38. Emballonuridae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bat Conservation 2021
Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ..................................................................................................................... -
The World at the Time of Messel: Conference Volume
T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203. -
Special Publications Museum of Texas Tech University Number 63 18 September 2014
Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J. -
Taxonomic Identity of an Insular Population of Sac-Winged
10.15517/RBT.V67I3.33447 Artículo Taxonomic identity of an insular population of sac-winged bat Saccopteryx (Chiroptera: Emballonuridae) Identidad taxonómica de una población insular del murciélago de sacos Saccopteryx (Chiroptera: Emballonuridae) Isabela Vivas-Toro1 Oscar E. Murillo-García1 1 Grupo de Investigaciones en Ecología Animal, Departamento de Biología, Universidad del Valle, Valle del Cauca, Cali-Colombia. Calle 13 100-00, Cali 76001, Colombia; [email protected], [email protected] Received 25-V-2018 Corrected 25-X-2018 Accepted 26-II-2019 Abstract Insular populations can differ from their continental counterparts since they are subject to particular pressures, biotic and abiotic, that can lead to variations in morphology and behavior; thus, the use of external characters may complicate taxonomic identification of insular populations. Even though the bat assemblage of Gorgona Island is a conservation target, there has been controversy about the taxonomic identity of bats from this Colombian National Natural Park. Specifically, our goal was to determine the taxonomic identity of the population of the sac-winged bat (genus Saccopteryx) resident in Gorgona, which have the peculiarity of having diurnal activity. Thus, we assessed differences among populations using morphometrics (traditional and geometric) and echolocation calls. Additionally, since the species of Saccopteryx involved have different mating systems, we assessed roosting association of Gorgona population as a surrogate for mating system. Despite the variation in skull morphometrics and echolocation calls among populations, Gorgona population was more similar to S. leptura than to S. bilineata. Besides, evolutionary allometry was significant, but size explained a small proportion of shape differences among populations. -
G- and C-Banding Chromosomal Studies of Bats of the Family Emballonuridae
G- AND C-BANDING CHROMOSOMAL STUDIES OF BATS OF THE FAMILY EMBALLONURIDAE CRAIG S. HOOD AND ROBERT J. BAKER Department of Biological Sciences and The Museum, Texas Tech University, Lubbock, TX 79409 Present address of CSH: Department of Biological Sciences, Loyola University, New Orleans, LA 70118 ABSTRACT.—Extent and nature of chromosomal change among nine species representing six genera (Saccopteryx, Rhynchonycteris, Diclidurus, Balantiopteryx, Cormura, and Taphozous) were examined using data from G- and C-banded chromosomes. Heterochromatin was restricted to centromeric regions in most taxa; extensive additions of C-positive material occurred in Bal- antiopteryx and Cormura. Comparisons of G-bands of euchromatic arms revealed considerable variation in G-band pattern and imply extensive chromosomal evolution among emballonurid species. Outgroup comparisons of G-band karyotypes proposed as primitive for several families of bats failed to reveal conserved G-band patterns, thus limiting the usefulness of differentially stained chromosomal data for resolving phylogenetic relationships of the Emballonuridae. The karyotype of Cormura brevirostris includes an extraordinarily large X chromosome that is mostly euchromatic. Evolution of the X chromosome and the nature of the sex-determining system in Cormura are unclear, but the species appears to possess a unique sex chromosome mechanism. The bat family Emballonuridae contains 13 genera and about 50 species and has a broad, pantropical distribution (Corbet and Hill, 1980; Hill and Smith, 1983). From both a systematic and cytogenetic standpoint these bats represent one of the least understood chiropteran families. With the exception of a G-band figure presented in Baker et al. (1982) for Saccopteryx canes- cens, published chromosomal data are limited to nondifferentially-stained karyotypes for 13 species representing 9 genera (Baker et al., 1982, and references therein; Harada et al., 1982; Ray-Chaudhuri et al., 1971). -
Pacific Sheath-Tailed Bat American Samoa Emballonura Semicaudata Semicaudata Species Report April 2020
Pacific Sheath-tailed Bat American Samoa Emballonura semicaudata semicaudata Species Report April 2020 U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife Office Honolulu, HI Cover Photo Credits Shawn Thomas, Bat Conservation International. Suggested Citation USFWS. 2020. Species Status Assessment for the Pacific Sheath Tailed Bat (Emballonura semicaudata semicaudata). April 2020 (Version 1.1). U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, Honolulu, HI. 57 pp. Primary Authors Version 1.1 of this document was prepared by Mari Reeves, Fred Amidon, and James Kwon of the Pacific Islands Fish and Wildlife Office, Honolulu, Hawaii. Preparation and review was conducted by Gregory Koob, Megan Laut, and Stephen E. Miller of the Pacific Islands Fish and Wildlife Office. Acknowledgements We thank the following individuals for their contribution to this work: Marcos Gorresen, Adam Miles, Jorge Palmeirim, Dave Waldien, Dick Watling, and Gary Wiles. ii Executive Summary This Species Report uses the best available scientific and commercial information to assess the status of the semicaudata subspecies of the Pacific sheath-tailed bat, Emballonura semicaudata semicaudata. This subspecies is found in southern Polynesia, eastern Melanesia, and Micronesia. Three additional subspecies of E. semicaudata (E.s. rotensis, E.s. palauensis, and E.s. sulcata) are not discussed here unless they are used to support assumptions about E.s. semicaudata, or to fill in data gaps in this analysis. The Pacific sheath-tailed bat is an Old-World bat in the family Emballonuridae, and is found in parts of Polynesia, eastern Melanesia, and Micronesia. It is the only insectivorous bat recorded from much of this area. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
BIO 313 ANIMAL ECOLOGY Corrected
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment). -
The Anatomy of the Hyoid Region of Molossus Molossus and Its Implication in Systematics
Illinois Wesleyan University Digital Commons @ IWU John Wesley Powell Student Research Conference 1991, 2nd Annual JWP Conference Apr 27th, 12:00 PM - 4:30 PM The Anatomy of the Hyoid Region of Molossus Molossus and its Implication in Systematics Natawadee Prasertphon Illinois Wesleyan University Thomas Griffiths,aculty F Advisor Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc Prasertphon, Natawadee and Griffiths, acultyF Advisor, Thomas, "The Anatomy of the Hyoid Region of Molossus Molossus and its Implication in Systematics" (1991). John Wesley Powell Student Research Conference. 14. https://digitalcommons.iwu.edu/jwprc/1991/posters/14 This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. THE ANATOMY OF THE HYOID REGION OF MOLOSSUS MOLOSSUS AND ITS IMPliCATION IN SYSTEMATICS Natawadee Prasertphon, Dept. of Biology, IWU, Thomas Griffiths* The hyoid musculature and hyoid apparatus of a bat, Molossus molossus (Chiroptera: Molossidae) is dissected and described. A comparison is made with the hyoid structures of bats of the genera Rhinopoma, Emballonura, Nycteris, Megaderma, Rhinoiophus, Pteronotus, Phyllostomus, and Ep tesicus, which were previously described by my sponsor Griffiths and associates. -
A Parasite of Balantiopteryx Plicata (Chiroptera) in Mexico
Parasite 2013, 20,47 Ó J.M. Caspeta-Mandujano et al., published by EDP Sciences, 2013 DOI: 10.1051/parasite/2013047 urn:lsid:zoobank.org:pub:E2016916-65BF-4F47-A68B-2F0E16B6710A Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Pterygodermatites (Pterygodermatites) mexicana n. sp. (Nematoda: Rictulariidae), a parasite of Balantiopteryx plicata (Chiroptera) in Mexico Juan Manuel Caspeta-Mandujano1,2,*, Francisco Agustı´n Jime´nez3, Jorge Luis Peralta-Rodrı´guez4, and Jose´ Antonio Guerrero5 1 Laboratorio de Parasitologı´a de Animales Silvestres, Facultad de Ciencias Biolo´gicas. Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Me´xico 2 Centro de Investigaciones Biolo´gicas, Universidad Auto´noma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Me´xico 3 Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901-6501, USA 4 Facultad de Ciencias Agropecuarias, Universidad Auto´noma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Me´xico 5 Laboratorio de Sistema´tica y Morfologı´a, Facultad de Ciencias Biolo´gicas, Universidad Auto´noma del Estado de Morelos. Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Me´xico Received 18 July 2013, Accepted 10 November 2013, Published online 26 November 2013 Abstract – A new species of nematode, Pterygodermatites (Pterygodermatites) mexicana n. sp., is described based on specimens recovered from the intestine of the gray sac-winged bat, Balantiopteryx plicata (Chiroptera, Emballonuri- dae), from the Biosphere Reserve ‘‘Sierra de Huautla’’ in the state of Morelos, Mexico. This is the second species in the genus described from bats in the New World, since most of the rictaluriids reported in these hosts belong to the closely related genus Rictularia Froelich, 1802. -
BATS of the Golfo Dulce Region, Costa Rica
MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez -
Cormura Brevirostris. by Enrico Bernard Published 18 December 2003 by the American Society of Mammalogists
MAMMALIAN SPECIES No. 737, pp. 1±3, 3 ®gs. Cormura brevirostris. By Enrico Bernard Published 18 December 2003 by the American Society of Mammalogists Cormura Peters, 1867 from same locality are: zygomatic breadth, 10.02 (9.64±10.36), 10.03 (9.85±10.16); length of maxillary toothrow, 6.17 (6.01±6.35), Emballonura Wagner, 1843:367. Type species Emballonura bre- 6.18 (5.91±6.50); breadth across molars, 7.27 (6.98±7.55), 7.39 virostris Wagner. (7.23±7.55); condylocanine length for males and females combined, Cormura Peters, 1867:475. Based on Emballonura brevirostris 14.23 (13.67±14.73). Ranges of external and skull measurements Wagner. (sample sizes in parentheses) from Suriname of sexes combined Myropteryx Miller, 1906:59±60. Type species Myropteryx pullus (Husson 1962) are: length of forearm, 41.5±47.0 (10); length of 3rd Miller. digit, metacarpal, 40.0±42.0 (10); length of 3rd digit, 1st phalanx, 12.0±14.0 (10); length of 3rd digit, 2nd phalanx, 19.0±22.0 (10); CONTEXT AND CONTENT. Order Chiroptera, suborder length of 4th digit, metacarpal, 33.0±36.0 (10); length of 4th digit, Microchiroptera, family Emballonuridae, subfamily Emballonuri- 1st phalanx, 9.0±10.5 (10); length of 4th digit, 2nd phalanx, 6.0± nae. Cormura is monotypic. 8.0 (9); length of 5th digit, metacarpal, 30.5±34.0 (10); length of 5th digit, 1st phalanx, 11.0±11.5 (10); length of 5th digit, 2nd phalanx, 5.0±7.0 (9); length of tibia, 15.0±16.5 (10); length of hind Cormura brevirostris (Wagner, 1843) foot, 6.5±7.0 (9); length of calcar, 13.0±15.5 (9); greatest length of Wagner's Sac-winged Bat skull, 15.1±15.8 (4); condylobasal length, 14.7 (1); condyle to front of canine, 13.6±14.3 (5); basal length, 11.3±13.0 (4); palatal length, Emballonura brevirostris Wagner, 1843:367.