An Update on Invasive Adelgids in New York Mark Whitmore, Department of Natural Resources, Cornell University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Balsam Woolly Adelgid
A New Utah Forest Insect This fact sheet Pest: Balsam Woolly Adelgid introduces an invasive forest pest, the balsam By: Darren McAvoy, Extension Forestry Assistant Professor, woolly adelgid, and Diane Alston, Professor & Extension Entomologist, discusses its impacts on Ryan Davis, Arthropod Diagnostician, Utah forests, life cycle Megan Dettenmaier, Extension Forestry Educator traits, identifying characteristics, control Introduction methods, and steps that In 2017, the USDA Forest Service’s Forest Health Protection (FHP) group in Utah partners are taking Ogden, Utah detected and confirmed the presence of a new invasive forest to combat this pest. pest in Utah called the balsam woolly adelgid (BWA). First noticed in the mountains above Farmington Canyon and near Powder Mountain Resort, it has Dieback and decline of subalpine fir due to attack by balsam woolly adelgid. Photo credit: Darren McAvoy. 2017, forest health professionals visited Farmington Canyon on the ground and found branch node swelling (a node is where branch structures come together) and old deposits of woolly material on mature subalpine fir trees. Suspected to have originated in the Caucasus Mountains between Europe and Asia, BWA was first detected in North America in Maine, in 1908, and in California about 20 years later. It was detected in Idaho near Coeur d’Alene in 1983 and has since spread across northern Idaho. It is believed that separate invasions of subspecies or races of BWA may differentially impact tree host species. Dieback of subalpine fir, pacific silver (Abies amabilis) and grand fir (A. grandis) in Idaho is widespread. In the western Payette National Forest, north of Boise, an estimated 70% of subalpine fir trees are dead and falling down. -
Canopy Arthropod Community Structure and Herbivory in Old-Growth and Regenerating Forests in Western Oregon
318 Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon T. D. SCHOWALTER Department of Entomology, Oregon State University, Corvallis, OR 97331-2907, UtS.A. Received June 30, 1988 Accepted October 19, 1988 SCHOWALTER, T. D. 1989. Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can. J. For. Res. 19: 318-322. This paper describes differences in canopy arthropod community structure and herbivory between old-growth and regenerating coniferous forests at the H. 3. Andrews Experimental Forest in western Oregon. Species diversity and functional diversity were much higher in canopies of old-growth trees compared with those of young trees. Aphid bio- mass in young stands was elevated an order of magnitude over biomass in old-growth stands. This study indicated a shift in the defoliator/sap-sucker ratio resulting from forest conversion, as have earlier studies at Coweeta Hydrologic Laboratory, North Carolina. These data indicated that the taxonomically distinct western coniferous and eastern deciduous forests show similar trends in functional organization of their canopy arthropod communities. SCHOWALTER, T. D. 1989. Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can. J. For. Res. 19 : 318-322. Cet article expose les differences observees dans la structure communautaire des arthropodes du couvert foliace et des herbivores entre des forets de coniferes de premiere venue et en regeneration a la Foret experimentale H. J. Andrews dans louest de lOregon. La diversit y des especes ainsi que la diversit y fonctionnelle etaient beaucoup plus grandes dans les couverts foliaces des vieux arbres que dans ceux des jeunes arbres. -
Spruce Gall Adelgids by the Bartlett Lab Staff Directed by Kelby Fite, Phd
RESEARCH LABORATORY TECHNICAL REPORT Spruce Gall Adelgids By The Bartlett Lab Staff Directed by Kelby Fite, PhD The Eastern spruce gall adelgid (Adelgis abietis) and the Cooley spruce gall adelgid (Adelgis cooleyi) inflict considerable injury to ornamental spruce trees throughout the Northeast and Midwest. Both insects cause the formation of cone-like galls on developing twigs, which deform, stunt and usually girdle them. Heavy and repeated infestations will seriously disfigure and weaken trees, and render them more susceptible to invasion by disease causing organisms and other insects. Eastern Spruce Gall Cooley Spruce Gall The Eastern spruce gall adelgid primarily attacks The Cooley spruce gall adelgid primarily infests blue, Norway and white spruce, causing the formation of Englemann and Sitka spruce and Douglas fir. Galls pineapple-shaped galls approximately one inch long at caused by this insect are elongated, one to three inches the base of developing twigs (Figure 1). Newly long, and occur at the tips of twigs (Figure 2). The hatched nymphs begin feeding near the base of life cycle of this insect on spruce is similar to the expanding buds in early spring. Feeding induces the Eastern spruce gall adelgid. In spring, nymphs feed formation of the galls, inside which the nymphs on the succulent new growth, causing needle continue to feed and develop. In late summer distortion and browning; however, galls do not form. (August through September), galls open and fully- In mid- to late summer (mid-July through August), grown nymphs emerge. These become winged nymphs mature to form winged adults. Adults adults, which can fly to nearby susceptible deposit eggs on twigs of either spruce or Douglas fir spruce trees. -
2004A IE Reports
Contents Introduction…………………………………….…………………………………1 Using GIS to predict plant distributions: a new approach (Amy Lorang)……………………………………………………………………...3 Impacts of Hemlock Woolly Adelgid on Canadian and Carolina Hemlock Forests (Josh Brown)………………………………………………..……………………19 Effects of Adelgid-Induced Decline in Hemlock Forests on Terrestrial Salamander Populations of the Southern Appalachians: A Preliminary Study (Shelley Rogers)………………………………………………………………….37 Riparian zone structure and function in Southern Appalachian forested headwater catchments (Katie Brown)…………………………………………………………………….60 Successional Dynamics of Dulany Bog (Michael Nichols)………………………………………………………………...77 Mowing and its Effect on the Wildflowers of Horse Cove Road on the Highlands Plateau ((Megan Mailloux)……………………………………………………………….97 Acknowledgements……………………………………………………………..114 1 Introduction In the Fall of 2004, twelve undergraduate students from the University of North Carolina at Chapel Hill had the opportunity to complete ecological coursework through the Carolina Environmental Program’s Highlands field site. This program allows students to learn about the rich diversity of plants and animals in the southern Appalachians. The field site is located on the Highlands Plateau, North Carolina, near the junction of North Carolina, South Carolina and Georgia. The plateau is surrounded by diverse natural areas which create an ideal setting to study different aspects of land use change and threats to biodiversity. The Highlands Plateau is a temperate rainforest of great biodiversity, a patchwork of rich forests, granite outcrops, and wet bogs. Many rare or interesting species can be found in the area, with some being endemic to a specific stream or mountaintop. Some of these are remnants of northern species that migrated south during the last ice age; others evolved to suit a particular habitat, with a slightly different species in each stream. -
Minor Insect Pests of Trees Diane G
Minor Insect Pests of Trees Diane G. Alston Extension Entomologist Utah State University 2004 Professional Tree Care Workshops Topics • Introduction – IPM strategies • Beneficial arthropods - Conservation • Aphids • Scales • Spider mites • Cooley spruce gall adelgid • Root weevils • Leaf beetles • Earwigs • Snails/Slugs • Boxelder bug Integrated Pest Management IPM The practice of using multiple techniques to manage pests (e.g., cultural, mechanical, biological and chemical controls) while minimizing negative impacts to the environment. Use of pest controls are based on a “real need” (thresholds) Economically viable Management Strategies for Minor Insect Pests of Trees • Wait and See • Most are secondary pests and often do not increase to problem levels • Sporadic pests or populations too low to cause injury • Plants can tolerate injury • Foliar or flower feeding, bud or twig feeding • Cultural practices to keep plants healthy – resist secondary pests • Preventive tactics for annual/frequent pests • Dormant oil sprays Most insects are beneficial or have no direct impact Beneficial Insects & Mites Parasitoids Predaceous Bugs Lacewing Common Aphid Predaceous Mites Predators Lady Beetle Conservation of Natural Enemies • Provide attractive resources (food, shelter, diversity of conditions) • Many herbs (basil, coriander, thyme, dill, lavender, fennel, chamomile, etc.) • Many native and wild flowers (yarrow, columbine, mallow, penstemon, goldenrod, stonecrop, speedwell, etc.) • Avoid harmful practices (toxic insecticides, “clean farming”) Aphids -
Insects That Feed on Trees and Shrubs
INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, -
Cooley Spruce Gall Adelgid
Cooley Spruce Gall Adelgid Mary Ridout, Graduate Student Plant Science 464, Fall 2007 Figure 1. Infested white spruce at the University of Idaho Plant Science Farm Cooley spruce gall adelgid damage was found on a White spruce (Picea glauca) at the University of Idaho Plant Science farm just outside Moscow, Idaho. The diagnosis was made from the observation of galls at or near the terminal ends of the branches (see Figure 1). Only new growth from the current year was affected. Galls were first observed early in the summer on terminal new growth as soft swollen tissue surrounding the needles. Some of these galls were green; others were beginning to turn a brownish purple. Figure 1 shows the appearance of the gall in late summer and fall. The plant itself was growing well, but damage from previous infestations was visible in slightly distorted growth caused by the loss of the terminal branch ends which induced lateral bud formation and branching and thereby formation of “shrubby” branches and asymmetrical growth habit. Spruce galls are caused by the Cooley spruce gall adelgid (Adelges cooleyi). A small aphid-like insect, the Cooley spruce gall adelgid alternates its life cycle between Picea species and Douglas Fir (Pseudotsuga menziesii). Galls, however, are only formed on spruce. While most commonly found on Colorado blue spruce, adelgids will also infest white, Engelmann, Norway, and Sitka spruce. Reproductive female adelgids over-winter on the undersides of the branches. When spring comes, they emerge and move to the new growth at the branch terminals where they lay their eggs at the base of the needles. -
Biological Control of Hemlock Woolly Adelgid
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGICAL CONTROL OF HEMLOCK WOOLLY ADELGID TECHNICALCONTRIBUTORS: RICHARD REARDON FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM, USDA FOREST SERVICE, MORGANTOWN, WEST VIRGINIA BRAD ONKEN FOREST HEALTH PROTECTION, USDA FOREST SERVICE, MORGANTOWN, WEST VIRGINIA AUTHORS: CAROLE CHEAH THE CONNECTICUT AGRICULTURAL EXPERIMENT STATION MIKE MONTGOMERY NORTHEASTERN RESEARCH STATION SCOTT SALEM VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BRUCE PARKER, MARGARET SKINNER, SCOTT COSTA UNIVERSITY OF VERMONT FHTET-2004-04 U.S. Department Forest of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in T1995 by the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover Clockwise from top left: adult coccinellids Sasajiscymnus tsugae, Symnus ningshanensis, and Scymnus sinuanodulus, adult derodontid Laricobius nigrinus, hemlock woolly adelgid infected with Verticillium lecanii. For copies of this publication, please contact: Brad Onken Richard Reardon Forest Health Protection Forest Health Technology Enterprise Morgantown, West Virginia Team Morgantown, West Virginia 304-285-1546 304-285-1566 [email protected] [email protected] All images in the publication are available online at http://www.forestryimages.org and http://www.invasive.org Reference numbers for the digital files appear in the figure captions in this publication. The entire publication is available online at http://www.bugwood.org and http://www.fs.fed.us/na/morgantown/fhp/hwa. The U.S. -
2020 Conservation Outlook Assessment
IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Great Smoky Mountains National Park - 2020 Conservation Outlook Assessment Great Smoky Mountains National Park 2020 Conservation Outlook Assessment SITE INFORMATION Country: United States of America (USA) Inscribed in: 1983 Criteria: (vii) (viii) (ix) (x) Stretching over more than 200,000 ha, this exceptionally beautiful park is home to more than 3,500 plant species, including almost as many trees (130 natural species) as in all of Europe. Many endangered animal species are also found there, including what is probably the greatest variety of salamanders in the world. Since the park is relatively untouched, it gives an idea of temperate flora before the influence of humankind. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 04 Dec 2020 GOOD WITH SOME CONCERNS The Great Smoky Mountains National Park is inscribed on the World Heritage List for its scenery and biodiversity. The scenic vistas offered by the park are largely maintained, with incremental improvement in pollution legislation and practice in recent decades making marked improvements in air quality, which has reduced haze despite ongoing visitor management issues and the threats affecting forests which are such a feature of the scenery, most notably seen in the remnant dead pines protruding from forest canopies. The biological values are in variable condition across the wide range of ecosystems contained within the site. Mesic systems such as Cove forest, which covers the largest area of any ecological system in the site, are generally in good condition, whilst the more xeric systems such as low-altitude pine and dry oak forests are showing concerning departures from their natural state. -
Chapter 16. Evaluating Host Range of Laricobius Nigrinus for Introduction Into the Eastern United States for Biological Control of Hemlock Woolly Adelgid
ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 16. EVALUATING HOST RANGE OF LARICOBIUS NIGRINUS FOR INTRODUCTION INTO THE EASTERN UNITED STATES FOR BIOLOGICAL CONTROL OF HEMLOCK WOOLLY ADELGID G. Zilahi-Balogh Agriculture & Agri-Food Canada, Harrow, Ontario, Canada [email protected] HEMLOCK WOOLLY ADELGID IN NORTH AMERICA The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Homoptera: Adelgidae), is a serious threat to hemlock landscape and forest stands in the eastern United States (McClure, 1996). Eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.) are very susceptible to HWA attack, and infested trees have died in as little as four years (McClure, 1991). DISTRIBUTION OF HWA HWA is believed to have originated in Asia (McClure, 1987), and was first observed in North America in the Pacific Northwest in the early 1920s, where Annand (1924) described it from specimens collected on western hemlock, Tsuga heterophylla (Raf.) Sargent, in Oregon. An earlier description in 1922 identified the species as Chermes funitectus Dreyfus, also from west- ern hemlock in Vancouver, British Columbia (Annand, 1928). Annand (1928) reported that the two species were the same. HWA is exotic to eastern North America (McClure, 1987). First collected in the eastern United States in Virginia in 1951 in an ornamental setting (Stoetzel, 2002), it has spread to forests where it currently occurs in parts of 16 states along the eastern seaboard from North Carolina to New England (USDA FS, 2004). The main front of the HWA infestation is ad- vancing at approximately 25 km per year (McClure, 2001). There are nine recognized species of hemlock (Farjon, 1990). -
Aphid Biology, Monitoring and Control
All About Aphids: biology, monitoring, control J.D. DeAngelis, consulting entomologist www.LivingWithBugs.com Aphid biology is extremely varied and com- plex. They cause damage in conifers both directly and indirectly. Direct damage comes from feeding injury and plant growth defor- mities. Indirect damage comes mainly from aphid honeydew and organisms associated with this honeydew. May, 2005 se pesticides sparingly and wisely. Pesticide information is based on US product Ulabels available at the time of the last update. The laws in your area may be differ- ent. Where differences occur your local laws take precedence. Please read and follow product labels that are appropriate for your area. You are responsible for the safe and legal use of pesticides. Pesticide toxicology information in the US can be found at National Pesticide Information Center (http://www.npic.orst.edu) or 1-800-858-7378. These contacts should not be used in an emergency. In an emergency contact your local poison control office or emergency system. Copyright 2005 LivingWithBugs.com Workshop Schedule 1:30 - 1:45 aphid types, life cycles & damage 1:45 - 1:55 conifer aphids 1:55 - 2:10 adelgids 2:20 - 2:30 break 2:30 - 2:45 control options 2:45 - 3:00 questions & answers 3:00 - 5:00 field scouting Handouts* Aphid & Adelgid Pests of Conifers EC 1444 (1994) Root Aphid Handout (1998) Balsam Woolly Adelgid & Balsam Twig Aphid (1998) LWB Annual Christmas Tree Pest Update (2005) *download at www.livingwithbugs.com/com_note.html Copyright 2005 LivingWithBugs.com Aphids are .. -
Hemlock Woolly Adelgid Facsheet Dec 2018
Dr. Carole Cheah Valley Laboratory The Connecticut Agricultural Experiment Station 153 Cook Hill Road, P. O. Box 248 Windsor, CT 06095 Phone: (860) 683-4980 Fax: (860) 683-4987 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes Hemlock Woolly Adelgid (HWA) and Other Factors Impacting Eastern Hemlock Introduction and Overview Adelgids are small conifer-feeding insects, related to aphids, belonging to the Suborder Homoptera (1). Hemlock woolly adelgid, Adelges tsugae Annand, (HWA), feeds specifically on hemlock species and was first described from samples originally from Oregon by P. N. Annand in California in 1924 (2). In North America, native Eastern hemlock, Tsuga canadensis (L.) Carriere and Carolina hemlock, Tsuga caroliniana Engelmann are very susceptible to HWA attack (3). Eastern hemlock is the seventh most common tree species in Connecticut and the second most abundant conifer after eastern white pine (4). In the eastern United States, this non- native insect pest was initially reported at a private estate in Richmond, Virginia in the early 1950s (5). The hemlock woolly adelgid in eastern US originated from southern Honshu island, Japan (6) and infestations have since spread widely to attack eastern hemlock and Carolina hemlock in 20 eastern states, from the southern Appalachians in the Carolinas and Georgia, through the Mid-Atlantic States, westwards to Ohio and Michigan and northwards to northern New England (7). Most recently, HWA was found in southern Nova Scotia in Canada in 2017 (8). In Connecticut, HWA was first reported to the Connecticut Agricultural Experiment Station in New Haven in 1985 and by 1997, was found throughout the state, in all 169 Connecticut towns (7).