Receptors for Bradykinin in Intact Cultured Human Fibroblasts

Total Page:16

File Type:pdf, Size:1020Kb

Receptors for Bradykinin in Intact Cultured Human Fibroblasts Receptors for bradykinin in intact cultured human fibroblasts. Identification and characterization by direct binding study. A A Roscher, … , C L Jelsema, J Moss J Clin Invest. 1983;72(2):626-635. https://doi.org/10.1172/JCI111012. Research Article Bradykinin receptors on cultured human fibroblasts were characterized using [2,3-prolyl-3,4-3H(N)]bradykinin as radioligand. During incubation with intact fibroblasts, intact [3H]bradykinin was lost much more rapidly at 37 degrees than at 4 degrees C as determined by bioassay, high-performance liquid chromatography, and ion-exchange chromatography, and is likely to be degraded. At 4 degrees, but not at 37 degrees C, bradykinin remained intact in the presence of 2 mM bacitracin, but not in the presence of soybean trypsin inhibitor or SQ-20881, an inhibitor of kininase II. Specific binding at 4 degrees C was saturable with a maximum number of binding sites of 230 +/- 18 fmol/mg protein (mean +/- SE, n = 4) and a dissociation constant of 4.6 +/- 0.5 nM (mean +/- SE, n = 4). Linear Scatchard plots, Hill coefficients close to unity (0.95-1.06), and the failure of excess bradykinin to influence dissociation kinetics are consistent with a single component binding system with no significant cooperativity. Na+ at physiological concentrations and Ca++ or Mg++ at 3-10 mM reduced binding by 25%. The relative potencies of bradykinin analogues and unrelated peptides in competing for [3H]bradykinin binding indicated a specificity of the binding sites consistent with that of a B2 type receptor. Potencies of the peptides in displacing [3H]bradykinin correlated with their abilities to release prostacyclin, determined as its metabolite 6-keto-PGF1 alpha. […] Find the latest version: https://jci.me/111012/pdf Receptors for Bradykinin in Intact Cultured Human Fibroblasts IDENTIFICATION AND CHARACTERIZATION BY DIRECT BINDING STUDY ADELBERT A. ROSCHER, VINCENT C. MANGANIELLO, CAROLE L. JELSEMA, and JOEL Moss, Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20205 A B S T R A C T Bradykinin receptors on cultured hu- INTRODUCTION man fibroblasts were characterized using [2,3-prolyl- 3,4-3H(N)]bradykinin as radioligand. During incuba- The nonapeptide bradykinin is involved in many im- tion with intact fibroblasts, intact [3H]bradykinin was portant biological processes including inflammation lost much more rapidly at 370 than at 4°C as deter- (1) and the regulation of blood pressure (2, 3), elec- mined by bioassay, high-performance liquid chro- trolyte fluxes, and fluid balance (4, 5). Recent evidence matography, and ion-exchange chromatography, and suggests that bradykinin might also have a role as a is likely to be degraded. At 40, but not at 37°C, bra- central neurotransmitter (6). From indirect experi- dykinin remained intact in the presence of 2 mM bac- mental approaches (structure-activity relationships, itracin, but not in the presence of soybean trypsin in- kinetic data), it has been concluded that bradykinin hibitor or SQ-20881, an inhibitor of kininase II. Spe- exerts its characteristic effects by interacting with one cific binding at 4°C was saturable with a maximum or more types of specific receptors on the cell surface number of binding sites of 230±18 fmol/mg protein (7-9). Recently, using 1251-[Tyrl]kallidin (10) or (mean±SE, n = 4) and a dissociation constant of [3H]bradykinin (5, 11) as radioligands, bradykinin- 4.6±0.5 nM (mean±SE, n = 4). Linear Scatchard plots, binding sites with properties of physiologic bradykinin Hill coefficients close to unity (0.95-1.06), and the fail- receptors have been identified in crude membrane ure of excess bradykinin to influence dissociation ki- preparations from several mammalian tissues. In intact netics are consistent with a single component binding tissues, bradykinin receptor stimulation appears to ini- system with no significant cooperativity. Na+ at phys- tiate a series of intracellular events, including acti- iological concentrations and Ca++ or Mg++ at 3-10 mM vation of phospholipases A2 and C (12, 13), the release reduced binding by 25%. The relative potencies of of prostaglandins (PG)' (14-16), and accumulation of bradykinin analogues and unrelated peptides in com- cyclic (c)AMP and cyclic guanosine monophosphate peting for [3H]bradykinin binding indicated a speci- (16, 17). A variety of experimental manipulations, such ficity of the binding sites consistent with that of a B2 as treatment of intact cells and tissues with steroids type receptor. Potencies of the peptides in displacing (12), PGE2 (18), serotonin (18), trypsin (19), neur- [3H]bradykinin correlated with their abilities to release aminidase (20), and thiol compounds (21), have been prostacyclin, determined as its metabolite 6-keto- shown to alter their responsiveness to bradykinin. PGFia. This system, the first in which bradykinin re- Proper interpretation of the events that regulate bra- ceptors on human cells have been characterized, dykinin responsiveness, however, requires an under- should prove useful for investigation of the regulation standing of the interaction between bradykinin and of biological processes. its receptor, receptor-effector coupling systems, and bradykinin-influenced biological effects of bradykinin. This goal can best be Address all correspondence to Dr. Vincent C. Mangeniello. achieved in an intact cell system that retains receptor- Dr. Adelbert A. Roscher's present address is Universitat-Kin- derklinik Graz, A-8036 Graz, Austria. Dr. Roscher was the recipient of a Max Kade Foundation research grant. ' Abbreviations used in this paper: HPLC, high-pressure Received for publication 2 November 1982 and in revised liquid chromatography; PG, prostaglandin(s); PGI2, pros- form 30 March 1983. tacyclin. 626 The Journal of Clinical Investigation Volume 72 August 1983* 626-635 mediated biological responses. Cultured human skin rinsed four times with a total of 20 ml of ice-cold modified fibroblasts have frequently been used to investigate HBSS containing 0.2% bovine albumin (pH 7.3). Cells were hormone effects and then rinsed twice with Dulbecco's phosphate-buffered saline, genetic defects. Human fibro- incubated with 2 ml of 0.1% trypsin (10 min, 37°C), and blasts also have been proven to be a bradykinin-re- quantitatively transferred to vials for radioassay after ad- sponsive target tissue (12, 16, 22). Therefore, in this dition of 15 ml of Aquasol (New England Nuclear). study, we undertook to assess bradykinin receptor Specific binding of [3H]bradykinin, defined as the differ- binding in human foreskin fibroblasts utilizing ence between total binding and binding in the presence of 3 MM bradykinin, usually represented >95% of the total [3H]bradykinin as a physiological receptor ligand. binding (Fig. 5 A). Although the protein content of different subcultures varied (320-450 Mig protein/dish), in a single experiment, the variation in protein per culture dish was METHODS <5%. Protein was measured according to Lowry et al. (25). Bioassay of intact [3H]bradykinin by binding to fibro- [2,3-Prolyl-3,4-3H(N)]bradykinin (52 Ci/mmol) and 6- blasts. The integrity of [3H]bradykinin in the incubation keto[3H]PGFIa (120 Ci/mmol) were obtained from New medium after exposure to fibroblasts (used medium) was England Nuclear (Boston, MA). [3H]bradykinin, stored in tested by its ability to bind specifically to fresh fibroblasts. 0.05 N acetic acid, had to be purified on CM-Sephadex be- Used media were transferred to chilled tubes and frozen fore use, whereas solutions in ethanol proved to be more immediately. For each experimental condition, medium stable. Unlabeled bradykinin was purchased from Beckman containing the same amount of [3H]bradykinin was prepared Instruments, Inc. (Palo Alto, CA); bradykinin analogues and and treated identically but was not incubated with cells peptides from Peninsula Laboratories, Inc. (Belmont, CA); (control medium). Fibroblasts grown in multi-dish trays culture medium, enzyme solutions, and additives for the were used as a bioassay system. Media (control and used) culture media from Gibco Laboratories (Grand Island, NY); were thawed (at 0°-4°C) and kept on ice; samples containing E-aminocaproic acid, 1-10 phenanthroline and N-methyl-D- the same amounts of radioactivity were incubated with fi- glucamine from Sigma Chemical Co. (St. Louis, MO); bac- broblasts for 30 min at 4°C for determination of specific itracin from Calbiochem-Behring Corp., American Hoechst [3H]bradykinin binding; the difference between specific Corp. (La Jolla, CA); soybean trypsin inhibitor from P. L. binding from control and used media was taken as the Biochemicals, Inc. (Milwaukee, WI); bovine albumin from amount of [3H]bradykinin degraded or altered in such a way Armour Pharmaceutical Co. (Phoenix, AZ); 6-keto-PGFI,a that precluded binding to fibroblasts. antiserum and standard from Seragen Inc. (Boston, MA); Ion-exchange chromatography. To separate intact bra- dextran T-70 and CM-Sephadex C-25 from Pharmacia Fine dykinin from degraded/altered products, a modification of Chemicals (Piscataway, NJ). SQ-20881 and captopril were a previously described procedure was used (26). Samples of kindly provided by Squibb Pharmaceutical Inc. (Princeton, medium containing [3H]bradykinin were supplemented with NJ). All other reagents were of analytical grade and obtained an excess of unlabeled bradykinin and diluted to a final salt from commercial sources. concentration of <0.05 M. Samples were adjusted to pH 5.0 Cell culture. A single line of human fibroblasts (HF-15) and applied to columns (0.2 X 0.6 cm) of CM-Sephadex C- from foreskin of a healthy newborn male, established by 25 equilibrated with 0.05 M ammonium acetate. Altered routine techniques, was used for all studies; cells were used bradykinin products were eluted in stepwise fashion with 3 between the 8th and 15th passages. Stock cultures were ml of 0.1 M and 8 ml of 0.2 M ammonium acetate, pH 5.0; grown in Eagle's basal medium supplemented with Earle's [3H]bradykinin was then eluted with 0.5 M ammonium ac- salts, 10% fetal calf serum, and 2 mM glutamine as previously etate, pH 7.2.
Recommended publications
  • Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
    MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today.
    [Show full text]
  • Ruthenium-Catalyzed CH Functionalization Of(Hetero)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1465 Ruthenium-catalyzed C-H Functionalization of (Hetero)arenes KARTHIK DEVARAJ ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9783-5 UPPSALA urn:nbn:se:uu:diva-310998 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Uppsala, Friday, 24 February 2017 at 09:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Victor A. Snieckus (Department of Chemistry, Queen's University, Canada). Abstract Devaraj, K. 2017. Ruthenium-catalyzed C-H Functionalization of (Hetero)arenes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1465. 59 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9783-5. This thesis concerned about the Ru-catalyzed C-H functionalizations on the synthesis of 2- arylindole unit, silylation of heteroarenes and preparation of aryne precursor. In the first project, we developed the Ru-catalyzed C2-H arylation of N-(2-pyrimidyl) indoles and pyrroles with nucleophilic arylboronic acids under oxidative conditions. Wide variety of arylboronic acids afforded the desired product in excellent yield regardless of the substituents or functional group electronic nature. Electron-rich heteroarenes are well suited for this method than electron-poor heteroarenes. Halides such as bromide and iodide also survived, further derivatisation of the halide is shown by Heck alkenylation. In order to find catalytic on-cycle intermediate extensive mechanistic experiments have been carried out by preparing presumed ruthenacyclic complexes and C-H/D exchange reactions.
    [Show full text]
  • Article Download
    wjpls, 2020, Vol. 6, Issue 8, 61-75 Review Article ISSN 2454-2229 Mitali et al. World Journal of Pharmaceutical and Life Science World Journal of Pharmaceutical and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 6.129 INSULIN THERAPY AND IT’S NEW APPROACHES Tejaswini S. Kawanpure and Dr. Mitali M. Bodhankar* Gurunanak College of Pharmacy, Near Dixit Nagar, Nari Road, Nagpur- 440026. Corresponding Author: Dr. Mitali M. Bodhankar Gurunanak College of Pharmacy, Near Dixit Nagar, Nari Road, Nagpur- 440026. Article Received on 01/06/2020 Article Revised on 22/06/2020 Article Accepted on 12/07/2020 ABSTRACT Diabetes mellitus is a serious pathologic condition which is responsible for major healthcare problems worldwide Insulin replacement therapy has been used in the clinical Management of diabetes mellitus for more than 84 years. Insulin has remained indispensable in dispensable in management of diabetes mellitus since its discovery in 1921. Comparatively, a large percentage of world population is affected by diabetes mellitus, out of which approximately 5-10% with type 1 diabetes while the remaining 90% with type 2. The present mode of insulin administration is by the subcutaneous route through which insulin introduced into the body in a non-physiological manner having many challenges. Hence novel approaches for insulin delivery are being explored. Challenges that have adverse effect on oral route of insulin administration mainly includes rapid enzymatic degradation in the stomach, inactivation and digestion by proteolytic enzymes in the intestinal lumen and poor permeability across intestinal epithelium because of its high molecular weight and its lipophilicity. Approaches such as liposomes, micro emulsions, nano cubicle, insulin chewing gum and so forth have been prepared to ensure the oral delivery of insulin.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0220631 A1 Mezey Et Al
    US 2016O220631A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0220631 A1 Mezey et al. (43) Pub. Date: Aug. 4, 2016 (54) METHODS OF MODULATING Publication Classification ERYTHROPOESS WITH ARGINNE VASOPRESSIN RECEPTOR 1B MOLECULES (51) Int. Cl. A638/II (2006.01) (71) Applicant: THE USA, AS REPRESENTED BY A613 L/404 (2006.01) THE SECRETARY DEPARTMENT A613 L/46.5 (2006.01) OF HEALTH AND HUMAN A638/8 (2006.01) SERVICES, Bethesda, MD (US) A6II 45/06 (2006.01) (52) U.S. Cl. (72) Inventors: Eva M. Mezey, Rockville, MD (US); CPC ............. A61K 38/11 (2013.01); A61 K38/1816 Balazs Mayer, Budakeszi (HU); (2013.01); A61K 45/06 (2013.01); A61 K Krisztian Nemeth, Budapest (HU); 3 1/465 (2013.01); A61 K31/404 (2013.01) Miklos Krepuska, Rockville, MD (US) (73) Assignee: The USA, as represented by the (57) ABSTRACT Secretary, Departm-ent of Health and Disclosed are methods of modulating erythropoiesis with Human Service, Bethesda, MD (US) arginine vasopressin receptor 1B (AVPR1B) molecules, such Appl. No.: as AVPR1B agonists or antagonists. In one example, a (21) 15/022,531 method of stimulating erythropoiesis is disclosed including (22) PCT Fled: Oct. 1, 2014 administering an effective amount of an AVPR1B stimulatory molecule to a subject in need thereof, thereby stimulating (86) PCT NO.: PCT/US2O14/058613 erythropoiesis. Also disclosed is a method of stimulating hematopoetic stem cell (HSC) proliferation which includes S371 (c)(1), administering an effective amount of an AVPR1B stimulatory (2) Date: Mar. 16, 2016 molecule to a subject in need thereof, thereby stimulating HSC proliferation.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Constitutive Endocytic Cycle of the CB1 Cannabinoid Receptor. Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei
    Constitutive endocytic cycle of the CB1 cannabinoid receptor. Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei To cite this version: Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei. Constitutive endocytic cycle of the CB1 cannabinoid receptor.. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2004, 279 (34), pp.36013-36021. 10.1074/jbc.M403990200. hal-00250336 HAL Id: hal-00250336 https://hal.archives-ouvertes.fr/hal-00250336 Submitted on 6 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Supplemental Material can be found at: http://www.jbc.org/cgi/content/full/M403990200/DC1 THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 34, Issue of August 20, pp. 36013–36021, 2004 © 2004 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Constitutive Endocytic Cycle of the CB1 Cannabinoid Receptor*□S Received for publication, April 9, 2004, and in revised form, June 9, 2004 Published, JBC Papers in Press, June
    [Show full text]
  • Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors
    Physiol Rev 92: 1699–1775, 2012 doi:10.1152/physrev.00048.2010 SENSORY AND SIGNALING MECHANISMS OF BRADYKININ, EICOSANOIDS, PLATELET-ACTIVATING FACTOR, AND NITRIC OXIDE IN PERIPHERAL NOCICEPTORS Gábor Peth˝o and Peter W. Reeh Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; and Institute of Physiology and Pathophysiology, University of Erlangen/Nürnberg, Erlangen, Germany Peth˝o G, Reeh PW. Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors. Physiol Rev 92: 1699–1775, 2012; doi:10.1152/physrev.00048.2010.—Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation Lor excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechani- cal, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms
    [Show full text]
  • Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020)
    University of Kentucky UKnowledge Theses and Dissertations--Medical Sciences Medical Sciences 2020 Involvement of the Sigma-1 Receptor in Methamphetamine- Mediated Changes to Astrocyte Structure and Function Richik Neogi University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-8716-8812 Digital Object Identifier: https://doi.org/10.13023/etd.2020.363 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Neogi, Richik, "Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020). Theses and Dissertations--Medical Sciences. 12. https://uknowledge.uky.edu/medsci_etds/12 This Master's Thesis is brought to you for free and open access by the Medical Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Medical Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Inflammatory Modulation of Hematopoietic Stem Cells by Magnetic Resonance Imaging
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014 Inflammatory modulation of hematopoietic stem cells by Magnetic Resonance Imaging (MRI)-detectable nanoparticles Sezin Aday1,2*, Jose Paiva1,2*, Susana Sousa2, Renata S.M. Gomes3, Susana Pedreiro4, Po-Wah So5, Carolyn Ann Carr6, Lowri Cochlin7, Ana Catarina Gomes2, Artur Paiva4, Lino Ferreira1,2 1CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal, 2Biocant, Biotechnology Innovation Center, Cantanhede, Portugal, 3King’s BHF Centre of Excellence, Cardiovascular Proteomics, King’s College London, London, UK, 4Centro de Histocompatibilidade do Centro, Coimbra, Portugal, 5Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK, 6Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, UK, 7PulseTeq Limited, Chobham, Surrey, UK. *These authors contributed equally to this work. #Correspondence to Lino Ferreira ([email protected]). Experimental Section Preparation and characterization of NP210-PFCE. PLGA (Resomers 502 H; 50:50 lactic acid: glycolic acid) (Boehringer Ingelheim) was covalently conjugated to fluoresceinamine (Sigma- Aldrich) according to a protocol reported elsewhere1. NPs were prepared by dissolving PLGA (100 mg) in a solution of propylene carbonate (5 mL, Sigma). PLGA solution was mixed with perfluoro- 15-crown-5-ether (PFCE) (178 mg) (Fluorochem, UK) dissolved in trifluoroethanol (1 mL, Sigma). This solution was then added to a PVA solution (10 mL, 1% w/v in water) dropwise and stirred for 3 h. The NPs were then transferred to a dialysis membrane and dialysed (MWCO of 50 kDa, Spectrum Labs) against distilled water before freeze-drying. Then, NPs were coated with protamine sulfate (PS).
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Engagement of Β-Arrestin by Transactivated Insulin-Like Growth Factor Receptor Is Needed for V2 Vasopressin Receptor-Stimulated ERK1/2 Activation
    Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation Geneviève Oligny-Longpréa, Maithé Corbanib, Joris Zhoua, Mireille Hoguea, Gilles Guillonb, and Michel Bouviera,1 aInstitut de Recherche en Immunologie et Cancérologie, Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Universitéde Montréal, Montréal, QC, Canada H3C 3J7; and bInstitut de Génomique Fonctionnelle, Département d’Endocrinologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale Unité 661, Universités Montpellier I et II, 34094 Montpellier Cedex 05, France Edited* by Jean-Pierre Changeux, Institut Pasteur, Paris, France, and approved March 9, 2012 (received for review August 12, 2011) G protein-coupled receptors (GPCRs) have been shown to activate ceptor (EGFR) and has only been described for EGFR ligands the mitogen-activated protein kinases, ERK1/2, through both G thus far (5, 6). Although GPCR-mediated transactivation of protein-dependent and -independent mechanisms. Here, we de- several other RTKs [including the PDGF (7), FGF (8), VEGF scribe a G protein-independent mechanism that unravels an un- (9), and tropomyosin-receptor kinase A (TrkA) (10) receptors] anticipated role for β-arrestins. Stimulation of the V2 vasopressin leading to MAPK activation has been documented, the specific receptor (V2R) in cultured cells or in vivo in rat kidney medullar mechanism responsible for the RTK engagement remains poorly collecting ducts led to the activation of ERK1/2 through the metal- characterized. Intracellular scaffolding that promotes the forma- loproteinase-mediated shedding of a factor activating the insulin- tion of protein complexes with nonreceptor tyrosine kinases, such – like growth factor receptor (IGFR).
    [Show full text]
  • Anti-B2 Bradykinin Receptor (B5685)
    Anti-B2 Bradykinin Receptor produced in rabbit, affinity isolated antibody Catalog Number B5685 Product Description In the central nervous system, kinins are known to 4 Anti-B2 Bradykinin Receptor is produced in rabbit using induce neural tissue damage. The presence of as immunogen a synthetic peptide corresponding to the bradykinin receptors has been noted on the glial C-terminal domain of human B2 Bradykinin Receptor, astrocytes and oligodendrocytes, and recently on conjugated to KLH. The antibody is affinity-purified microglia as well.4 using the immunizing peptide immobilized on agarose. Reagent The antibody specifically recognizes B2 Bradykinin Supplied as a solution of 1 mg/ml in phosphate buffered Receptor in human arterial smooth muscle by saline, pH 7.7, containing 0.1% sodium azide as a immunohistochemistry with formalin-fixed, paraffin- preservative. embedded tissues, and by immunocytochemistry. The immunizing peptide has 83% homology with the rat Precautions and Disclaimer gene and 89% homology with the mouse gene. Other This product is for R&D use only, not for drug, species reactivity has not been confirmed. household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards The nonapeptide Bradykinin (BK) is a member of the and safe handling practices. kinin family, proinflammatory peptides, and is among the most potent and efficacious vasodilator agonists Storage/Stability 1 known. Kinins act on two distinct receptors: B2 and B1 Store at -20 °C in working aliquots. Repeated freezing receptors. There is little B1 Receptor expression in most and thawing, or storage in "frost-free" freezers, is not healthy tissues, but its expression may be induced or recommended.
    [Show full text]