Aspen Leaf Miner

Total Page:16

File Type:pdf, Size:1020Kb

Aspen Leaf Miner Aspen Leaf Miner Introduction James Kruse, Forest Entomologist; Aspen Leaf Miner The aspen leaf miner is a transcontinental Angie Ambourn, Biological Science pest of trembling or small tooth aspen. This Technician; and Ken Zogas, Biological Science species, Phyllocnistis populiella, is found across Technician, USDA Forest Service, Alaska Alaska wherever poplar species are found. Region, State and Private Forestry. An outbreak of the aspen leaf miner has been Additional information on this insect can be occurring in Alaska since 2000. Acres of obtained from your local Alaska Cooperative infested aspen identified during annual aerial Extension office, Alaska State Forestry office, surveys have increased from nearly 300,000 or from: acres in 2000, to more than 659,000 acres in 2006. This is the second recorded outbreak Forest Health Protection exceeding 500,000 acres in Alaska (the first State and Private Forestry large recorded outbreak occurred during the Figure 1. Adult moth on aspen leaf bud. USDA Forest Service late-1970s). Infestations of aspen leaf miner 2770 Sherwood Lane, Suite 2A were noted along the Alaska Highway in Juneau, Alaska 99801-8545 Canada as early as the 1950s, and this insect seven eggs per leaf have been found during Phone: (907) 586-8883 also reaches outbreak proportions in the west- outbreaks. When the new larvae hatch, they 3301 “C” Street, Suite 522 ern United States. Outbreaks of aspen leaf bore into the leaf and begin feeding between Anchorage, Alaska 99503 miner rarely occur in eastern North America. the epidermal tissues. Larvae are small, white, Phone: (907) 743-9455 and very flat, reaching about 5 mm long. Life History The larvae develop through four instars, and 3700 Airport Way pupation occurs inside the mines. New adults Adults are minute white moths with subtle Fairbanks, Alaska 99709 emerge slightly before or during leaf senes- brown or blackish markings on their lan- Phone: (907) 451-2701 cence in late August and September. There is ceolate-shaped wings. Adults overwinter one generation per year. www.fs.fed.us/r10/spf/fhp/fhpr10.htm under the bark scales of both hardwood and conifer trees. Adults emerge, mate, and feed for approximately two weeks in early Detection and Damage Cover Photo. Aspen trees with silvery appearing foliage spring. Adults can often be seen resting on Leaf mining damage is caused by the larval caused by the Aspen leaf miner. the sides of homes, windows, and cars. Flight feeding or “mining” the leaf tissue, or meso- begins before aspen trees break bud (see phyll, between the upper and lower leaf figure 1). Single eggs are deposited on the surfaces. Host plants of the aspen leaf miner edge of newly emerged aspen leaves and the in Alaska include trembling aspen, balsam adult then folds the leaf edge over to form a poplar, and occasionally willow and orna- protective shelter for the egg until the larvae mental trees and shrubs in the genus Prunus. United States Prepared by R10-PR-14 hatch. Usually one or two eggs are laid per The aspen leaf miner causes a serpentine or Department of Forest Service June 2007 leaf when populations are low, but up to Agriculture Alaska Region sinuous mine that is typically confined to one Control Measures Photos Credits: side of the mid-rib. These mines give the leaf There are no effective control measures for Figure 1 by Patricia Doak, University of a silvery appearance (see cover photo). The large scale outbreaks of aspen leaf miner. Alaska–Fairbanks. majority of the feeding is done by late instar As with many leaf mining insects, disease, Figure 2 by Ned Rozell, Anchorage Daily larvae and happens within a two week period. parasitoids, and predators are the main causes News science writer. This feeding eventually causes the leaf to for outbreak population crashes. Cannibalism Cover photo Forest Service, Ken Zogas. desiccate, turn brown, and drop prematurely. can also occur if populations are so high that When looked at closely, leaf miner frass is larval mines cross each other. It is also sus- pected that climate is influential in determin- ing aspen leaf miner populations. Leaf mining insects tend to thrive in years associated with warm and dry weather. Thus, years with cold, wet weather may help lower populations of aspen leaf miner. Keeping trees in good health through fertil- izing, watering, proper planting and pruning techniques, can help reduce the impacts of insect pests in general. Pruning may be effec- tive for high value yard trees that are severely infested, as long as infected leaves and branches are removed or destroyed. Contact insecticides are not effective against leaf Figure 2. Mined aspen leaf. Note the serpentine mining The U.S. Department of Agriculture (USDA) prohibits and the frass—a thin black line in the mine. mining insects during their most damaging discrimination in all its programs and activities on the stage because they are protected inside the CAUTION: Pesticides can be injurious to basis of race, color, national origin, age, disability, and leaf. Some insecticides that are carried sys- humans, domestic animals, desirable plants and fish, where applicable, sex, marital status, familial status, or other wildlife—if they are not handled or applied parental status, religion, sexual orientation, genetic commonly observed in the hollowed out mine temically through the tree can be effective in properly. Use all pesticides selectively and carefully. information, political beliefs, reprisal, or because all track leaving a thin black line in the center of controlling leaf mining insects. Please contact Since approved uses of a pesticide may change or part of an individual’s income is derived from any the mine (see figure 2). Generally, the most your local Cooperative Extension office for frequently, it is important to check the label for cur- public assistance program. (Not all prohibited bases obvious negative effect of this leaf mining more information and recommendations for rent approved and legal use. Follow recommended apply to all programs.) Persons with disabilities who require alternative means for communication of pro- is aesthetic. A reduction in tree growth due insecticide treatments. practices for the disposal of surplus pesticides and pesticide containers. Mention of a pesticide in this gram information (Braille, large print, audiotape, etc.) to reduced photosynthetic area, branch die publication does not constitute a recommendation should contact USDA’s TARGET Center at (202) 720- back and top-kill are the suspected outcomes for use by the USDA, nor does it imply registration 2600 (voice and TDD). To file a complaint of discrimi- nation, write to USDA, Director, Office of Civil Rights, of sustained annual defoliation. Heavily of a product under Federal Insecticide, Fungicide, and Rodenticide Act, as amended. Mention of a 1400 Independence Avenue, S.W., Washington, D.C. damaged leaves have been shown to have 20250-9410, or call (800) 795-3272 (voice) or (202) proprietary product does not constitute an endorse- 720-6382 (TDD). USDA is an equal opportunity pro- lost up to 75 percent of their photosynthetic ment by the USDA. capability. vider and employer..
Recommended publications
  • Allium Leaf Miner Is Spreading Around the UK at a Steady Rate with Clusters of Infestation Around the Midlands and London
    Allium leaf miner is spreading around the UK at a steady rate with clusters of infestation around the Midlands and London. The pest is most likely to cause problems in leeks where it can wipe out an entire crop September to December is the time when most damage is caused in leek crops. It will be necessary to cover leeks from late August to late December to protect them if you are growing in a problem area People who currently took no action against this pest will cover their leeks in the future, now they are aware of what it is More needs to be done to raise awareness so that people are able to identify and prevent this pest Allium leaf miner is a serious pest that affects all allium crops. It first arrived in the Midlands in 2002, and since then, has rapidly spread around the country. Garden Organic last did a survey of allium leaf miner with the Organic Growers’ Alliance in 2011. The survey showed that there were many siting’s around the Midlands but it had spread to other areas of the UK as well. We suspected that it has spread much further now, so have repeated the survey to find out which areas it is now affecting. Appearance You are most likely to notice the larvae of the allium leaf miner as a small creamy maggot burrowing into the plants. You may also notice the pupae which are shiny brown and about the size of a grain of rice. Be careful not to confuse with the leek moth caterpillar which has a brown head and distinct legs.
    [Show full text]
  • (Aphis Gossypii (Glov.) and Bemisia Tabaci (G.) in the New Varieties Second Plant (After Canola) in the Golestan Province of Iran
    Study on Population Changes of Important Sucking – Pests (Aphis Gossypii (Glov.) and Bemisia Tabaci (G.) in the New Varieties Second Plant (After Canola) in the Golestan Province of Iran. Taghi Darvish, Mojeni ( [email protected] ) Cotton Research Institute Mohammadreza Zangi Cotton Research Institute Research Keywords: Cotton variety, Sucking - pests, Golestan province Posted Date: June 21st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-585098/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Investigating the population dynamic of important cotton pests on new cotton varieties is important. Cotton cultivars have important pests such as thrips, aphids, whitey and bollworm. Considering the premature cultivars with proper yield for second cultivation in cotton-growing Golestan province at the north of Iran, this study seems necessary. This genotypes was cultivated with 9 treatments in 4 replicates. A completely randomized block design was carried out in Hashem Abad research station in a spray-free plot with the dimensions of 30 × 80 cm in 2018-2019 years. According to the results of this study, analysis of variance of two years showed that the yield of N2G80 with 1538 g in the plot with 41.7% lint percentage had the highest yield, and M13 with 685 g in the plot and 35.8% lint percentage in the lowest yield they had.The infestation rate of the genotypes tested in the population of green aphid of cotton in K880-2 and Golestan® cultivars was 48.88 and 40.31 in aphid with the highest density, and the SKT-133 and TBL-60 genotype respectively with 27.15 and 29.11 aphids per leaf had the least infestation.
    [Show full text]
  • Pdf (510.24 K)
    Egypt. J. Agric. Res., 97 (1), 2019 159 SUSCEPTIBILITY OF SOME SOYBEAN VARIETIES TO CERTAIN PIERCING-SUCKING INSECTS UNDER THE FIELD CONDITIONS OF NORTH DELTA MESBAH, I.I.1; E.M.E. KHALAFALLA2; GHADA M. EISSA2; FATMA H. HEGAZY1 AND M.A. KHATTAB2 1. Plant Protection Dept. Fac. of Agric., Tanta Univ., Egypt 2. Plant Protection Research Institute, ARC. Dokki, Egypt (Manuscript received 6 January 2019) Abstract olerant varieties to insect species represent one of the simplest and important methods of insect pest control to minimize the insecticide T hazards. Therefore, susceptibility of five soybean varieties to infestation with some piercing-sucking insects: aphids, Aphis spp.; whitefly, Bemisia tabaci (Genn.) and leafhoppers, Empoasca spp. were evaluated at Sakha Agric. Res. Station Farm, Kafr El-Sheikh Governorate during 2016 and 2017 seasons. The obtained results showed significant differences in susceptibility between the tested soybean varieties to the mentioned insects for every season and from season to another. In general, the population density of whitefly and aphids were higher in the first season than the second one, while the reverse was found for leafhoppers. Based on the grand mean number of the two study seasons, variety Crawford was significantly the most infested variety to infestation with leafhoppers and aphids, while the least infested variety for aphids was Giza35 and for leafhoppers was Hybrid30. As for the whitefly, Giza35 significantly was the most infested variety, while Crawford was the least infested one. In respect to the resistance status of the tested varieties to the insects, Crawford and Hybrid30 showed susceptiblity to aphid infestation, while the other varieties exhibited low resistance.
    [Show full text]
  • Species List
    The species collected in all Malaise traps are listed below. They are organized by group and are listed in the order of the 'Species Image Library'. ‘New’ refers to species that are brand new to our DNA barcode library. 'Rare' refers to species that were only collected in one trap out of all 59 that were deployed for the program.
    [Show full text]
  • Diamondback Moth: Plutella Xylostella (Linnaeus)
    Diamondback Moth: Plutella xylostella Monitoring Protocol Host plants: Plants belong to the family Brassicaceae such as canola, mustard, broccoli, cauliflower, cabbage. Identification, Life cycle and Damage: Adults: Adult moths are approximately 12 mm long, with a 18-20 mm wing span (Figure 1). They are grey or brownish with white marks on the inner margin of the forewing. Their name is derived from a series of diamond shaped figures formed by these white marks when the wings are folded at rest. Eggs: Eggs are oval, yellowish-white and tiny. They are laid on the leaf surface the leaf surface singly or in small groups (Figure 2). Figure 1: Adult- 16 days Figure 2: Eggs- 5-6 days Figure 3: Larva- 10-30 days Figure 4: Pupa- 7-14 days Larvae: Diamondback moth has four larval stages. The first stage is a leaf miner and lives inside the leaf tissue. Damage by young larvae is characterized by small mines and holes in the leaves and surface stripping on the underside of leaves. Older larvae are yellowish green to green caterpillars. They are small (about 12 mm long when full grown) compared to other caterpillars on Brassica crops. The larva is wider in the middle and tapering at both ends with two prolegs on the last segment forming a distinctive V-shape at the posterior Updated 15May2013 by J. Otani 1 end (Figure 3). They feed on leaves, flowers, young pods and surface tissues of stems and mature pods. Damaged seeds do not fill properly and the pods are susceptible to early shattering.
    [Show full text]
  • Leaf Herbivory by Insects During Summer Reduces Overwinter Browsing by Moose Brian P
    Allman et al. BMC Ecol (2018) 18:38 https://doi.org/10.1186/s12898-018-0192-x BMC Ecology RESEARCH ARTICLE Open Access Leaf herbivory by insects during summer reduces overwinter browsing by moose Brian P. Allman, Knut Kielland and Diane Wagner* Abstract Background: Damage to plants by herbivores potentially afects the quality and quantity of the plant tissue avail- able to other herbivore taxa that utilize the same host plants at a later time. This study addresses the indirect efects of insect herbivores on mammalian browsers, a particularly poorly-understood class of interactions. Working in the Alaskan boreal forest, we investigated the indirect efects of insect damage to Salix interior leaves during the growing season on the consumption of browse by moose during winter, and on quantity and quality of browse production. Results: Treatment with insecticide reduced leaf mining damage by the willow leaf blotch miner, Micrurapteryx sali- cifoliella, and increased both the biomass and proportion of the total production of woody tissue browsed by moose. Salix interior plants with experimentally-reduced insect damage produced signifcantly more stem biomass than controls, but did not difer in stem quality as indicated by nitrogen concentration or protein precipitation capacity, an assay of the protein-binding activity of tannins. Conclusions: Insect herbivory on Salix, including the outbreak herbivore M. salicifoliella, afected the feeding behav- ior of moose. The results demonstrate that even moderate levels of leaf damage by insects can have surprisingly strong impacts on stem production and infuence the foraging behavior of distantly related taxa browsing on woody tissue months after leaves have dropped.
    [Show full text]
  • Novel Aspects of Host Tree Resistance to Leafminers
    NOVEL ASPECTS OF HOST TREE RESISTANCE TO LEAFMINERS STANLEY H. FAETH Department of Zoology Arizona State University Tempe, AZ 85287 U.S.A. INTRODUCTION At least 10,000 species of leafminers in four orders of insects (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) are found worldwide. The common feature of all leafminers is that larvae feed within leaves for at least some larval stages. Larvae of facultative mining species feed internally but also externally as free-feeders, usually in later larval instars. Larvae of obligate mining species feed exclusively, and may also pupate, within leaves (Hering 1951, Powell 1980). Despite wide interspecific variation in life histories, leafminers are generally more closely associated with their feeding substrates than are free-feeding insects (Mattson et al. 1988). This "intimacy" (sensu Mattson et al. 1988) is the primary factor in directing their evolution and influencing population dynamics. For leafminers, as distinct from most freefeeding insects, selection of feeding substrates is determined solely by female oviposition choice, at least for obligate leafminers. Eggs may be cemented to the surface or embedded in the leaf, so adult females determine feeding sites not only among plants but also within leaves. For facultative leafminers, female oviposition choice determines larval feeding sites for at least some larval instars, and female choice generally plays a much larger role in larval feeding sites than it does for most external feeding insects. Confinement to a single leaf means that larvae cannot behaviorally escape deteriorating abiotic or biotic conditions associated with their substrates as agile insect larvae can, though a few species can mine more than one leaf by exiting the mine or mining through the petiole to adjacent leaves.
    [Show full text]
  • Characteristics of Parasitism of Diamondback Moth by Oomyzus Sokolowksii (Hymenoptera: Eulophidae)
    Characteristics of parasitism of diamondback moth by Oomyzus sokolowksii (Hymenoptera: Eulophidae) N. S. Talekar Asian Vegetable Research and Development Center, Shanhua, Tainan 741, Taiwan, ROC Abstract Laboratory, greenhouse and field studies were conducted on Oomyzus sokolowskii Kurdjumov, a parasite of diamondback moth, Plutella xylostella (L.), to judge its suitability for introduction in the field to control the plutellid. Oomyzus sokolowskii preferred the third and fourth instar diamondback moth larvae over fresh pupae for parasitization. It is thus a larval parasite. Within the range of 10 °C to 35 °C, the higher the temperature the higher was the parasitism rate. High parasitism at temperatures of 30 °C and 35 °C indicates that this insect is suitable for introduction in the tropical lowlands. In a no-choice test where only fresh pupae of Cotesia plutellae Kurdjumov (another potentially competing larval parasite of diamondback moth) were offered, O. sokolowskii failed to parasitize the pupae. In a choice test where the fourth instar diamondback moth larvae and fresh C. plutellae pupae were offered, O. sokolowskii parasitized only diamondback moth larvae. This parasite, therefore, is not a hyperparasite of diamondback moth. When C. plutellae-oviposited diamondback moth larvae were offered at intervals for parasitism by O. sokolowskii, it parasitized only freshly oviposited host larvae. The longer the period that elapsed after C. plutellae oviposition of diamondback moth larvae, the lesser was the parasitism of these larvae by O. sokolowskii. In a field cage study, as the diamondback moth population increased, the parasitism of the pest by the eulophid increased, parasitism by C. plutellae, however, decreased.
    [Show full text]
  • Evaluation of Insecticide Chemistries Against the Leek Moth (Lepidoptera: Acrolepiidae), a New Pest in North America Author(S): Daniel L
    Evaluation of Insecticide Chemistries Against the Leek Moth (Lepidoptera: Acrolepiidae), a New Pest in North America Author(s): Daniel L. Olmstead and Anthony M. Shelton Source: Florida Entomologist, 95(4):1127-1131. 2012. Published By: Florida Entomological Society URL: http://www.bioone.org/doi/full/10.1653/024.095.0443 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Olmstead & Shelton: Chemical Control of the Leek Moth 1127 EVALUATION OF INSECTICIDE CHEMISTRIES AGAINST THE LEEK MOTH (LEPIDOPTERA: ACROLEPIIDAE), A NEW PEST IN NORTH AMERICA DANIEL L. OLMSTEAD* AND ANTHONY M. SHELTON New York State Agricultural Experiment Station, Department of Entomology, Cornell University, 630 West North Street, Geneva, NY 14456, USA *Corresponding author; E-mail: [email protected] Abstract The leek moth, Acrolepiopsis assectella (Zeller), is a newly introduced micro-lepidopteran pest in North America that attacks Allium crops, including onion, leek, and garlic.
    [Show full text]
  • Leafmining Insects Fact Sheet No
    Leafmining Insects Fact Sheet No. 5.548 Insect Series|Trees and Shrubs by W.S. Cranshaw, D.A. Leatherman and J.R. Feucht* Leafminers are insects that have a habit of and/or its droppings (frass). Leaf spotting Quick Facts feeding within leaves or needles, producing fungi cause these areas to collapse, without tunneling injuries. Several kinds of insects any tunneling. • Leafminers are insects have developed this habit, including larvae of that feed within a leaf, moths (Lepidoptera), beetles (Coleoptera), producing large blotches or sawflies (Hymenoptera) and flies (Diptera). Common Leafminers meandering tunnels. Most of these insects feed for their entire of Trees and Shrubs • Although leafminer injuries larval period within the leaf. Some will also Sawfly Leafminers. Most sawflies chew are conspicuous, most pupate within the leaf mine, while others on the surface of leaves, but four species have larvae that cut their way out when full- found in Colorado develop as leafminers of leafminers produce injuries grown to pupate in the soil. woody plants. Adults are small, dark-colored, that have little, if any, effect on Leafminers are sometimes classified by non-stinging wasps that insert eggs into the plant health. the pattern of the mine which they create. newly formed leaves. The developing larvae • Most leafminers have many Serpentine leaf mines wind snake-like across produce large blotch mines in leaves during natural controls that will the leaf gradually widening as the insect late spring. The sawfly leafminers produced a normally provide good control grows. More common are various blotch single generation each year. leaf mines which are generally irregularly Elm leafminer (Kaliofenusa ulmi) is of leafminers.
    [Show full text]
  • Combating Insecticide Resistance in Major UK Pests: Modelling Section
    Rothamsted Research where knowledge grows Combating insecticide resistance in major UK pests: modelling section Joe Helps, Frank van den Bosch, Neil Paveley Start: 1/1/2013 End: 31/7/2016 Project aim • Key questions: Are mixtures beneficial? First need to understand what is the effect of dose on resistance? 1. Build a model of insecticide resistance 2. Explore various measures relating to both: Providing effective control of populations Delaying build up of resistance Insects in the UK Generations per year • Peach-potato aphid Multiple Single • Potato aphid • Grain aphid • Pea aphid • Rose-grain aphid • Currant-lettuce aphid Asexual • Glasshouse whitefly • Two-spotted spider mite • Western flower thrips • Diamondback moth • Leaf miner • Pollen beetle • Cabbage stem flea beetle Asexual / Sexual Asexual • Wheat bulb fly • Orange wheat blossom midge • Pea moth • Codling moth • Pea and bean weevil Sexual Model introduction Insecticide Overwintering insects Maturation Immigration (Susceptible adults) Larvae Adults SS SR RR SS SR RR Birth Damage: • Feeding • Virus transmission • Contamination Crop Model introduction Insecticide Maturation 2 0.99 SS SR 1 RR 0.9 Larvae Adults Logit mortality 0 0.5 Absolute mortality SS SR RR SS SR RR 0.1 -1 Birth -2 0.01 -3 -2 -1 0 1 2 3 Dose (log10) Crop Simulations Grain aphid Pollen beetle 30 50 Data Data Simulation Adults 25 Larvae 40 20 30 Insects per plant per Insects 15 Number of aphids per tille aphids per of Number 20 10 10 5 0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Time (days) Time (days) Data from Skirvin, D.J., Perry, J.N.
    [Show full text]
  • Can We Save Our Horse Chestnut Trees?
    Students of La Sainte Union School Milan Zubrik, Forest Research Institute - Slovakia, Bugwood.org Can we save our horse chestnut trees? orse chestnut trees were planted in parks Food web and village greens for their attractive The horse chestnut leaf (producer) is consumed Key words shape and beautiful flowers. We noticed H by the horse chestnut moth larvae (primary invasive species there was extensive early browning of the trees in consumer), which in turn is predated by the blue our school grounds, which we found was caused tit (secondary consumer). Competing with the blue food web by the horse-chestnut leaf-miner, Cameraria ohridella tits are a number of parasitoid wasps. A parasitoid (see CATALYST Volume 25 issue 4, April 2015). Both insect control is an animal that lives inside its host (like a the horse chestnut tree and the Cameraria ohridella parasite), but always kills its host (like a predator parasitoid moth are invasive species but we consider the does, but unlike parasites). The parasitoid wasp moths to be pests because they harm the trees that has a long ovipositor which she uses to insert a we chose to plant. single egg through the leaf cuticle into the larva of We investigated several possibilities of control: the moth. The wasp larva feeds within the moth natural predators (parasitoid wasp and blue tit); larva, eventually killing it. burning or burying fallen leaves in autumn to By counting the number of the leaf miners in a destroy the overwintering pupae; pheromone traps small section of the tree and then scaling up, we that attract and kill male moths.
    [Show full text]