing tasks that are not suitable for humans to do. Robots are often able to precisely perform complicated or dangerous tasks with little or no human involvement. However, before a mobile robotic platform is able to be deployed, it must have a way of identifying where it is in relation to objects and obstacles around it. Often, this is being performed by using a visual system, such as a camera. However, just wiring a camera onto a robot is not sufficient. With many of the tasks that are given to a robotic system to perform, a great deal of precision is required to satisfactorily complete these tasks. This precision requires that the robot be given accurate information by the camera. Keywords: AUVs; centre of gravity; buoyancy; thrusters; ARDUINO Board; L298; HT 12E Encoder and 12D Decoder; 434 MHZ TXR & RXR I. -
Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark
SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark Linxi Fan∗ Yuke Zhu∗ Jiren Zhu Zihua Liu Orien Zeng Anchit Gupta Joan Creus-Costa Silvio Savarese Li Fei-Fei Stanford Vision and Learning Lab (SVL) Department of Computer Science, Stanford University surreal.stanford.edu Abstract: Reproducibility has been a significant challenge in deep reinforcement learning and robotics research. Open-source frameworks and standardized bench- marks can serve an integral role in rigorous evaluation and reproducible research. We introduce SURREAL, an open-source scalable framework that supports state- of-the-art distributed reinforcement learning algorithms. We design a principled distributed learning formulation that accommodates both on-policy and off-policy learning. We demonstrate that SURREAL algorithms outperform existing open- source implementations in both agent performance and learning efficiency. We also introduce SURREAL Robotics Suite, an accessible set of benchmarking tasks in physical simulation for reproducible robot manipulation research. We provide extensive evaluations of SURREAL algorithms and establish strong baseline results. Keywords: Robot Manipulation, Reinforcement Learning, Distributed Learning Systems, Reproducible Research 1 Introduction Reinforcement learning (RL) has been an established framework in robotics to learn controllers via trial and error [1]. Classic reinforcement learning literature in robotics has largely relied on handcrafted features and shallow models [2, 3]. The recent success of deep neural networks in learning representations [4] has incentivized researchers to use them as powerful function approximators to tackle more complex control problems, giving rise to deep reinforcement learning [5, 6]. Prior work has explored the potentials of using deep RL for robot manipulation [7, 8]. Recently we have witnessed an increasing number of successful demonstrations of deep RL in simulated environments [9, 10, 11] and on real hardware [12, 13]. -
GLOBAL SPACE SECTOR MARKET TRENDS and DRIVERS Table of Contents
foreword MISSION OF THE CANADIAN SPACE AGENCY I am very pleased to release the latest edition of our Global Space Market Trends and Drivers 2002. Developed by the External Relations Directorate of the Canadian Space The Canadian Space Agency is committed to leading Agency and now in its fourth year of publication, it provides an in-depth analysis the development and application of space knowledge of the principal market and regulatory trends in key areas of the Canadian Space for the benefit of Canadians and humanity. Program, namely: satellite communications; remote sensing; robotics, navigation and space science. The External Relations Directorate The External Relations Directorate manages the Over the past year, as President of the Canadian Space Agency, I have benefited from strategic relationships between the Canadian Space numerous exchanges and consultations with all partners in the Canadian Space Sector Agency and its domestic and international partners. and have developed a profound appreciation of both the multitude of challenges con- Key mandates include the development and imple- fronting us and the great opportunities which lie in our future. mentation of policies and strategies relating to cooperation partnerships with domestic stakeholders I note with pride that the Canadian Space Sector remains internationally competitive, (Federal and Provincial governments, industry and export-oriented and is recognized as a major contributor to Canada’s goal of becoming academia) and international agencies and industries, the best knowledge-based economy in the world. For example, the results of a recent as well as support to the commercial initiatives round of consultations with our federal departments and agencies underscored the very of Canadian space companies on world markets. -
A-Cr-Ccp-803/Pf-001 15-1-1 Royal Canadian Air Cadets
A-CR-CCP-803/PF-001 ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL THREE INSTRUCTIONAL GUIDE SECTION 1 EO M340.01 – IDENTIFY CANADIAN ASTRONAUTS Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery of this lesson are listed in the lesson specification located in A-CR-CCP- 803/PG-001, Chapter 4. Specific uses for said resources are identified throughout the instructional guide within the TP for which they are required. Review the lesson content and become familiar with the material prior to delivering the lesson. Choose two astronauts to be the focus of this lesson. Retrieve current information about the chosen astronauts from the annexes and update with information from the reference. Create a slide of each astronaut’s photograph. PRE-LESSON ASSIGNMENT N/A. APPROACH An interactive lecture was chosen for this lesson to orient the cadets to Canadian astronauts, to generate interest in Canada’s space program, and to emphasize the teaching points. INTRODUCTION REVIEW N/A. OBJECTIVES By the end of this lesson the cadet shall have identified Canadian astronauts. IMPORTANCE It is important for cadets to identify Canadian astronauts so that they can become familiar with the Canadian space program. The hard work that astronauts perform will illustrate the Air Force motto: Per Ardua ad Astra, as well as the rewards that can be achieved by men and women who accept the challenge of the stars. 15-1-1 A-CR-CCP-803/PF-001 Teaching Point 1 Identify Canadian Astronauts Time: 10 min Method: Interactive Lecture Training of Canada’s astronauts began in 1983 and Canada’s first astronaut, Marc Garneau, visited space in October 1984, when, among many other mission accomplishments, the Canada Experiment (CANEX) payload performed important experiments. -
Robo-Gym Ï¿½ an Open Source Toolkit for Distributed Deep Reinforcement
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 25-29, 2020, Las Vegas, NV, USA (Virtual) robo-gym – An Open Source Toolkit for Distributed Deep Reinforcement Learning on Real and Simulated Robots Matteo Lucchi∗, Friedemann Zindler∗, Stephan Muhlbacher-Karrer,¨ Horst Pichler Abstract— Applying Deep Reinforcement Learning (DRL) to complex tasks in the field of robotics has proven to be very successful in the recent years. However, most of the publications focus either on applying it to a task in simulation or to a task in a real world setup. Although there are great examples of combining the two worlds with the help of transfer learning, it often requires a lot of additional work and fine-tuning to make the setup work effectively. In order to increase the use of DRL with real robots and reduce the gap between simulation and real world robotics, we propose an open source toolkit: robo- gym1. We demonstrate a unified setup for simulation and real environments which enables a seamless transfer from training in simulation to application on the robot. We showcase the capabilities and the effectiveness of the framework with two real world applications featuring industrial robots: a mobile robot and a robot arm. The distributed capabilities of the framework enable several advantages like using distributed algorithms, separating the workload of simulation and training on different physical machines as well as enabling the future opportunity to train in simulation and real world at the same time. Finally, we offer an overview and comparison of robo-gym with other frequently used state-of-the-art DRL frameworks. -
Space Reporter's Handbook Mission Supplement
CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-127/ISS-2JA: Station Assembly Enters the Home Stretch Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 6/15/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 06/10/09 Initial STS-127 release 06/15/09 Updating to reflect launch delay to 6/17/09 Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place. The STS-127 version of the CBS News Space Reporter's Handbook was compiled from NASA news releases, JSC flight plans, the Shuttle Flight Data and In-Flight Anomaly List, NASA Public Affairs and the Flight Dynamics office (abort boundaries) at the Johnson Space Center in Houston.