Guide to Identifying Salmon and Char in the Arctic

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Identifying Salmon and Char in the Arctic Guide to Identifying Salmon and Char in the Arctic Second Edition © Her Majesty the Queen in Right of Canada, as represented by the Minister of Fisheries and Oceans, 2015. Cat. No. Fs134-21/2015E ISBN 978-1-100-21873-1 All illustrations are by Paul Vecsei and are © Fisheries and Oceans Canada. Cite this report as: Fisheries and Oceans Canada. 2015. Guide to Identifying Salmon and Char in the Arctic, Second Edition. By: P. Vecsei*, K. Dunmall, and J. Reist. 24 pages. * Under contract with DFO for First Edition. Contract #F2402-13 105A Above: Pink Salmon, female Mackenzie River, Spawning Phase Cover illustrations: Top: Arctic Char, Kugaaruk, Nunavut, Silver phase Bottom: Chum Salmon, Mackenzie River, Silver phase About this Guide There are many different kinds of salmon and char and many different local names for the same fish. Salmon and char species breed in fresh water but migrate to the sea to feed and grow. The external appearance of the same fish can look different depending on where and when they are harvested. In the sea, maturing salmon and char exhibit a ‘Silver Phase Colour Pattern’ but when in fresh water they can show a ‘Spawning Phase Colour Pattern’. Char can also show a “Silver Phase Colour Pattern” when in fresh water as they may not spawn each year. Salmon are being increasingly harvested in the Canadian Arctic. The numbers, kinds, and locations of salmon being harvested appear to be changing. Therefore, the presence of salmon may be indicating wider changes in the oceans or in the rivers. Monitoring variations in salmon harvest patterns in the Canadian Arctic will help us prepare for and adapt to a future, and perhaps different, Arctic environment. Increasing numbers of salmon may offer the possibility of new fisheries and may also interact with native fishes such as char. These increasing salmon harvests also indicate the need for outreach products to aid local fishers and community members for monitoring purposes. The purposes of this guide are to assist in: 1. Differentiating among Pacific salmon, Atlantic Salmon, and char; 2. Identifying among the different kinds of Pacific salmon; 3. Identifying among the different kinds of char. Printed on waterproof paper; use pencil to make notes. How to Use this Guide Identifying among different kinds of fish can be difficult. There is a great deal of variation in colour patterns, sizes, and shapes within the different species of salmon and char. Therefore, if something does not exactly fit these descriptions or illustrations, it may not be new or different. However, if the fish is unlike anything that is commonly known in that area, please bring it to a Fisheries and Oceans Office for identification. Providing the actual fish to Fisheries and Oceans Canada will: 1) greatly assist in species identification, especially if the fish is difficult to identify; and 2) provide tissue samples for genetic testing to identify species, if necessary. If you have harvested a salmon, please report it to your local Fisheries and Oceans Canada Office with the date and location of capture. This will help research on climate change in the Arctic by documenting changes where salmon are harvested, how many are captured each year, and what kinds of salmon are appearing. Names of Fish Parts Used in this Guide side or body back head tail gill cover fins Quick Guide to Identifying Salmon species OR Char species No white edge on these fins OR White edge on these fins OR Ocean Phase (silver body colour) OR Spawning Phase (vivid red or black body colour) Darker pattern or black Lighter pattern or light spots on a lighter spots on a darker background background body colour body colour Salmon Species (Silver Phase) OR No spots on a Black spots on a lighter background lighter background body colour body colour No white edge on these fins Pacific salmon Atlantic Salmon (all species; Silver Phase) (Silver Phase) OR No black spots on gill cover Black spots on gill cover Char Species (Silver Phase) OR Lighter pattern or Lighter pattern or big light spots on a darker small light spots on a background body colour darker background body colour White edge on these fins Pacific salmon (Silver Phase) Black spots 10 cm Black spots on top and bottom of tail Chinook Salmon Black spots Black spots on top of tail No spots on bottom of tail Coho Salmon Big black spots Worm-like dark pattern on tail Pink Salmon Grayish back No spots Chum Salmon on tail or back Bluish back Sockeye Salmon Atlantic Salmon (Silver Phase) Black spots 10 cm No spots on tail Atlantic Salmon Note: Atlantic salmon can be identified by the presence of black spots on the gill cover. Pacific salmon may have black spots but never on the gill cover. Char do not have black spots. Black spots on gill cover of Atlantic Salmon Char Species (Silver Phase) Big light spots or blotches on body ) fresh water fresh Arctic Char 10 cm Small light spots on body No dark spots on tail Dolly Varden Small light spots on body Anadromous Anadromous be (can foundocean inthe or in Deeply forked tail Lake Trout Light spots on body onlywater) infresh Lake Trout Small light spots (found on body No dark Large, spots on wide tail anadromous anadromous - head Non Bull Trout Salmon Species (Spawning Phase) OR Dark pattern on a Black spots on a lighter background lighter body colour background body colour No white edge on these fins Pacific salmon Atlantic Salmon (all species; Spawning Phase) (Spawning Phase) OR Upper jaw longer Lower jaw has abrupt hook than lower jaw Char Species (Spawning Phase) OR Lighter pattern or Lighter pattern or big light spots on a small light spots on a darker background body darker colour background body colour White edge on these fins Lower jaw longer than upper jaw Pacific salmon (Spawning Phase) Features and colours shown for male fish. Female fish are similar but features and colours are less pronounced. 10 cm Black spots Black spots on top and bottom of tail Chinook Salmon Black spots Black spots on top of tail No spots on bottom of tail Coho Salmon Big black spots and Worm-like dark Males have pattern on tail hump Pink Salmon No spots, red pattern on sides No spots on tail Chum Salmon No spots, red colour on back No spots on tail Green head Sockeye Salmon Atlantic Salmon (Spawning Phase) Features and colours shown for male fish. Female fish are similar but features and colours are less pronounced. Black and red spots 10 cm No black spots on tail but Elongated red or brown markings present Atlantic Salmon Note: Atlantic salmon can be identified by the presence of black and red spots or red markings on the gill cover. Pacific salmon may have black spots but never on the gill cover. Char do not have black spots. Close up of scales showing black and red markings on Atlantic Salmon Char Species (Spawning Phase) Features and colours shown for male fish. Female fish are similar but features and colours are less pronounced. Big light spots 10 cm on body Arctic Char Light spots with red center No dark spots on tail Dolly Varden Small light spots on body Deeply forked tail Lake Trout Small light spots on body No dark spots on tail Bull Trout Fish Included in this Guide Category Scientific Common Names Name English French Local Salmon Oncorhynchus Chum Salmon Saumon Kéta Dog salmon, keta Dog fish, Shii (G), łue metth’ę detsili (S), geo sahba (S), Paiirluq (In) Oncorhynchus Pink Salmon Saumon Rose gorbuscha Oncorhynchus Sockeye Saumon nerka Salmon Rouge Oncorhynchus Chinook Saumon tshawytscha Salmon Chinook, Saumon Quinnat Oncorhynchus Coho Salmon Saumon Coho kisutch Salmo salar Atlantic Saumon de Salmon l’Atlantique Char Salvelinus Arctic Char Omble Qalukpik, alpinus Chevalier Evitaruk (In). Erlakukpik, Kaloarpok, Ivatarak (I) and others*. Salvelinus Dolly Varden Dolly Varden Dhik’ii (G), malma Qalukpik, malma Evitaruk (In). Salvelinus Bull Trout Omble à Tête Bull Char confluentus Plate Salvelinus Lake Trout Touladi Vit (G), łuezǫ namaycush (S), Lake Char In = Inuvialuktun, I = Inuktitut, G = Gwich’in, S = South Slavey * For more information, see: Coad, B.W. and J.D. Reist. 2004. Annotated list of the Arctic Marine Fishes of Canada. Can. MS Rep. Fish. Aquat. Sci. 2674: iv + 112 p. Guidelines for Taking Photographs of Fish for Species Identification It is very difficult to identify a fish to species using a photograph. If you are uncertain about a species of fish, please provide the actual specimen to a DFO office so that the species can be identified and tissue is available for genetic testing to verify species identification, if necessary. If that is not possible, please follow these guidelines and provide the photographs to DFO to assist with species identification. Step 1: Lay the fish on a FLAT SURFACE - ideally the floor – with the left side facing up. If the fish is frozen, put a small amount of water on the side facing up to melt the frost. Step 2: Stand DIRECTLY ABOVE the fish and ZOOM IN so what you want to photograph (i.e., the whole fish, the tail or the head) fills the view from the camera. Step 3: Take a photograph of 1) the whole fish, 2) only the tail, and 3) only the head. Step 4: Please email or bring your 3 photos to your local DFO Office along with the date and location of capture. Chum Salmon harvested in Mackenzie River near Norman Wells, 2011 For more information: Muir, A. M., P. Vecsei and C. C. Krueger.
Recommended publications
  • The Arctic Char (Salvelinus Alpinus) “Complex” in North America Revisited
    The Arctic char (Salvelinus alpinus) “complex” in North America revisited Eric B. Taylor Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Hydrobiologia DOI 10.1007/s10750-015-2613-6 1 23 Author's personal copy Hydrobiologia DOI 10.1007/s10750-015-2613-6 CHARR II Review Paper The Arctic char (Salvelinus alpinus) ‘‘complex’’ in North America revisited Eric B. Taylor Received: 1 July 2015 / Revised: 16 November 2015 / Accepted: 5 December 2015 Ó Springer International Publishing Switzerland 2015 Abstract The Arctic char (Salvelinus alpinus) law. This research has significantly revised what species ‘‘complex’’ has fascinated biologists for constitutes the S. alpinus species ‘‘complex’’, provided decades particularly with respect to how many species insights into the ecology and genetics of co-existence, there are and their geographic distributions. I review and promoted conservation assessment that better recent research on the species complex, focussing on represents biodiversity within Salvelinus. A geograph- biodiversity within northwestern North America, ically and genetically comprehensive analysis of which indicates (i) what was once considered a single relationships among putative taxa of Pan-Pacific taxon consists of three taxa: S. alpinus (Arctic char), S. Salvelinus is still required to better quantify the malma (Dolly Varden), and S. confluentus (bull trout), number of taxa and their origins. (ii) morphological and genetic data indicate that S. alpinus and S. malma, and S. malma and S. confluentus Keywords Dolly Varden Á Arctic char Á Bull trout Á exist as distinct biological species in sympatry, (iii) Geographic distribution Á Taxonomy Á Conservation sympatric forms of S. alpinus exist in Alaska as in other areas of the Holarctic, (iv) Dolly Varden comprises two well-differentiated subspecies, S.
    [Show full text]
  • Do Some Atlantic Bluefin Tuna Skip Spawning?
    SCRS/2006/088 Col. Vol. Sci. Pap. ICCAT, 60(4): 1141-1153 (2007) DO SOME ATLANTIC BLUEFIN TUNA SKIP SPAWNING? David H. Secor1 SUMMARY During the spawning season for Atlantic bluefin tuna, some adults occur outside known spawning centers, suggesting either unknown spawning regions, or fundamental errors in our current understanding of bluefin tuna reproductive schedules. Based upon recent scientific perspectives, skipped spawning (delayed maturation and non-annual spawning) is possibly prevalent in moderately long-lived marine species like bluefin tuna. In principle, skipped spawning represents a trade-off between current and future reproduction. By foregoing reproduction, an individual can incur survival and growth benefits that accrue in deferred reproduction. Across a range of species, skipped reproduction was positively correlated with longevity, but for non-sturgeon species, adults spawned at intervals at least once every two years. A range of types of skipped spawning (constant, younger, older, event skipping; and delays in first maturation) was modeled for the western Atlantic bluefin tuna population to test for their effects on the egg-production-per-recruit biological reference point (stipulated at 20% and 40%). With the exception of extreme delays in maturation, skipped spawning had relatively small effect in depressing fishing mortality (F) threshold values. This was particularly true in comparison to scenarios of a juvenile fishery (ages 4-7), which substantially depressed threshold F values. Indeed, recent F estimates for 1990-2002 western Atlantic bluefin tuna stock assessments were in excess of threshold F values when juvenile size classes were exploited. If western bluefin tuna are currently maturing at an older age than is currently assessed (i.e., 10 v.
    [Show full text]
  • Choose Your Fish Brochure
    outside: panel 1 (MDH North Shore) outside: panel 2 (MDH North Shore) outside: panel 3 (MDH North Shore) outside: panel 4 (MDH North Shore–back cover) outside: panel 5 (MDH North Shore–front cover) 4444444444444444444444444444444444444444444444444444444444444444444444444 4444444444444444444444444444444444444444444444444444444444444444444444444 Parmesan Salmon 4444444444444444444444444444444 Fish to Avoid Bought or Try this easy, tasty recipe for serving up a good source of omega-3s. Salmon has a rich, buttery taste and Mercury levels are too high Caught Think: species, tender, large flakes. Serve with brown rice and a mixed Do not eat the following fish if you are pregnant or green salad for up to 4 people. CHOOSE may become pregnant, or are under 15 years old: size and source YOUR What you need 1 pound salmon fillet (not steak) • Lake Superior Lake Trout How much mercury is in 2 tablespoons grated Parmesan cheese (longer than 39 inches) fish depends on the: • Lake Superior Siscowet Lake Trout 1 tablespoon horseradish, drained (longer than 29 inches) 1/3 cup plain nonfat yogurt • Species. Some fish have 1 tablespoon Dijon mustard • Muskellunge (Muskie) more mercury than others 1 tablespoon lemon juice • Shark because of what they eat and How to prepare • Swordfish how long they live. 1. Arrange the fillet, skin side down, on foil-covered broiler pan. Raw and smoked fish may cause illness • Size. Smaller fish generally have less FISHFISHFISH 2. Combine remaining ingredients and spread over fillet. If you are or might be pregnant: mercury than larger, older fish of the 3. Bake at 450°F or broil on high for 10 to 15 minutes, same species.
    [Show full text]
  • A Preliminary Study on the Stomach Content of Southern Bluefin Tuna Thunnus Maccoyii Caught by Taiwanese Longliner in the Central Indian Ocean
    CCSBT-ESC/0509/35 A preliminary study on the stomach content of southern bluefin tuna Thunnus maccoyii caught by Taiwanese longliner in the central Indian Ocean Kwang-Ming Liu1, Wei-Ke Chen2, Shoou-Jeng Joung2, and Sui-Kai Chang3 1. Institute of Marine Resource Management, National Taiwan Ocean University, Keelung, Taiwan. 2. Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan. 3. Fisheries Agency, Council of Agriculture, Taipei, Taiwan. Abstract The stomach contents of 63 southern bluefin tuna captured by Taiwanese longliners in central Indian Ocean in August 2004 were examined. The size of tunas ranged from 84-187 cm FL (12-115 kg GG). The length and weight frequency distributions indicated that most specimens were in the range of 100-130 cm FL with a body weight between 10 and 30 kg for both sexes. The sexes- combined relationship between dressed weight and fork length can be described by W = 6.975× 10-6× FL3.1765 (n=56, r2=0.967, p < 0.05). The subjective index of fullness of specimens was estimated as: 1 = empty (38.6%), 2 = <half full (47.37%), 3 = half full (3.51%), 4 = >half full (5.26%), and 5 = full (5.26%). For the stomachs with prey items, almost all the preys are pisces and the proportion of each prey groups are fishes (95.6%), cephalopods (2.05%), and crustaceans (0.02%). In total, 6 prey taxa were identified – 4 species of fish, 1 unidentified pisces, 1 unidentified crustacean, and 1 unidentified squid. The 4 fish species fall in the family of Carangidae, Clupeidae, Emmelichthyidae, and Hemiramphidae.
    [Show full text]
  • Chinook Salmon Oncorhynchus Tsha Wytscha from Experimentally-Induced Proliferative Kidney Disease
    DISEASES OF AQUATIC ORGANISMS Vol. 4: 165-168, 1988 Published July 27 Dis. aquat. Org. I Oral administration of Fumagillin DCH protects chinook salmon Oncorhynchus tsha wytscha from experimentally-induced proliferative kidney disease R. P. Hedrick*,J. M. Groff, P. Foley, T. McDowell Aquaculture and Fisheries Program, Department of Medicine, School of Veterinary Medicine, University of California, Davis, California 95616, USA ABSTRACT: The antibiotic Fumagillin DCH was found to be effective in controlling experimental infections with PKX, the myxosporean that causes proliferative kidney disease (PKD) in salmonid fish. Following 6 or 7 wk of treatment, experimentally infected chinook salmon Oncorhynchus tshawytscha showed no evidence of PKX cells, or of the renal inflammation characteristic of PKD, on withdrawal of the treatment and tor up to 7 wk afterwards. In contrast, 90 to 100 % of fish (in 2 experiments) that were injected with PKX, but not glven the antibiotic, had numerous PKX cells in the kidney and developed clinical PKD. This is the first report of an effective orally administered drug for the control of a myxozoan infection in salmonid fish. INTRODUCTION Clifton-Hadley & Alderman (1987) found that periodic bath treatments with malachite green effectively Proliferative kidney disease (PKD) is considered to reduced the severity and prevalence of PKD in rainbow be one of the most serious diseases of farm-reared trout trout. In the study, malachite green was found to be in Europe and also causes major losses among Pacific concentrated in certain tissues of the rainbow trout and salmon in North America (Clifton-Hadley et al. 1984, this in combination with the teratogenic and car- Hedrick et al.
    [Show full text]
  • Stevens Point Northern Aquaculture Demonstration Facility
    University of Wisconsin- Stevens Point Northern Aquaculture Demonstration Facility • Greg Fischer • Facilities Operation Manager New Species for Wisconsin Aquaculture • Arctic Char?? WHY ARCTIC CHAR • Coldwater Species • Rapid growth – 1 kg(2.2 lbs) <17months • High quality flesh • Good market price with limited availability • High culture densities-120kg/m³(1.0lb/gal) • High fillet yield 50% + @market size 1-3 kg (2.2-6.6lbs) Comparsion between Arctic Char, Rainbow Trout, and Brook Trout in Weig ht Over Time from 20 g rams 900 800 700 600 AC -10 500 B K T-06 gms 400 R B T-08 300 200 100 0 0 30 60 90 120 150 180 210 240 270 300 330 360 390 Days of growth Days from 20 gms to 1.0 pd AC -10 R B T- 08 B K T-06 0 50 100 150 200 250 S eries2 Evaluation of photoperiod manipulation on Arctic Char growth, processing attributes, and sexual maturity in a coldwater recirculating system at UWSP-NADF Materials and Methods . The purpose of this study was to evaluate and compare arctic charr production attributes reared under two different photoperiods (24 hr and natural) in an RAS system. Troutlodge Inc. provided Nauyuk Lake (Canada) strain arctic charr eggs. Cultured 17 months from egg to market size (1.0 kg) (2.0 lbs) . Reared 10 months in RAS system . Project was conducted inside main aquatic barn at NADF. Materials and Methods Egg and Fry Culture . Eyed eggs incubated in Heath Stack .Flow thru 8.0°C(48F) degassed & aerated ground water. Fry were transferred to shallow (406 mm x 1219 mm) flow-thru fiberglass tank inserts.
    [Show full text]
  • Reindeer Grazing Permits on the Seward Peninsula
    U.S. Department of the Interior Bureau of Land Management Anchorage Field Office 4700 BLM Road Anchorage, Alaska 99507 http://www.blm.gov/ak/st/en/fo/ado.html Environmental Assessment: DOI-BLM-AK-010-2009-0007-EA Reindeer Grazing Permits on the Seward Peninsula Applicant: Clark Davis Case File No.: F-035186 Applicant: Fred Goodhope Case File No.: F-030183 Applicant: Thomas Gray Case File No.: FF-024210 Applicant: Nathan Hadley Case File No.: FF-085605 Applicant: Merlin Henry Case File No.: F-030387 Applicant: Harry Karmun Case File No. : F-030432 Applicant: Julia Lee Case File No.: F-030165 Applicant: Roger Menadelook Case File No.: FF-085288 Applicant: James Noyakuk Case File No.: FF-019442 Applicant: Leonard Olanna Case File No.: FF-011729 Applicant: Faye Ongtowasruk Case File No.: FF-000898 Applicant: Palmer Sagoonick Case File No.: FF-000839 Applicant: Douglas Sheldon Case File No.: FF-085604 Applicant: John A. Walker Case File No.: FF-087313 Applicant: Clifford Weyiouanna Case File No.: FF-011516 Location: Bureau of Land Management lands on the Seward Peninsula Prepared By: BLM, Anchorage Field Office, Resources Branch December 2008 DECISION RECORD and FINDING OF NO SIGNIFICANT IMPACT I. Decision: It is my decision to issue ten-year grazing permits on Bureau of Land Management lands to reindeer herders on the Seward and Baldwin peninsulas, Alaska. The permits shall be subject to the terms and conditions set forth in Alternative B of the attached Reindeer Grazing Programmatic Environmental Assessment. II. Rationale for the Decision: The Reindeer Industry Act of 1937, 500 Stat. 900, authorizes the Secretary’s regulation of reindeer grazing on Federal public lands on the peninsulas.
    [Show full text]
  • Reindeer and Caribou: Herds and Livelihoods in Transition
    The Greenland experience 6 MAGAZINE Wek'eezhii herd management 11 No. 1 Windmill power: green energy or 2011 The CirCle trampling traditional lifestyles? 19 reindeer and Caribou: herds and livelihoods in TransiTion PUBLISHED BY THE WWF GLoBaL aRCTIC PRoGRaMME The Circle 1.2011 Contents EDITORIAL MOnte HummeL Caribou: The Experience 3 In BRIEF 4 Jeff Kerby Global warming: Timing is everything 6 AnnE Gunn Fighting inertia to conserve caribou herds 8 Jody SnortlanD, Karin ClarK Balancing Expectations: The Wek’èezhìi example of herd management 11 Leonid Baskin, Tobias Kuemmerle, Volker C. Radeloff Protecting wild reindeer in Siberia 13 BRuce Forbes A lesson in global warming and gas exploitation 15 WIndmills V.S Sámi comMunities – Green colOnialism? 19–22 Lars-Anders Baer Windmill colonialism: A threat to Arctic Indigenous people 20 JOnas Lundmark Wind power – Europe’s shining star? 21 Niklas Labba Muohta with the threat of climate change 22 Philip Burgess Long distance learning 25 THE PICTuRE 28 What (herders) find harder to handle, and have little leverage to influence, is the progressive loss of traditional territories and resources they need to survive – grazing lands, campsites, sacred sites, fresh- water fish – to rapidly advancing gas development. “ Dr. Bruce Forbes, article page 15 ranGifers Photo: Jeff Kerby Photo: Jeff The Circle is published quarterly by Publisher: Editor in Chief: Clive Tesar, [email protected] CoVER: the WWF Global arctic Programme. WWF Global arctic Programme, Editor: Becky Rynor, [email protected] a young Nenets boy leads his Reproduction and quotation with appro- 30 Metcalfe Street reindeer team across the new priate credit are encouraged.
    [Show full text]
  • Federal Register/Vol. 85, No. 123/Thursday, June 25, 2020/Rules
    Federal Register / Vol. 85, No. 123 / Thursday, June 25, 2020 / Rules and Regulations 38093 that make the area biologically unique. and contrary to the public interest to DEPARTMENT OF COMMERCE It provides important juvenile swordfish provide prior notice of, and an habitat, and is essentially a narrow opportunity for public comment on, this National Oceanic and Atmospheric migratory corridor containing high action for the following reasons: Administration concentrations of swordfish located in Based on recent data for the first semi- close proximity to high concentrations 50 CFR Part 679 annual quota period, NMFS has of people who may fish for them. Public [Docket No. 200604–0152] comment on Amendment 8, including determined that landings have been from the Florida Fish and Wildlife very low through April 30, 2020 (21.9 RIN 0648–BJ35 Conservation Commission, indicated percent of 1,318.8 mt dw quota). concern about the resultant high Adjustment of the retention limits needs Fisheries of the Exclusive Economic potential for the improper rapid growth to be effective on July 1, 2020; otherwise Zone Off Alaska; Modifying Seasonal of a commercial fishery, increased lower, default retention limits will Allocations of Pollock and Pacific Cod catches of undersized swordfish, the apply. Delaying this action for prior for Trawl Catcher Vessels in the potential for larger numbers of notice and public comment would Central and Western Gulf of Alaska fishermen in the area, and the potential unnecessarily limit opportunities to AGENCY: National Marine Fisheries for crowding of fishermen, which could harvest available directed swordfish Service (NMFS), National Oceanic and lead to gear and user conflicts.
    [Show full text]
  • Monitoring Endangered Atlantic Sturgeon and Commercial Finfish Habitat Use in the New York Lease Area
    OCS Study BOEM 2019-074 Monitoring Endangered Atlantic Sturgeon and Commercial Finfish Habitat Use in the New York Lease Area US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2019-074 Monitoring Endangered Atlantic Sturgeon and Commercial Finfish Habitat Use in the New York Lease Area June 2019 Authors: Michael G. Frisk, Professor School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794. Evan C. Ingram, Graduate Student School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794. Keith Dunton, Assistant Professor Department of Biology, Monmouth University, 400 Cedar Avenue, West Long Branch, New Jersey 07764. Prepared under Cooperative Agreement M16AC00003 US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M16AC00003. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This project was funded by both BOEM and the New York State Department of Environmental Conservation (NYSDEC). REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-074.
    [Show full text]
  • Stillaguamish Watershed Chinook Salmon Recovery Plan
    Stillaguamish Watershed Chinook Salmon Recovery Plan Prepared by: Stillaguamish Implementation Review Committee (SIRC) June 2005 Recommended Citation: Stillaguamish Implementation Review Committee (SIRC). 2005. Stillaguamish Watershed Chinook Salmon Recovery Plan. Published by Snohomish County Department of Public Works, Surface Water Management Division. Everett, WA. Front Cover Photos (foreground to background): 1. Fish passage project site visit by SIRC (Sean Edwards, Snohomish County SWM) 2. Riparian planting volunteers (Ann Boyce, Stilly-Snohomish Fisheries Enhancement Task Force) 3. Boulder Creek (Ted Parker, Snohomish County SWM) 4. Stillaguamish River Estuary (Washington State Department of Ecology) 5. Background – Higgins Ridge from Hazel Hole on North Fork Stillaguamish River (Snohomish County SWM) Stillaguamish Watershed Chinook Salmon Recovery Plan ii June 2005 Stillaguamish Watershed Chinook Salmon Recovery Plan Table of Contents 1. INTRODUCTION ................................................................................................... 1 Purpose .................................................................................................................................1 SIRC Mission and Objectives ..............................................................................................1 Relationship to Shared Strategy and Central Puget Sound ESU Efforts .............................2 Stillaguamish River Watershed Overview ...........................................................................3 Salmonid
    [Show full text]
  • Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units
    NOAA Technical Memorandum NMFS-NWFSC-53 Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units June 2002 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the Na­ tional Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible due to time constraints. Documents published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Waknitz, F.W., T.J. Tynan, C.E. Nash, R.N. Iwamoto, and L.G. Rutter. 2002. Review of potential impacts of Atlantic salmon culture on Puget Sound chinook salmon and Hood Canal summer-run chum salmon evolutionarily significant units. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-53, 83 p. NOAA Technical Memorandum NMFS-NWFSC-53 Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units F.
    [Show full text]