Overview of the Impacts of Introduced Salmonids on Australian Native Fauna
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods .............................................................................................................................................. -
Rivers Monitoring and Evaluation Plan V1.0 2020
i Rivers Monitoring and Evaluation Plan V1.0 2020 Contents Acknowledgement to Country ................................................................................................ 1 Contributors ........................................................................................................................... 1 Abbreviations and acronyms .................................................................................................. 2 Introduction ........................................................................................................................... 3 Background and context ........................................................................................................ 3 About the Rivers MEP ............................................................................................................. 7 Part A: PERFORMANCE OBJECTIVES ..................................................................................... 18 Habitat ................................................................................................................................. 24 Vegetation ............................................................................................................................ 29 Engaged communities .......................................................................................................... 45 Community places ................................................................................................................ 54 Water for the environment .................................................................................................. -
A Global Assessment of Parasite Diversity in Galaxiid Fishes
diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus. -
Do Some Atlantic Bluefin Tuna Skip Spawning?
SCRS/2006/088 Col. Vol. Sci. Pap. ICCAT, 60(4): 1141-1153 (2007) DO SOME ATLANTIC BLUEFIN TUNA SKIP SPAWNING? David H. Secor1 SUMMARY During the spawning season for Atlantic bluefin tuna, some adults occur outside known spawning centers, suggesting either unknown spawning regions, or fundamental errors in our current understanding of bluefin tuna reproductive schedules. Based upon recent scientific perspectives, skipped spawning (delayed maturation and non-annual spawning) is possibly prevalent in moderately long-lived marine species like bluefin tuna. In principle, skipped spawning represents a trade-off between current and future reproduction. By foregoing reproduction, an individual can incur survival and growth benefits that accrue in deferred reproduction. Across a range of species, skipped reproduction was positively correlated with longevity, but for non-sturgeon species, adults spawned at intervals at least once every two years. A range of types of skipped spawning (constant, younger, older, event skipping; and delays in first maturation) was modeled for the western Atlantic bluefin tuna population to test for their effects on the egg-production-per-recruit biological reference point (stipulated at 20% and 40%). With the exception of extreme delays in maturation, skipped spawning had relatively small effect in depressing fishing mortality (F) threshold values. This was particularly true in comparison to scenarios of a juvenile fishery (ages 4-7), which substantially depressed threshold F values. Indeed, recent F estimates for 1990-2002 western Atlantic bluefin tuna stock assessments were in excess of threshold F values when juvenile size classes were exploited. If western bluefin tuna are currently maturing at an older age than is currently assessed (i.e., 10 v. -
Evidence of Interactive Segregation Between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile
Transactions of the American Fisheries Society 138:839–845, 2009 [Note] Ó Copyright by the American Fisheries Society 2009 DOI: 10.1577/T08-134.1 Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile BROOKE E. PENALUNA* Department of Fisheries and Wildlife, Oregon State University, 3200 Jefferson Way, Corvallis, Oregon 97331, USA IVAN ARISMENDI Nu´cleo Milenio FORECOS, and Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567, Valdivia, Chile DORIS SOTO Nu´cleo Milenio FORECOS, Universidad Austral de Chile, Casilla #567, Valdivia, Chile; and Food and Agriculture Organization of the United Nations, Fisheries Department, Inland Water Resources and Aquaculture Service, Viale delle Terme di Caracalla, 00100 Rome, Italy Abstract.—Introduced rainbow trout Oncorhynchus mykiss recreational fishing and early practices of aquaculture and brown trout Salmo trutta fario are the most abundant (Basulto 2003). It was thought that these areas in the fishes in the northern Chilean Patagonia, and their effect on Southern Hemisphere were suitable for and would benefit native fishes is not well known. We tested for interactive from the addition of trout (Campos 1970; Basulto 2003). segregation between trout and native fishes by using a before– Since their introduction, trout have formed naturalized after, control–impact design in which we deliberately reduced the density of trout and observed the response of the native populations and have become the most abundant fish fishes in their mesohabitat use (pool, run, riffle). Three native species, accounting for over 95% of the total biomass in fish species, Brachygalaxias bullocki, Galaxias maculatus rivers of the Chilean Patagonia (Soto et al. -
Using Specimens from the Past to Understand the Living World Through Digitization
Using specimens from the past to understand the living world through digitization Drs. Jessica L. Ware, William Kuhn, Dirk Gassmann and John Abbott Rutgers University, Newark Dragonflies: Order Odonata Suborders Anisoptera (unequal wings): Dragonflies ~3000 species Anisozygoptera ~3 species Zygoptera: Damselflies ~3000 species Perchers, Fliers, Migrators, & Homebodies Dragonfly flight Wing venation affects wing camber, lift, and ultimately flight patterns Dragonfly flight Stiffness varies along length of the wing with vein density and thickness Dragonfly flight Certain wing traits are correlated with specific flight styles Dragonfly collections: invaluable treasures Collection name # spp. #specimens Florida State Collection 2728 150K Ware Lab Collection 373 4K Smithsonian Collection 253 200K M.L. May Collection 300 10K Dragonfly collections: invaluable treasures Harness information in collections Targeted Odonata Wing Digitization (TOWD) project TOWD project scanning protocol TOWD project scanning protocol TOWD project TOWD project TOWD project 10 10 TOWD project More information at: https://willkuhn.github.io/towd/ Aspect ratios: How elongate is the wing compared to its overall area? • High Aspect ratio Low Aspect ratio Long narrow wings, Wing Short broad wings, optimized for: Wing optimized long-distance flight for: Maneuverability, turning High Aspect Low Aspect Ratio Ratio More data on aspect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months work More data on apsect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months 2019: Odomatic measurements for 206 work specimens, 2-3 minutes of work! Are there differences in aspect ratios? Perchers have significantly lower aspect ratios than fliers. The p-value is .001819. The result is significant at p < .05. -
Long Swamp Fish and Frog Baseline Survey 2012
AQUASAVE CONSULTANTS Ecology, Monitoring and Conservation A registered business of: Regional, Focussed, On-ground Long Swamp Fish and Frog Baseline Survey 2012 A report to t he Glenelg Hopkins CMA By: Mark Bachmann, Nick Whiterod and Lachlan Farrington January 2013 Aquasave - NGT: Long Swamp Fish and Frog Baseline Survey 2012 This report may be cited as: Bachmann, M., Whiterod, N. & Farrington, L. (2013) Long Swamp Fish and Frog Baseline Survey 2012. A report to the Glenelg Hopkins CMA. Aquasave Consultants – Nature Glenelg Trust. Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... 4 1. Introduction ...................................................................................................................................... 5 2. Site Locations and Sampling Methods .............................................................................................. 5 2.1 Native Fish ........................................................................................................................... 5 2.2 Frogs .................................................................................................................................... 9 3. Results............................................................................................................................................. 11 3.1 Native Fish ........................................................................................................................ -
Gwydir Waterbird and Fish Habitat Study: Final Reportdownload
Gwydir Waterbird and Fish Habitat Study Final report Cover photographs Front page: Boyanga Waterhole, Gingham Watercourse (Credit: J. Spencer); Golden perch, Mehi River (Credit: J. Spencer); Great egret (Credit: M. Carpenter). Citation This report can be cited as follows: Spencer, J.A., Heagney, E.C. and Porter, J.L. 2010. Final report on the Gwydir waterbird and fish habitat study. NSW Wetland Recovery Program. Rivers and Wetlands Unit, Department of Environment, Climate Change and Water NSW and University of New South Wales, Sydney. Acknowledgments Funding for this project was provided by the NSW Government and the Australian Government’s Water for the Future – Water Smart Australia program. Richard Allman, Sharon Bowen, Kirsty Brennan, Ben Daly, Simon Hunter, Jordan Iles, Jeff Kelleway, Lisa Knowles, Yoshi Kobayashi, Natalia Perera, Shannon Simpson, Rachael Thomas (DECCW), Neal Foster (NOW), Gus Porter and Ainslee Lions provided field support. Thanks to our pilots Richard Byrne (DECCW) and James Rainger (Fleet Helicopters) for their assistance with aerial waterbird surveys. Daryl Albertson (DECCW), Neal Foster, Liz Savage and James Houlahan (Border Rivers–Gwydir CMA) and Glenn Wilson (UNE) gave advice on field site locations. Jennifer and Bruce Southeron (Old Dromana), Sam Kirkby (Bunnor), Howard Blackburn (Crinolyn), Bill Johnson (DECCW), Liz Savage (Border Rivers–Gwydir CMA), Neal Foster, Tara Schalk (NOW), Richard Ping Kee (Moree fishing club), Dick Cooper, Greg Clancy and the NSW Bird Atlassers contributed historical information on waterbird and fish populations in the Gwydir. Sue Powell (ANU) supplied information on the flooding history and flow data for the Gwydir Wetlands. Mark McGrouther and Sally Reader (Australian Museum, Sydney) assisted with the identification of fish species. -
The Real Challenge for Wetland Management
Hydrobiologia DOI 10.1007/s10750-012-1163-4 CLIMATE CHANGE AND AUSTRALIAN WETLANDS Review Paper A legacy of climate and catchment change: the real challenge for wetland management Peter Gell • Keely Mills • Rosie Grundell Received: 6 December 2011 / Accepted: 6 May 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Wetland managers are faced with an array capacity to recover from the recent ‘big dry’. These of challenges when restoring ecosystems at risk from sedimentary archives reveal most modern wetlands to be changing climate and human impacts, especially as many outside their historical range of variability. This approach of these processes have been operating over decadal– provides a longer-term context when assessing wetland millennial timescales. Variations in the level and salinity condition and better establishes the restoration challenge of the large crater lakes of western Victoria, as revealed posed by the impact of climate change and variability and over millennia by the physical, chemical and biological human impacts. evidence archived in sediments, attest to extended periods of positive rainfall balance and others of rainfall Keywords Australia Á Climate change Á Ecological deficit. The recent declines in the depth of these lakes condition Á Wetland response Á Acceptable change have been attributed to a 15% decline in effective rainfall since AD 1859. Whilst some sites reveal state shifts following past droughts, the response of most wetlands to Introduction millennial-scale climatic variations is muted. Regional wetland condition has changed comprehensively, how- The management of wetlands has largely been under- ever, since European settlement, on account of extensive pinned by the assumption that their hydrology and catchment modifications. -
A Preliminary Study on the Stomach Content of Southern Bluefin Tuna Thunnus Maccoyii Caught by Taiwanese Longliner in the Central Indian Ocean
CCSBT-ESC/0509/35 A preliminary study on the stomach content of southern bluefin tuna Thunnus maccoyii caught by Taiwanese longliner in the central Indian Ocean Kwang-Ming Liu1, Wei-Ke Chen2, Shoou-Jeng Joung2, and Sui-Kai Chang3 1. Institute of Marine Resource Management, National Taiwan Ocean University, Keelung, Taiwan. 2. Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan. 3. Fisheries Agency, Council of Agriculture, Taipei, Taiwan. Abstract The stomach contents of 63 southern bluefin tuna captured by Taiwanese longliners in central Indian Ocean in August 2004 were examined. The size of tunas ranged from 84-187 cm FL (12-115 kg GG). The length and weight frequency distributions indicated that most specimens were in the range of 100-130 cm FL with a body weight between 10 and 30 kg for both sexes. The sexes- combined relationship between dressed weight and fork length can be described by W = 6.975× 10-6× FL3.1765 (n=56, r2=0.967, p < 0.05). The subjective index of fullness of specimens was estimated as: 1 = empty (38.6%), 2 = <half full (47.37%), 3 = half full (3.51%), 4 = >half full (5.26%), and 5 = full (5.26%). For the stomachs with prey items, almost all the preys are pisces and the proportion of each prey groups are fishes (95.6%), cephalopods (2.05%), and crustaceans (0.02%). In total, 6 prey taxa were identified – 4 species of fish, 1 unidentified pisces, 1 unidentified crustacean, and 1 unidentified squid. The 4 fish species fall in the family of Carangidae, Clupeidae, Emmelichthyidae, and Hemiramphidae. -
Assessing the Cost-Effectiveness of a Fish Stocking Program in a Culture
G Model FISH-4539; No. of Pages 10 ARTICLE IN PRESS Fisheries Research xxx (2016) xxx–xxx Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Full length article Assessing the cost-effectiveness of a fish stocking program in a culture-based recreational fishery a,b,∗ c d a b Taylor L. Hunt , Helen Scarborough , Khageswor Giri , John W. Douglas , Paul Jones a Fisheries Management and Science Branch, Fisheries Victoria, Department of Economic Development, Jobs, Transport and Resources, PO Box 114, Queenscliff, Victoria, 3225, Australia b Centre for Integrative Ecology, School of Life & Environmental Sciences, Faculty of Science, Engineering & Built Environment, Deakin University, PO Box 423, Warrnambool, Victoria, 3280, Australia c Department of Economics, Deakin Business School, Deakin University, PO Box 423, Warrnambool, Victoria, 3280, Australia d Biometrics Unit, Agriculture Research Division, Department of Economic Development, Jobs, Transport and Resources, 32 Lincoln Square North, Parkville, Victoria, 3053, Australia a r t i c l e i n f o a b s t r a c t Article history: Fish stocking is commonly used to enhance, create and maintain recreational fisheries that typically Received 5 February 2016 generate significant economic activity. As fish stocking can be highly popular with stakeholders and is Received in revised form 31 August 2016 often a large economic investment, it should be evaluated to ensure it provides adequate return and is an Accepted 4 September 2016 effective use of fisheries management funds. In this study we evaluated the cost-effectiveness of a fish Handled by: Chennai Guest Editor stocking program for non-native salmonid species of brown trout, rainbow trout and Chinook salmon at Available online xxx Lake Purrumbete, south-western Victoria, Australia. -
Rivers and Streams Special Investigation Final Recommendations
LAND CONSERVATION COUNCIL RIVERS AND STREAMS SPECIAL INVESTIGATION FINAL RECOMMENDATIONS June 1991 This text is a facsimile of the former Land Conservation Council’s Rivers and Streams Special Investigation Final Recommendations. It has been edited to incorporate Government decisions on the recommendations made by Order in Council dated 7 July 1992, and subsequent formal amendments. Added text is shown underlined; deleted text is shown struck through. Annotations [in brackets] explain the origins of the changes. MEMBERS OF THE LAND CONSERVATION COUNCIL D.H.F. Scott, B.A. (Chairman) R.W. Campbell, B.Vet.Sc., M.B.A.; Director - Natural Resource Systems, Department of Conservation and Environment (Deputy Chairman) D.M. Calder, M.Sc., Ph.D., M.I.Biol. W.A. Chamley, B.Sc., D.Phil.; Director - Fisheries Management, Department of Conservation and Environment S.M. Ferguson, M.B.E. M.D.A. Gregson, E.D., M.A.F., Aus.I.M.M.; General Manager - Minerals, Department of Manufacturing and Industry Development A.E.K. Hingston, B.Behav.Sc., M.Env.Stud., Cert.Hort. P. Jerome, B.A., Dip.T.R.P., M.A.; Director - Regional Planning, Department of Planning and Housing M.N. Kinsella, B.Ag.Sc., M.Sci., F.A.I.A.S.; Manager - Quarantine and Inspection Services, Department of Agriculture K.J. Langford, B.Eng.(Ag)., Ph.D , General Manager - Rural Water Commission R.D. Malcolmson, M.B.E., B.Sc., F.A.I.M., M.I.P.M.A., M.Inst.P., M.A.I.P. D.S. Saunders, B.Agr.Sc., M.A.I.A.S.; Director - National Parks and Public Land, Department of Conservation and Environment K.J.