Download a Full-Size Pdf of This Poster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line*
International Journal of Geosciences, 2014, 5, 1315-1323 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511108 Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line* Boris Chako Tchamabé1#, Takeshi Ohba1, Issa1, Seigo Ooki1, Dieudonné Youmen2, Sebastien Owona2, Gregory Tanyileke3, Joseph Victor Hell3 1Laboratory of Volcanology and Geochemistry, Department of Chemistry, Tokai University, Tokyo, Japan 2Department of Earth Science, Faculty of Sciences, University of Douala, Douala, Cameroon 3Institute of Mining and Geological Research (IRGM), Yaoundé, Cameroon Email: #[email protected] Received 1 August 2014; revised 25 August 2014; accepted 15 September 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m- thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic. -
Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico
-» Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico By R. A. BAILEY, R. L. SMITH, and C. S. ROSS CONTRIBUTIONS TO STRATIGRAPHY » GEOLOGICAL SURVEY BULLETIN 1274-P New Stratigraphic names and revisions in nomenclature of upper Tertiary and , Quaternary volcanic rocks in the Jemez Mountains UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 1969 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract.._..._________-...______.._-.._._____.. PI Introduction. -_-________.._.____-_------___-_______------_-_---_-_ 1 General relations._____-___________--_--___-__--_-___-----___---__. 2 Keres Group..__________________--------_-___-_------------_------ 2 Canovas Canyon Rhyolite..__-__-_---_________---___-____-_--__ 5 Paliza Canyon Formation.___-_________-__-_-__-__-_-_______--- 6 Bearhead Rhyolite-___________________________________________ 8 Cochiti Formation.._______________________________________________ 8 Polvadera Group..______________-__-_------________--_-______---__ 10 Lobato Basalt______________________________________________ 10 Tschicoma Formation_______-__-_-____---_-__-______-______-- 11 El Rechuelos Rhyolite--_____---------_--------------_-_------- 11 Puye Formation_________________------___________-_--______-.__- 12 Tewa Group__._...._.______........___._.___.____......___...__ 12 Bandelier Tuff.______________.______________... 13 Tsankawi Pumice Bed._____________________________________ 14 Valles Rhyolite______.__-___---_____________.________..__ 15 Deer Canyon Member.______-_____-__.____--_--___-__-____ 15 Redondo Creek Member.__________________________________ 15 Valle Grande Member____-__-_--___-___--_-____-___-._-.__ 16 Battleship Rock Member...______________________________ 17 El Cajete Member____..._____________________ 17 Banco Bonito Member.___-_--_---_-_----_---_----._____--- 18 References . -
MEKE MAAR / Republic of Turkey 1. Name and Adress of the Compiler Of
MEKE MAAR / Republic of Turkey 1. Name and adress of the compiler of this form: Selim ERDOGAN (Hydrogeological Engineer, M.Sc) Ministry of Environment & Forestry., General Directorate of Nature Conservation & National Parks., Wetlands Division Address: Çevre ve Orman Bakanlığı, İstanbul Caddesi No: 98 Phone: 0090 312 3840510 / 3021 Fax: 0090 312 3842476 Email: [email protected] 2. Date this sheet was completed/updated 01.02.2006 3. Country: Republic of Turkey 4. Name of the Ramsar Site Meke Maar 5. Map of Site included A site map of 1:25 000 scale and providing the characteristics indicated in the Annex III of this guideline is included in this package. a) Hard Copy: YES b) Digital (electronic) Format: YES 6. Geographical Coordinates: 33038’28’’ E., 37041’10’’ N 7. General Location: Turkey is separated into 82 administrative districts. As regards area extension, Konya is the largest district of Turkey. It’s also the 4th biggest city with approximately 2 million habitants. Meke Maar is situated in Konya district. The distance of it to the center of the city is approximately 101 km (towards the south of the district). The subdivision in which the Meke Maar is located, is Karapınar and it’s 8 km far from the site. 8. Elevation: 1004 m (minimum – the elevation of the plain on which the maar is situated) 1280 m (maximum – the elevation of the crater of the volcano) 9. Area: 202 hectares 10. Overview: Meke Maar is a volcanic system which contains typically a volcanic rock mass and a crater lake up above. However the system differs from other volcanic systems with its caldera lake surrounding the volcanic mass (See pictures in Annex 2). -
Bailey-1976.Pdf
VOL. 81, NO. 5 JOURNAL OF GEOPHYSICAL RESEARCH FEBRUARY 10, 1976 Volcanism, Structure,and Geochronologyof Long Valley Caldera, Mono County, California RoY A. BAILEY U.S. GeologicalSurvey, Reston, Virginia 22092 G. BRENT DALRYMPLE AND MARVIN A. LANPHERE U.S. GeologicalSurvey, Menlo Park, California 94025 Long Valley caldera, a 17- by 32-km elliptical depressionon the east front of the Sierra Nevada, formed 0.7 m.y. ago during eruption of the Bishoptuff. Subsequentintracaldera volcanism included eruption of (1) aphyric rhyolite 0.68-0.64 m.y. ago during resurgentdoming of the caldera floor, (2) porphyritic hornblende-biotiterhyolite from centersperipheral to the resurgentdome at 0.5, 0.3, and 0.1 m.y. ago, and (3) porphyritic hornblende-biotiterhyodacite from outer ring fractures0.2 m.y. ago to 50,000 yr ago, a sequencethat apparently records progressivecrystallization of a subjacentchemically zoned magma chamber. Holocene rhyolitic and phreatic eruptions suggestthat residual magma was present in the chamber as recentlyas 450 yr ago. Intracaldera hydrothermalactivity beganat least0.3 m.y. ago and was widespreadin the caldera moat; it has sincedeclined due to self-sealingof near-surfacecaldera sediments by zeolitization, argillization, and silicificationand has becomelocalized on recentlyreactivated north- west-trendingSierra Nevada frontal faults that tap hot water at depth. INTRODUCTION concentrates were treated with a dilute HF solution to remove small bits of attached glassand fragments of other mineral In the westernUnited States,only three calderasare known grains. Obsidian used for dating was totally unhydrated and to be large enoughand young enoughto possiblystill contain not devitrified. Small blocks sawed from many of the hand residual magma in their chambers:the Vailes caldera (•1.1 specimenswere used for dating. -
How Polygenetic Are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes
Chapter 13 How Polygenetic are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes Boris Chako Tchamabé, Gabor Kereszturi, Karoly Németh and Gerardo Carrasco‐Núñez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/63486 Abstract The increasing number of field investigations and various controlled benchtop and large‐ scale experiments have permitted the evaluation of a large number of processes involved in the formation of maar‐diatreme volcanoes, the second most common type of small‐ volume subaerial volcanoes on Earth. A maar‐diatreme volcano is recognized by a volcanic crater that is cut into country rocks and surrounded by a low‐height ejecta rim com‐ posed of pyroclastic deposits of few meters to up to 200 m thick above the syn‐eruptive surface level. The craters vary from 0.1 km to up to 5 km wide and vary in depth from a few dozen meters to up to 300 m deep. Their irregular morphology reflects the simple or complex volcanic and cratering processes involved in their formation. The simplicity or complexity of the crater or the entire maar itself is usually observed in the stratigraphy of the surrounding ejecta rings. The latter are composed of sequences of successive alternating and contrastingly bedded phreatomagmatic‐derived dilute pyroclastic density currents (PDC) and fallout depositions, with occasional interbedded Strombolian‐derived spatter materials or scoria fall units, exemplifying the changes in the eruptive styles during the formation of the volcano. The entire stratigraphic sequence might be preserved as a single eruptive package (small or very thick) in which there is no stratigraphic gap or signifi‐ cant discordance indicative of a potential break during the eruption. -
An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 133,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 2 An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective Károly Németh Massey University New Zealand 1. Introduction Miocene to Pleistocene basaltic volcanic fields are common in the Pannonian Basin in Central Europe (Figs 1 & 2). Included in these fields are the here described monogenetic volcanic fields of western Hungary. These volcanic fields provide excellent exposures to explore the volcanic facies architecture of monogenetic volcanoes that formed during a period of intra-continental volcanism that lasted over 6 million years (Fig. 2). Over this 6 millions of years eruptive history (Wijbrans et al., 2007), volcanic fields such as the Bakony- Balaton Highland (BBHVF) or the Little Hungarian Plain Volcanic Field (LHPVF) formed (Fig. 1) as typical low magma-flux, time-predicted fields that were largely tectonically- controlled rather than magmatically-controlled (Martin & Németh, 2004; Kereszturi et al., 2011). The preserved volcanic eruptive products of the BBHVF, including pyroclastic, effusive and intrusive rocks, have been estimated to be about 3 km3, significantly larger than those erupted through the LHPVF (Martin & Németh, 2004; Kereszturi et al., 2011). -
Mosaic of New Mexico's Scenery, Rocks, and History
Mosaic of New Mexico's Scenery, Rocks, and History SCENIC TRIPS TO THE GEOLOGIC PAST NO. 8 Scenic Trips to the Geologic Past Series: No. 1—SANTA FE, NEW MEXICO No. 2—TAOS—RED RIVER—EAGLE NEST, NEW MEXICO, CIRCLE DRIVE No. 3—ROSWELL—CAPITAN—RUIDOSO AND BOTTOMLESS LAKES STATE PARK, NEW MEXICO No. 4—SOUTHERN ZUNI MOUNTAINS, NEW MEXICO No. 5—SILVER CITY—SANTA RITA—HURLEY, NEW MEXICO No. 6—TRAIL GUIDE TO THE UPPER PECOS, NEW MEXICO No. 7—HIGH PLAINS NORTHEASTERN NEW MEXICO, RATON- CAPULIN MOUNTAIN—CLAYTON No. 8—MOSlAC OF NEW MEXICO'S SCENERY, ROCKS, AND HISTORY No. 9—ALBUQUERQUE—ITS MOUNTAINS, VALLEYS, WATER, AND VOLCANOES No. 10—SOUTHWESTERN NEW MEXICO No. 11—CUMBRE,S AND TOLTEC SCENIC RAILROAD C O V E R : REDONDO PEAK, FROM JEMEZ CANYON (Forest Service, U.S.D.A., by John Whiteside) Mosaic of New Mexico's Scenery, Rocks, and History (Forest Service, U.S.D.A., by Robert W . Talbott) WHITEWATER CANYON NEAR GLENWOOD SCENIC TRIPS TO THE GEOLOGIC PAST NO. 8 Mosaic of New Mexico's Scenery, Rocks, a n d History edited by PAIGE W. CHRISTIANSEN and FRANK E. KOTTLOWSKI NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES 1972 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY STIRLING A. COLGATE, President NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES FRANK E. KOTTLOWSKI, Director BOARD OF REGENTS Ex Officio Bruce King, Governor of New Mexico Leonard DeLayo, Superintendent of Public Instruction Appointed William G. Abbott, President, 1961-1979, Hobbs George A. Cowan, 1972-1975, Los Alamos Dave Rice, 1972-1977, Carlsbad Steve Torres, 1967-1979, Socorro James R. -
Diamond Craters Oregon's Geologic
Text by Ellen M. Benedict, 1985 Features at stops correspond to points on a clock ago, a huge mass of hot gases, volcanic ashes, bits face. Imagine that you are standing in the middle of a of pumice and other pyroclastics (fire-broken rock) Travel And Hiking Hints clock face. Twelve o’clock is the road in front of you violently erupted. The blast – greater than the May and 6 o’clock the road behind. If you always align the 18, 1980, eruption of Mt. St. Helens – deposited a Diamond Craters is located in the high desert country clock face with the road, you should be able to locate layer of pyroclastics 30 to 130 feet thick over an area about 55 miles southeast of Burns, Oregon. It’s an the features. almost 7,000 square miles! isolated place and some precautions should be taken . when traveling in the area. Start Tour. Mileage begins halfway Pyroclastics are between milepost 40 and 41 on State normal behavior Diamond Craters has no tourist facilities. The nearest Highway 205 at the junction to Diamond. for magmas place where gasoline is sold is at Frenchglen. Turn left. (subsurface That’s the opinion held by scores of molten rocks) Keep your scientists and educators who have visited Diamond, Oregon, a small ranching community, was of rhyolitic (a vehicle on named in 1874 for Mace McCoy’s Diamond brand. volcanic material and studied the area. It has the “best and hard-packed The nearby craters soon became known as Diamond related to granite) most diverse basaltic volcanic features in the road surfaces Craters. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Russia): 2003–9 Results
CHAPTER 6 OBSIDIAN PROVENANCE STUDIES ON KAMCHATKA PENINSULA (FAR EASTERN RUSSIA): 2003–9 RESULTS Andrei V. Grebennikov, Vladimir K. Popov, Michael D. Glascock, Robert J. Speakman, Yaroslav V. Kuzmin, and Andrei V. Ptashinsky Abstract: The results of obsidian provenance research on the Kamchatka Peninsula based on extensive study of the chemical composition of volcanic glasses from both ‘geological’ sources and archaeological sites are presented. At least 16 geochemical groups reflecting different sources of obsidian have been identified for Kamchatka using Instrumental Neutron Activation Analysis. Seven sources of archaeological obsidian have been linked to specific geologic outcrops, with the distances between sites and obsidian sources up to 550km. At least seven geochemical groups based only on artefact analysis are also described. The use of multiple obsidian sources was a common pattern during the Palaeolithic, Neolithic, and Palaeometal periods of Kamchatkan prehistory. Keywords: Obsidian, Source Identification, Palaeolithic, Neolithic, Kamchatka Peninsula, Russian Far East Introduction 6.1, A). The main geomorphic features of the Kamchatka Peninsula are two major mountain ranges, Central and Studies of the geochemistry of waterless volcanic glasses Eastern, with a sedimentary basin between them occupied (i.e., obsidians) and sources of archaeological obsidian by the Kamchatka River drainage; mountains of the in the Russian Far East have been ongoing since the southern region; and lowlands on the western coast (Suslov early 1990s, -
Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019)
remote sensing Technical Note The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019) Prospero De Martino 1,2,* , Mario Dolce 1, Giuseppe Brandi 1, Giovanni Scarpato 1 and Umberto Tammaro 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy; [email protected] (M.D.); [email protected] (G.B.); [email protected] (G.S.); [email protected] (U.T.) 2 Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, via Diocleziano 328, 80124 Napoli, Italy * Correspondence: [email protected] Abstract: The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical exam- ple of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera Citation: De Martino, P.; Dolce, M.; unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia vol- Brandi, G.; Scarpato, G.; Tammaro, U. canoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed The Ground Deformation History of the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area. -
Cretaceous Basaltic Phreatomagmatic Volcanism in West Texas: Maar Complex at Peña Mountain, Big Bend National Park ⁎ K.S
Available online at www.sciencedirect.com Journal of Volcanology and Geothermal Research 173 (2008) 245–264 www.elsevier.com/locate/jvolgeores Cretaceous basaltic phreatomagmatic volcanism in West Texas: Maar complex at Peña Mountain, Big Bend National Park ⁎ K.S. Befus a, , R.E. Hanson a, T.M. Lehman b, W.R. Griffin c a Department of Geology, Texas Christian University, Box 298830, Fort Worth, TX 76129, USA b Department of Geosciences, Texas Tech University, Box 41053, Lubbock, TX 79409, USA c Department of Geosciences, University of Texas at Dallas, Box 830688, Richardson, Texas 75083, USA Received 23 March 2007; accepted 25 January 2008 Available online 10 March 2008 Abstract A structurally complex succession of basaltic pyroclastic deposits produced from overlapping phreatomagmatic volcanoes occurs within Upper Cretaceous floodplain deposits in the Aguja Formation in Big Bend National Park, West Texas. Together with similar basaltic deposits recently documented elsewhere in the Aguja Formation, these rocks provide evidence for an episode of phreatomagmatic volcanism that predates onset of arc magmatism in the region in the Paleogene. At Peña Mountain, the pyroclastic deposits are ≥70 m thick and consist dominantly of tabular beds of lapillistone and lapilli tuff containing angular to fluidal pyroclasts of altered sideromelane intermixed with abundant accidental terrigenous detritus derived from underlying Aguja sediments. Tephra characteristics indicate derivation from phreatomagmatic explosions involving fine- scale interaction between magma and sediment in the shallow subsurface. Deposition occurred by pyroclastic fall and base-surge processes in near-vent settings; most base-surge deposits lack tractional sedimentary structures and are inferred to have formed by suspension sedimentation from rapidly decelerating surges.