Ukinrek Maars, Alaska, I. April 1977 Eruption Sequence, Petrology and Tectonic Setting

Total Page:16

File Type:pdf, Size:1020Kb

Ukinrek Maars, Alaska, I. April 1977 Eruption Sequence, Petrology and Tectonic Setting Journal of Volcanology and Geothermal Research, 7 (1980) 11-37 11 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands UKINREK MAARS, ALASKA, I. APRIL 1977 ERUPTION SEQUENCE, PETROLOGY AND TECTONIC SETTING JUERGEN KIENLE', PHILIP R. KYLE 2 , STEPHEN SELF', ROMAN J. MOTYKA' and VOLKER LORENZ4 ' Geophysical Institute, University of Alaska, Fairbanks, AK 99701 (U.S.A.) 'Institute of Polar Studies, Ohio State University, Columbus, OH 43210 (U.S.A.) Department of Earth Sciences, Dartmouth College, Hanover, NH 03755 (U.S.A.) 4 Institut fur Geowissenschaften, Johannes Gutenberg-Universitilt, 6500 Mainz (Federal Republic of Germany) (Revised version accepted September 3, 1979) ABSTRACT Kienle, J., Kyle, P.R., Self, S., Motyka, R.J. and Lorenz, V., 1980. Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J. Volcanol. Geo- therm. Res., 7: 11-37. During ten days of phreatomagmatic activity in early April 1977, two maars formed 13 km behind the Aleutian arc near Peulik volcano on the Alaska Peninsula. They have been named "Ukinrek Maars", meaning "two holes in the ground" in Yupik Eskimo. The western maar formed at the northwestern end of a low ridge within the first three days and is up to 170 m in diameter and 35 m in depth. The eastern maar formed during the next seven days 600 m east of West Maar at a lower elevation in a shallow saddle on the same ridge and is more circular, up to 300 m in diameter and 70 m in depth. The maars formed in terrain that was heavily glaciated in Pleistocene times. The groundwater contained in the underlying till and silicic volcanics from nearby Peulik volcano controlled the domi- nantly phreatomagmatic course of the eruption. During the eruptions, steam and ash clouds reached maximum heights of about 6 km and a thin blanket of fine ash was deposited north and east of the vents up to a distance of at least 160 km. Magma started to pool on the floor of East Maar after four days of intense phreatomagmatic activity. The new melt is a weakly undersaturated alkali olivine basalt (Ne = 1.2%) showing some transitional character toward high-alumina basalts. The chemistry, an anomaly in the tholeitic basalt-andesite-dominated Aleutian arc, suggests that the new melt is primitive, generated at a depth of 80 km or greater by a low degree of partial melting of garnet peri- dotite mantle with little subsequent fractionization during transport. The Pacific plate subduction zone lies at a depth of 150 km beneath the maars. Their position appears to be tectonically controlled by a major regional fault, the Bruin Bay fault, and its intersection with cross-arc structural features. We favor a model for the emplacement of the Ukinrek Maars that does not link the Ukinrek conduit to the plumbing system of nearby Peulik volcano. The Ukinrek eruptions probably represent a genetically distinct magma pulse originating at asthenospheric depths beneath the conti- nental lithosphere. Onlvenity enntri .nutinns Series rairbantz.3, idc:ka 9970 13 Jima Island in 1957 (Corwin and Foster, 1959) and in the Nilahue River Val- ley, Chile in 1955 (Muller and Veyl, 1957; Zuniga, 1956; flies, 1959). Pos- sibly a maar was also produced by a very large eruption of Ksudach volcano in Kamchatka in 1907 (Vlodavetz and Piip, 1959), by the interaction of magma and water from a pre-existing caldera lake. Maars form when the crust is perforated by phreatic or phreatomagmatic explosions that result when rising magma contacts groundwater at shallow depth. Phreatic is used here to denote explosions involving steam alone or steam and country rock; phreatomagmatic denotes explosions involving steam and magma (with or without country rock). By far the most common occur- rence of maars is in association with basic volcanism where groundwater inter- cepts magma that would, without the intervention of water, egress to the sur- face to produce strombolian explosions, scoria cones and lava flows. However, maars can be formed by other magma types, including carbonatitic, interme- diate or even acidic melts (Lorenz, 1973). Possibly most maars are the surface expression of diatremes (Lorenz, 1975; Lorenz et al., 1970; McCallum et al., 1976). Between March 30 and April 9, 1977, two maars formed near the crest of a short east-west-trending ridge in generally low-lying glacial terrain, 2.0 km south of the shore of Lake Becharof on the Alaska Peninsula (Kienle et al., 1978). The rim of the maars are located about 70 m above the lake level. The eruption site lies behind the Aleutian volcanic arc, 13 km northwest of Mt. Peulik, a 1525-m-high stratovolcano which erupted last in 1852. Fig. 1 shows the location of the maars and their geologic setting. Quaternary Volcanics Volcanoes FTI Mesozoic Shallow Marine ' Sandstone a Shale 1..1 Jurassic Batholith —Fault UKINREK MAARS Pilot4 Point Regional Ash Fallout (7• 77 n , r _ _, 0 Fig. 1. Map of the upper Alaska Peninsula, showing the location of the Ukinrek Maars (star), Quaternary and Recent volcanoes and simplified geology after Beikman (1978). The minimum area of fine ash fall is also indicated. 15 C Fig. 2. (a) Easterly view across the two Ukinrek Maars on April 3, 1977, 10 AST, West Maar in foreground with hot black ejecta blanket and steam rising from the lake, East Maar in phreatomagmatic eruption in the background (photograph by Larry Conyers, CITGO). (b) "Mushroom" cloud produced by phreatic/phreatomagmatic explosion on April 5, 1977, 15:30-16:00 AST. Note the "cap" of white steam followed by a column of dark ash and steam (photograph looking south by Jim Faro, ADFG). (c) Vigorous phreatomagmatic activity at the East Maar on the evening of April 6, 1977, 17:00 AST (photograph looking south by R. Russel, ADFG). 17 66 •8 71.4 B D 61 9 NI 67.8 BM2 70.2 73 0 67.2 BM1 71626112 • 72• 78.177A3 ,75 7 •69.2 • 71.8 0 79.16 IF 79 1 • 75.0 BM1A 78.3 72.2 75 96" Agglomerate 0 50 100 meters WEST MAAR EAST MAAR Fig. 4. Map of the Ukinrek Maars (survey by R. Motyka), also showing the thickness of the rim deposit. Accuracy of absolute elevations, given in meters above sea level, is unknown; elevation differences between surveyed points are 0.5 m or better. Date of survey: August 30, 1977. 21 the Ukinrek Maars are small (see also Table 1) and once again the lack of ero- sional modification is evident. We were surprised to find very high temperatures within the ejecta of two distinct scoriaceous* fall lobes on the high southeast and southwest rims of West Maar (Fig. 6a, b). The highest temperature measured was 805°C near its rim at 1.1 m depth, temperatures on a profile between the two maars decreas- ed from 210°C at 15 cm depth at the rim of the West Maar to 20°C at the same depth at the rim of the East Maar (D.J. Lalla, personal communication). Similar high temperatures at a distance of 250 m west of the West Maar are in- dicated by the fact that willow trunks were completely charcoaled at a depth greater than 20 cm below the tephra surface. The high temperatures on the rim probably indicate very rapid accumulation of spatter and scoriaceous lapilli and bombs during the latter stages of West Maar activity, suggesting that magma also reached the surface at this maar. We have no visual observations to confirm magma in the crater of West Maar when it was active during the first three days of the eruption. However, irregular dike-like intrusions were observed in the till exposed in the southern crater wall during a 1979 visit by one of the authors (Lorenz). In April 1977 West Maar contained a lukewarm shallow (4.6 m deep) lake of slightly acidic (pH — 6) water (Fig. 6a). Subsequently, the lake drained (Fig. 6c) sometime between our second visit, May 20-29, and our third visit in late August. The water of the remaining hot spring (next to the person in Fig. 6c) was sampled by G. McCoy and the U.S. Geological Survey on August 24: It had a pH of 6.3 and a temperature of 81°C. The gas in the thermal wa- ters contained 98% CO 2 with a 13C composition of —6.36%o, a range that is common for CO 2 from the mantle (Barnes et al., 1978). By July 1979 a shal- low lake had again formed within the northern half and at the location of the former spring two lines of gas bubbles were observed with headings of N47°E and N151°E. Ejecta and maar volumes The two maars are surrounded by deposits of fine, grey-tan-colored ash fall, grey medium-coarse vesicle-poor lapilli and lithic fall, black juvenile scoriace- ous fall including many cauliflower bombs (Lorenz, 1974a), spherical bombs and ribbon bombs, and lithic (country rock) ejecta blankets (Figs. 2a, 6a, f). No accretionary lapilli have been observed. However, vesiculated tuffs (Lorenz, 1974b) were deposited by base surge against obstacles. Several fall units compose any one section and reflect the changing style of activity (Fig. 6d). The crater walls of West Maar (Fig. 6b, c) expose till; the walls of East Maar (Fig. 6d—f) are not readily accessible but appear to consist of till sheets and interbedded silicic pyroclastic (pumice?) Peulik volcanics, as viewed from the crater rim. *Within the scoriaceous deposits of both West and East Maar a great number of cauliflower bombs indicate a phreatomagmatic component.
Recommended publications
  • Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma
    Journal of Natural Disaster Science, Volume 37,Number 2,2016,pp67-78 Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma Nobuo Geshi1, Masato Iguchi2, and Hiroshi Shinohara1 1 Geological Survey of Japan, AIST 2 Disaster Prevention Research Institute, Kyoto University, (Received:Sep 2, 2016 Accepted:Oct.28, 2016) Abstract The 2014 and 2015 eruptions of Kuchinoerabujima Volcano followed a ~15-year precursory activation of the hydrothermal system induced by a magma intrusion event. Continuous heat transfer from the degassing magma body heated the hydrothermal system and the increase of the fluid pressure in the hydrothermal system caused fracturing of the unstable edifice, inducing a phreatic explosion. The 2014 eruption occurred from two fissures that traced the eruption fissures formed in the 1931 eruption. The explosive eruption detonated the hydrothermally-altered materials and part of the intruding magma. The rise of fumarolic activities before the past two activities in 1931-35 and 1966-1980 also suggest activation of the hydrothermal system by magmatic intrusions prior to the eruption. The long-lasting precursory activities in Kuchinoerabujima suggest complex processes of the heat transfer from the magma to the hydrothermal system. Keywords: Kuchinoerabujima Volcano, phreatomagmatic eruption, hydrothermal system, magma intrusion 1. Introduction Phreatic eruptions are generally caused by the rapid extrusion of geothermal fluid from a hydrothermal system within a volcanic edifice (Barberi et al., 1992). Hydrothermal activities and phreatic eruptions are related to magmatic activities directly or indirectly, as the hydrothermal activities of a volcano are basically driven by heat from magma (Grapes et al., 1974).
    [Show full text]
  • Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line*
    International Journal of Geosciences, 2014, 5, 1315-1323 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511108 Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line* Boris Chako Tchamabé1#, Takeshi Ohba1, Issa1, Seigo Ooki1, Dieudonné Youmen2, Sebastien Owona2, Gregory Tanyileke3, Joseph Victor Hell3 1Laboratory of Volcanology and Geochemistry, Department of Chemistry, Tokai University, Tokyo, Japan 2Department of Earth Science, Faculty of Sciences, University of Douala, Douala, Cameroon 3Institute of Mining and Geological Research (IRGM), Yaoundé, Cameroon Email: #[email protected] Received 1 August 2014; revised 25 August 2014; accepted 15 September 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m- thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic.
    [Show full text]
  • MEKE MAAR / Republic of Turkey 1. Name and Adress of the Compiler Of
    MEKE MAAR / Republic of Turkey 1. Name and adress of the compiler of this form: Selim ERDOGAN (Hydrogeological Engineer, M.Sc) Ministry of Environment & Forestry., General Directorate of Nature Conservation & National Parks., Wetlands Division Address: Çevre ve Orman Bakanlığı, İstanbul Caddesi No: 98 Phone: 0090 312 3840510 / 3021 Fax: 0090 312 3842476 Email: [email protected] 2. Date this sheet was completed/updated 01.02.2006 3. Country: Republic of Turkey 4. Name of the Ramsar Site Meke Maar 5. Map of Site included A site map of 1:25 000 scale and providing the characteristics indicated in the Annex III of this guideline is included in this package. a) Hard Copy: YES b) Digital (electronic) Format: YES 6. Geographical Coordinates: 33038’28’’ E., 37041’10’’ N 7. General Location: Turkey is separated into 82 administrative districts. As regards area extension, Konya is the largest district of Turkey. It’s also the 4th biggest city with approximately 2 million habitants. Meke Maar is situated in Konya district. The distance of it to the center of the city is approximately 101 km (towards the south of the district). The subdivision in which the Meke Maar is located, is Karapınar and it’s 8 km far from the site. 8. Elevation: 1004 m (minimum – the elevation of the plain on which the maar is situated) 1280 m (maximum – the elevation of the crater of the volcano) 9. Area: 202 hectares 10. Overview: Meke Maar is a volcanic system which contains typically a volcanic rock mass and a crater lake up above. However the system differs from other volcanic systems with its caldera lake surrounding the volcanic mass (See pictures in Annex 2).
    [Show full text]
  • The Independent Volcanic Eruption Source Parameter Archive
    Journal of Volcanology and Geothermal Research 417 (2021) 107295 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Invited Research Article The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development Thomas J. Aubry a,b,⁎,SamanthaEngwellc, Costanza Bonadonna d, Guillaume Carazzo e,SimonaScollof, Alexa R. Van Eaton g,IsabelleA.Taylorh,DavidJessope,i,j, Julia Eychenne j,MathieuGouhierj, Larry G. Mastin g, Kristi L. Wallace k, Sébastien Biass l, Marcus Bursik m, Roy G. Grainger h,A.MarkJellinekn, Anja Schmidt a,o a Department of Geography, University of Cambridge, Cambridge, UK b Sidney Sussex College, Cambridge, UK c British Geological Survey, The Lyell Centre, Edinburgh, UK d Department of Earth Sciences, University of Geneva, Geneva, Switzerland e Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France f Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy g U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA h COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK i Observatoire Volcanologique et Sismologique de Guadeloupe, Institut de Physique du Globe de Paris, F- 97113 Gourbeyre, France j Université Clermont Auvergne, CNRS, IRD, OPGC Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
    [Show full text]
  • Controls on Rhyolite Lava Dome Eruptions in the Taupo Volcanic Zone
    Controls on rhyolite lava dome eruptions in the Taupo Volcanic Zone Paul Allan Ashwell A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geological Sciences at the University of Canterbury October 2013 P a g e | II Dedicated to Eva Ashwell P a g e | III View from Ruawahia, across the 1886AD fissure and Wahanga dome towards the Bay of Plenty and White Island (extreme distance, centre left) P a g e | IV Abstract he evolution of rhyolitic lava from effusion to cessation of activity is poorly understood. T Recent lava dome eruptions at Unzen, Colima, Chaiten and Soufrière Hills have vastly increased our knowledge on the changes in behaviour of active domes. However, in ancient domes, little knowledge of the evolution of individual extrusion events exists. Instead, internal structures and facies variations can be used to assess the mechanisms of eruption. Rhyolitic magma rising in a conduit vesiculates and undergoes shear, such that lava erupting at the surface will be a mix of glass and sheared vesicles that form a permeable network, and with or without phenocryst or microlites. This foam will undergo compression from overburden in the shallow conduit and lava dome, forcing the vesicles to close and affecting the permeable network. High temperature, uniaxial compression experiments on crystal-rich and crystal-poor lavas have quantified the evolution of porosity and permeability in such environments. The deformation mechanisms involved in uniaxial deformation are viscous deformation and cracking. Crack production is controlled by strain rate and crystallinity, as strain is localised in crystals in crystal rich lavas.
    [Show full text]
  • Pyroclastic Deposits I: Pyroclastic Fall Deposits
    Pyroclastic Deposits I: Pyroclastic Fall Deposits EAS 458 Volcanology Introduction . We have seen that physics is useful in understanding volcanic processes, but physical models must be constrained by and tested against observation. We have 1925 years of historic observations of Vesuvius (79 AD to present) . Far less for most other volcanoes . In all, a very, very small fraction of eruptions . Most descriptions are of limited use . Observations about volcanic processes must depend primarily on geologic observations . The geologic record of volcanic eruptions consists primarily of the deposits produced by them. 1 Pyroclastic Deposits . Three types of pyroclastic deposits . Fall Deposits . Fallout from an eruptive column . Flow Deposits . Produced by pyroclastic flows . Surge Deposits . Often associated with flow deposits . Associated with explosive events, such as phreatomagmatic explosions Pyroclastic Deposits . Characteristics . Fall Deposits . Mantle topography . Parallel bedding . Well sorted . Often graded . Flow Deposits . Topographically constrained . Poorly sorted . Often graded . Surge Deposits . Partially topographically constrained . Cross bedding characteristic . Intermediate sorting . Often graded 2 Pyroclastic Fall Deposits . General term: tephra . Types . Scoria (mafic , larger size) . Pumice (silicic, larger size) . Ash (fine grained) Fall Deposits: Bedding . Except very near vent, “fall” particles settle vertically. Therefore, extensive deposits (such as those of Plinian eruptions) will be equally thick at any given distance and direction from the vent. Hence, they mantle topography . (Scoria cones produced by Hawaiian and Strobolian eruptions obviously don’t mantle topography) 3 Fall Deposits: Sorting . The distance a particle will travel from the vent depends on: . Ejection velocity . Particle size . For conditions at any particular time and place, particles of a small range of sizes will fall out.
    [Show full text]
  • How Polygenetic Are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes
    Chapter 13 How Polygenetic are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes Boris Chako Tchamabé, Gabor Kereszturi, Karoly Németh and Gerardo Carrasco‐Núñez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/63486 Abstract The increasing number of field investigations and various controlled benchtop and large‐ scale experiments have permitted the evaluation of a large number of processes involved in the formation of maar‐diatreme volcanoes, the second most common type of small‐ volume subaerial volcanoes on Earth. A maar‐diatreme volcano is recognized by a volcanic crater that is cut into country rocks and surrounded by a low‐height ejecta rim com‐ posed of pyroclastic deposits of few meters to up to 200 m thick above the syn‐eruptive surface level. The craters vary from 0.1 km to up to 5 km wide and vary in depth from a few dozen meters to up to 300 m deep. Their irregular morphology reflects the simple or complex volcanic and cratering processes involved in their formation. The simplicity or complexity of the crater or the entire maar itself is usually observed in the stratigraphy of the surrounding ejecta rings. The latter are composed of sequences of successive alternating and contrastingly bedded phreatomagmatic‐derived dilute pyroclastic density currents (PDC) and fallout depositions, with occasional interbedded Strombolian‐derived spatter materials or scoria fall units, exemplifying the changes in the eruptive styles during the formation of the volcano. The entire stratigraphic sequence might be preserved as a single eruptive package (small or very thick) in which there is no stratigraphic gap or signifi‐ cant discordance indicative of a potential break during the eruption.
    [Show full text]
  • An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 133,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 2 An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective Károly Németh Massey University New Zealand 1. Introduction Miocene to Pleistocene basaltic volcanic fields are common in the Pannonian Basin in Central Europe (Figs 1 & 2). Included in these fields are the here described monogenetic volcanic fields of western Hungary. These volcanic fields provide excellent exposures to explore the volcanic facies architecture of monogenetic volcanoes that formed during a period of intra-continental volcanism that lasted over 6 million years (Fig. 2). Over this 6 millions of years eruptive history (Wijbrans et al., 2007), volcanic fields such as the Bakony- Balaton Highland (BBHVF) or the Little Hungarian Plain Volcanic Field (LHPVF) formed (Fig. 1) as typical low magma-flux, time-predicted fields that were largely tectonically- controlled rather than magmatically-controlled (Martin & Németh, 2004; Kereszturi et al., 2011). The preserved volcanic eruptive products of the BBHVF, including pyroclastic, effusive and intrusive rocks, have been estimated to be about 3 km3, significantly larger than those erupted through the LHPVF (Martin & Németh, 2004; Kereszturi et al., 2011).
    [Show full text]
  • Evidence for the Relative Depths and Energies of Phreatomagmatic Explosions Recorded in Tephra Rings
    Bulletin of Volcanology (2017) 79: 88 https://doi.org/10.1007/s00445-017-1177-x RESEARCH ARTICLE Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings Alison H. Graettinger1 & Greg A. Valentine2 Received: 17 April 2017 /Accepted: 15 November 2017 /Published online: 28 November 2017 # The Author(s) 2017. This article is an open access publication Abstract Experimental work and field observations have inspired the revision of conceptual models of how maar-diatreme eruptions progress and the effects of variable energy, depth, and lateral position of explosions during an eruption sequence. This study reevaluates natural tephra ring deposits to test these new models against the depositional record. Two incised tephra rings in the Hopi Buttes Volcanic Field are revisited, and published tephra ring stratigraphic studies are compared to identify trends within tephra rings. Five major facies were recognized and interpreted as the result of different transportation and depositional processes and found to be common at these volcanoes. Tephra rings often contain evidence of repeated discrete phreatomagmatic explo- sions in the form of couplets of two facies: (1) massive lapilli tuffs and tuff breccias and (2) overlying thinly stratified to cross- stratified tuffs and lapilli tuffs. The occurrence of repeating layers of either facies and the occurrence of couplets are used to interpret major trends in the relative depth of phreatomagmatic explosions that contribute to these eruptions. For deposits related to near-optimal scaled depth explosions, estimates of the mass of ejected material and initial ejection velocity can be used to approximate the explosion energy. The 19 stratigraphic sections compared indicate that near-optimal scaled depth explosions are common and that the explosion locations can migrate both upward and downward during an eruption, suggesting a complex interplay between water availability and magma flux.
    [Show full text]
  • Diamond Craters Oregon's Geologic
    Text by Ellen M. Benedict, 1985 Features at stops correspond to points on a clock ago, a huge mass of hot gases, volcanic ashes, bits face. Imagine that you are standing in the middle of a of pumice and other pyroclastics (fire-broken rock) Travel And Hiking Hints clock face. Twelve o’clock is the road in front of you violently erupted. The blast – greater than the May and 6 o’clock the road behind. If you always align the 18, 1980, eruption of Mt. St. Helens – deposited a Diamond Craters is located in the high desert country clock face with the road, you should be able to locate layer of pyroclastics 30 to 130 feet thick over an area about 55 miles southeast of Burns, Oregon. It’s an the features. almost 7,000 square miles! isolated place and some precautions should be taken . when traveling in the area. Start Tour. Mileage begins halfway Pyroclastics are between milepost 40 and 41 on State normal behavior Diamond Craters has no tourist facilities. The nearest Highway 205 at the junction to Diamond. for magmas place where gasoline is sold is at Frenchglen. Turn left. (subsurface That’s the opinion held by scores of molten rocks) Keep your scientists and educators who have visited Diamond, Oregon, a small ranching community, was of rhyolitic (a vehicle on named in 1874 for Mace McCoy’s Diamond brand. volcanic material and studied the area. It has the “best and hard-packed The nearby craters soon became known as Diamond related to granite) most diverse basaltic volcanic features in the road surfaces Craters.
    [Show full text]
  • Russia): 2003–9 Results
    CHAPTER 6 OBSIDIAN PROVENANCE STUDIES ON KAMCHATKA PENINSULA (FAR EASTERN RUSSIA): 2003–9 RESULTS Andrei V. Grebennikov, Vladimir K. Popov, Michael D. Glascock, Robert J. Speakman, Yaroslav V. Kuzmin, and Andrei V. Ptashinsky Abstract: The results of obsidian provenance research on the Kamchatka Peninsula based on extensive study of the chemical composition of volcanic glasses from both ‘geological’ sources and archaeological sites are presented. At least 16 geochemical groups reflecting different sources of obsidian have been identified for Kamchatka using Instrumental Neutron Activation Analysis. Seven sources of archaeological obsidian have been linked to specific geologic outcrops, with the distances between sites and obsidian sources up to 550km. At least seven geochemical groups based only on artefact analysis are also described. The use of multiple obsidian sources was a common pattern during the Palaeolithic, Neolithic, and Palaeometal periods of Kamchatkan prehistory. Keywords: Obsidian, Source Identification, Palaeolithic, Neolithic, Kamchatka Peninsula, Russian Far East Introduction 6.1, A). The main geomorphic features of the Kamchatka Peninsula are two major mountain ranges, Central and Studies of the geochemistry of waterless volcanic glasses Eastern, with a sedimentary basin between them occupied (i.e., obsidians) and sources of archaeological obsidian by the Kamchatka River drainage; mountains of the in the Russian Far East have been ongoing since the southern region; and lowlands on the western coast (Suslov early 1990s,
    [Show full text]
  • Eruption Dynamics of Magmatic/Phreatomagmatic Eruptions of Low-Viscosity Phonolitic Magmas: Case of the Laacher See Eruption (Eifel, Germany)
    FACULTEIT WETENSCHAPPEN Opleiding Master in de Geologie Eruption dynamics of magmatic/phreatomagmatic eruptions of low-viscosity phonolitic magmas: Case of the Laacher See eruption (Eifel, Germany) Gert-Jan Peeters Academiejaar 2011–2012 Scriptie voorgelegd tot het behalen van de graad Van Master in de Geologie Promotor: Prof. Dr. V. Cnudde Co-promotor: Dr. K. Fontijn, Dr. G. Ernst Leescommissie: Prof. Dr. P. Vandenhaute, Prof. Dr. M. Kervyn Foreword There are a few people who I would like to thank for their efforts in helping me conduct the research necessary to write this thesis. Firstly, I would specially like to thank my co-promotor Dr. Karen Fontijn for all the time she put into this thesis which is a lot. Even though she was abroad most of the year, she was always there to help me and give me her opinion/advice whether by e-mail or by Skype and whether it was in the early morning or at midnight. Over the past three years, I learned a lot from her about volcanology and conducting research in general going from how volcanic deposits look on the field and how to sample them to how to measure accurately and systematically in the laboratory to ultimately how to write scientifically. I would also like to thank my promoter Prof. Dr. Veerle Cnudde for giving me the opportunity to do my thesis about volcanology even though it is not in her area of expertise and the opportunity to use the µCT multiple times. I thank the entire UGCT especially Wesley De Boever, Tim De Kock, Marijn Boone and Jan Dewanckele for helping me with preparing thin sections, drilling subsamples, explaining how Morpho+ works, solving problems when Morpho+ decided to crash etc.
    [Show full text]