A Novel ACKR2-Dependent Role Of

Total Page:16

File Type:pdf, Size:1020Kb

A Novel ACKR2-Dependent Role Of Published OnlineFirst March 8, 2019; DOI: 10.1158/1078-0432.CCR-18-1294 Translational Cancer Mechanisms and Therapy Clinical Cancer Research A Novel ACKR2-Dependent Role of Fibroblast- Derived CXCL14 in Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer Elin Sjoberg€ 1, Max Meyrath2, Laura Milde3, Mercedes Herrera1, John Lovrot€ 1, Daniel Hagerstrand€ 1, Oliver Frings1, Margarita Bartish1, Charlotte Rolny1, Erik Sonnhammer4, Andy Chevigne2, Martin Augsten1, and Arne Ostman€ 1 Abstract Purpose: Fibroblasts expressing the orphan chemokine graft model. Furthermore, tumor cells primed by CXCL14 CXCL14 have been previously shown to associate with poor fibroblasts displayed enhanced lung colonization after tail- breast cancer prognosis and promote cancer growth. This study vein injection. By loss-of function experiments, the atypical explores the mechanism underlying the poor survival associa- G-protein–coupled receptor ACKR2 was identified to mediate tions of stromal CXCL14. CXCL14-stimulated responses. Downregulation of ACKR2, or Experimental Design: Tumor cell epithelial-to-mesenchymal CXCL14-induced NOS1, attenuated the pro-EMT and migra- transition (EMT), invasion, and metastasis were studied in in tory capacity. CXCL14/ACKR2 expression correlated with EMT vitro and in vivo models together with fibroblasts overexpres- and survival in gene expression datasets. sing CXCL14. An approach for CXCL14 receptor identification Conclusions: Collectively, the findings imply an autocrine included loss-of-function studies followed by molecular and fibroblast CXCL14/ACKR2 pathway as a clinically relevant functional endpoints. The clinical relevance was further stimulator of EMT, tumor cell invasion, and metastasis. The explored in publicly available gene expression datasets. study also identifies ACKR2 as a novel mediator for CXCL14 Results: CXCL14 fibroblasts stimulated breast cancer EMT, function and thereby defines a pathway with drug target migration, and invasion in breast cancer cells and in a xeno- potential. Introduction expression and shorter survival in a population-based breast cancer cohort. Notably, epithelial expression of CXCL14 did not Death of patients with breast cancer is almost exclusively due have an impact on breast cancer outcome (1). to metastatic disease. Metastasis develops through a multistep During the early steps of metastasis development, tumor cells process, involving tissue invasion, intravasation, survival in the lose cell-to-cell contacts and epithelial characteristics and instead bloodstream and lymph system, extravasation, and tissue colo- gain mesenchymal traits that allow them to invade the surround- nization. This study develops recent correlative studies that have ing tissue and metastasize; a process termed epithelial-to-mesen- indicated clinical relevance, in breast cancer, of stroma-derived chymal transition (EMT; ref. 2). expression of the chemokine CXCL14 by demonstrating signifi- EMT is controlled by distinct transcriptional programs activated cant and independent associations between high stromal CXCL14 by specific transcription factors, including Snail, Slug, Twist, Zeb, and Gsc. Activation of these factors ultimately leads to the loss of epithelial markers including E-cadherin and cytokeratins, and the 1 Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karo- upregulation of mesenchymal markers, such as vimentin, alpha- linska Institutet, Stockholm, Sweden. 2Department of Infection and Immunity, smooth muscle actin (aSMA), and matrix-degrading enzymes (3). Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg. 3Division for Vascular Oncology and Although the classical paradigm attributing EMT a crucial role in Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany. the process of metastasis has been recently challenged by studies 4Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, in genetic mouse models, other recent studies including in vivo Stockholm University, Science for Life Laboratory, Stockholm, Sweden. imaging approaches demonstrated that cancer cells displaying an Note: Supplementary data for this article are available at Clinical Cancer EMT phenotype give rise to metastases (4–6). Research Online (http://clincancerres.aacrjournals.org/). Induction of EMT can occur in a paracrine manner by secreted M. Augsten and A. Ostman€ contributed equally to this article. factors from cells of the tumor stroma, as for example, the cancer- associated fibroblasts (CAF; refs. 7, 8). CAFs constitute a hetero- Current address for M. Augsten: amcure GmbH, Eggenstein-Leopoldshafen, geneous cell population that contributes to cancer growth and Germany. spread by secretion of a variety of protumorigenic factors, includ- € Corresponding Author: Arne Ostman, Karolinska Institutet, Cancer Center ing soluble factors. Among these CAF-secreted factors implicated Karolinska, R8:03, Karolinska University Hospital, Stockholm 17176, Sweden. in EMT and metastasis are chemokines, proteins of a size between Phone: 468-5177-0232; Fax: 468-339-031; E-mail: [email protected] 8 and 14 kDa that stimulate directed cell migration by creating a doi: 10.1158/1078-0432.CCR-18-1294 gradient along which cell types expressing the corresponding Ó2019 American Association for Cancer Research. receptor travel (7, 9). Chemokines bind to the pertussis-sensitive www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst March 8, 2019; DOI: 10.1158/1078-0432.CCR-18-1294 Sjoberg€ et al. Hs578t were cultured in DMEM (Hyclone), supplemented with Translational Relevance 10% FBS (Hyclone), 1% glutamine (Hyclone) and 1% penicillin/ Autocrine fibroblast CXCL14/ACKR2 signaling is shown to streptomycin (Hyclone). DMEM-F12 (Hyclone), supplemented induce EMT, migration, and metastasis and to correlate with with horse serum (Biochrom), 1% glutamine, and 1% penicillin/ worse survival in patients with breast cancer. The identification streptomycin was used for culturing the MCF10-DCIS cell line. of ACKR2 as a novel component in the signaling of the orphan Starvation was performed in medium without serum. All cells chemokine CXCL14 is relevant for further biomarker studies were maintained at 37 C in humidified air with 5% CO2. NIH-ctr and suggests novel targeting opportunities. and NIH-CXCL14 fibroblasts have been characterized earlier, and fibroblasts secrete physiologic levels of CXCL14 (22). Cell lines were purchased from ATCC or received from collaboration part- ners and continually tested for Mycoplasma infection during the Gai-subfamily of G-protein–coupled receptors (GPCR) that study. The identity of the cell lines used was confirmed by short engage different signaling pathways including ERK1/2, PI3K/AKT, tandem repeat (STR) profiling at Uppsala Genome Center. All and calcium signaling (10). Besides the classical chemokine experiments were performed with cells of passage 3–20. receptors, there is a subfamily of atypical chemokine receptors Western blot analyses used antibodies against p-ERK (#9101), (ACKR) that are predominantly involved in sequestration of ERK (#9102), E-cadherin (#3195), Snail (#3879), NOS1 (#4234) chemokines (11). (Cell Signaling Technology), b-actin (A1978), and a-tubulin In cancer, chemokines are involved in the recruitment of (T5201; Sigma-Aldrich). Primary antibodies detecting E-cadherin various cell types into tumors and thereby affecting inflammation, (#3195), Cytokeratin 8/18 (#4546), and PDGFbR (#3169; Cell angiogenesis, tumor growth, invasion, and metastasis (12). A Signaling Technology) together by fluorescent-linked secondary paracrine chemokine cross-talk between stromal cells and tumor antibodies, were used for immunofluorescence staining of xeno- cells, involving effects on EMT, has been demonstrated to enhance graft tumors. formation of metastases (13–16). Expression of certain chemo- Pertussis toxin was purchased from Sigma-Aldrich and recom- kines in distant tissues has also been reported to determine binant CXCL14 and CCL5 from R&D Systems and PeproTech. metastasis formation in specific organs, a process termed meta- Alexa Fluor 647–coupled chemokines were purchased from static tropism (17). Almac. The orphan chemokine CXCL14, earlier designated BRAK, MIP-2g, BMAC, or KS1 stimulates migration of various immune RNA isolation, cDNA synthesis, and qRT-PCR analysis cells, including B cells, NK cells, and monocytes, but not RNA was isolated from xenograft tumors or overnight starved T cells (18–21). CXCL14 expression has been shown to be cells using GeneElute Mammalian Total RNA Miniprep Kit upregulated in CAFs, as compared with normal fibroblasts, in (Sigma-Aldrich). cDNA synthesis was performed with the Super- human breast and prostate cancer (22, 23). Experimental studies Script III First-Strand Synthesis System for RT-PCR (Invitrogen), exploring the function of CXCL14 during tumor progression and using PolydT primers, in accordance with the manufacturer's metastasis formation have demonstrated context-dependent pro- instructions. The qRT-PCR reaction using SYBR Green Universal and antitumoral effects. The reasons for these effects remain PCR Master Mix (Applied Biosystems) was performed with the largely unknown and could possibly dependent on the cell type 7500 Real-Time PCR System (Applied Biosystems). The concen- that express the chemokine and on the profile of chemokine tration of primers
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • NIH Public Access Author Manuscript Gene Expr Patterns
    NIH Public Access Author Manuscript Gene Expr Patterns. Author manuscript; available in PMC 2014 December 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Gene Expr Patterns. 2013 December ; 13(8): . doi:10.1016/j.gep.2013.05.006. Expression of CXCL12 and CXCL14 during eye development in Chick and Mouse Ana F. Ojeda, Ravi P. Munjaal, and Peter Y. Lwigale* Department of Biochemistry and Cell Biology, Rice University, Houston, TX. Abstract Vertebrate eye development is a complex multistep process coordinated by signals from the lens, optic cup and periocular mesenchyme. Although chemokines are increasingly being recognized as key players in cell migration, proliferation, and differentiation during embryonic development, their potential role during eye development has not been examined. In this study, we demonstrate by section in situ hybridization that CXCL12 and CXCL14 are expressed during ocular development. CXCL12 is expressed in the periocular mesenchyme, ocular blood vessels, retina, and eyelid mesenchyme, and its expression pattern is conserved between chick and mouse in most tissues. Expression of CXCL14 is localized in the ocular ectoderm, limbal epithelium, scleral papillae, eyelid mesenchyme, corneal keratocytes, hair follicles, and retina, and it was only conserved in the upper eyelid ectoderm of chick and mouse. The unique and non-overlapping patterns of CXCL12 and CXCL14 expression in ocular tissues suggest that these two chemokines may interact and have important functions in cell proliferation, differentiation and migration during eye development. Keywords Cornea; limbal epithelium; eyelid; nictitating membrane; scleral ossicles; retina 1. INTRODUCTION Chemokines are a large family of small-secreted chemoattractant cytokines that function in many physiological and pathological processes.
    [Show full text]
  • 1 Supplemental Material Maresin 1 Activates LGR6 Receptor
    Supplemental Material Maresin 1 Activates LGR6 Receptor Promoting Phagocyte Immunoresolvent Functions Nan Chiang, Stephania Libreros, Paul C. Norris, Xavier de la Rosa, Charles N. Serhan Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 1 Supplemental Table 1. Screening of orphan GPCRs with MaR1 Vehicle Vehicle MaR1 MaR1 mean RLU > GPCR ID SD % Activity Mean RLU Mean RLU + 2 SD Mean RLU Vehicle mean RLU+2 SD? ADMR 930920 33283 997486.5381 863760 -7% BAI1 172580 18362 209304.1828 176160 2% BAI2 26390 1354 29097.71737 26240 -1% BAI3 18040 758 19555.07976 18460 2% CCRL2 15090 402 15893.6583 13840 -8% CMKLR2 30080 1744 33568.954 28240 -6% DARC 119110 4817 128743.8016 126260 6% EBI2 101200 6004 113207.8197 105640 4% GHSR1B 3940 203 4345.298244 3700 -6% GPR101 41740 1593 44926.97349 41580 0% GPR103 21413 1484 24381.25067 23920 12% NO GPR107 366800 11007 388814.4922 360020 -2% GPR12 77980 1563 81105.4653 76260 -2% GPR123 1485190 46446 1578081.986 1342640 -10% GPR132 860940 17473 895885.901 826560 -4% GPR135 18720 1656 22032.6827 17540 -6% GPR137 40973 2285 45544.0809 39140 -4% GPR139 438280 16736 471751.0542 413120 -6% GPR141 30180 2080 34339.2307 29020 -4% GPR142 105250 12089 129427.069 101020 -4% GPR143 89390 5260 99910.40557 89380 0% GPR146 16860 551 17961.75617 16240 -4% GPR148 6160 484 7128.848113 7520 22% YES GPR149 50140 934 52008.76073 49720 -1% GPR15 10110 1086 12282.67884
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • G-Protein-Coupled Receptors in CNS: a Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits
    cells Review G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits Shofiul Azam 1 , Md. Ezazul Haque 1, Md. Jakaria 1,2 , Song-Hee Jo 1, In-Su Kim 3,* and Dong-Kug Choi 1,3,* 1 Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; shofi[email protected] (S.A.); [email protected] (M.E.H.); md.jakaria@florey.edu.au (M.J.); [email protected] (S.-H.J.) 2 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia 3 Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea * Correspondence: [email protected] (I.-S.K.); [email protected] (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.) Received: 16 January 2020; Accepted: 18 February 2020; Published: 23 February 2020 Abstract: Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals.
    [Show full text]
  • Activation of the Orphan G Protein–Coupled Receptor GPR27 by Surrogate Ligands Promotes B-Arrestin 2 Recruitment S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/17/mol.116.107714.DC1 1521-0111/91/6/595–608$25.00 https://doi.org/10.1124/mol.116.107714 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:595–608, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Activation of the Orphan G Protein–Coupled Receptor GPR27 by Surrogate Ligands Promotes b-Arrestin 2 Recruitment s Nadine Dupuis, Céline Laschet, Delphine Franssen, Martyna Szpakowska, Julie Gilissen, Pierre Geubelle, Arvind Soni, Anne-Simone Parent, Bernard Pirotte, Andy Chevigné, Jean- Claude Twizere, and Julien Hanson Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA- Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), Downloaded from University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur- Alzette, Luxembourg (M.S., A.C.) Received December 6, 2016; accepted March 16, 2017 ABSTRACT molpharm.aspetjournals.org Gprotein–coupled receptors are the most important drug targets the presence of membrane-anchored G protein-coupled receptor for human diseases. An important number of them remain devoid kinase-2. Therefore, we optimized a firefly luciferase complemen- of confirmed ligands. GPR27 is one of these orphan receptors, tation assay to screen against this chimeric receptor. We identified characterized by a high level of conservation among vertebrates two compounds [N-[4-(anilinocarbonyl)phenyl]-2,4-dichloroben- and a predominant expression in the central nervous system.
    [Show full text]
  • CXCL14 Is a Candidate Biomarker for Hedgehog Signalling in Idiopathic
    Thorax Online First, published on March 1, 2017 as 10.1136/thoraxjnl-2015-207682 Biomarkers of disease ORIGINAL ARTICLE Thorax: first published as 10.1136/thoraxjnl-2015-207682 on 1 March 2017. Downloaded from CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis Guiquan Jia,1 Sanjay Chandriani,1 Alexander R Abbas,1 Daryle J DePianto,1 Elsa N N’Diaye,1 Murat B Yaylaoglu,1 Heather M Moore,1 Ivan Peng,1 Jason DeVoss,1 Harold R Collard,2 Paul J Wolters,2 Jackson G Egen,1 Joseph R Arron1 ▸ Additional material is ABSTRACT published online only. To view Background Idiopathic pulmonary fibrosis (IPF) is Key messages please visit the journal online (http://dx.doi.org/10.1136/ associated with aberrant expression of developmental thoraxjnl-2015-207682). pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh 1Genentech, Inc., South What is the key question? San Francisco, California, USA inhibition may represent a therapeutic option for IPF. ▸ How can activity of the profibrotic Hedgehog 2Division of Pulmonary and However, no non-invasive biomarkers are available to signalling pathway be monitored non-invasively Critical Care Medicine, monitor lung Hh activity. in patients with idiopathic pulmonary fibrosis Department of Medicine, Methods We assessed gene and protein expression in (IPF)? University of California, fi San Francisco, California, USA IPF and control lung biopsies, mouse lung, broblasts stimulated in vitro with sonic hedgehog (SHh), and What is the bottom line? ▸ Correspondence to plasma in IPF patients versus controls, and cancer Using human IPF lung tissue and blood, in vitro Dr Joseph R Arron, Genentech, patients before and after treatment with vismodegib, cell culture, in vivo animal models and blood Inc., MS 34, 1 DNA Way, a Hh inhibitor.
    [Show full text]
  • Nfatc2-Dependent Epigenetic Upregulation of CXCL14 Is Involved
    Liu et al. Journal of Neuroinflammation (2020) 17:310 https://doi.org/10.1186/s12974-020-01992-1 RESEARCH Open Access NFATc2-dependent epigenetic upregulation of CXCL14 is involved in the development of neuropathic pain induced by paclitaxel Meng Liu1, Su-Bo Zhang1, Yu-Xuan Luo2, Yan-Ling Yang2, Xiang-Zhong Zhang2,BoLi3, Yan Meng3, Yuan-Jie Chen3, Rui-Xian Guo1,4*, Yuan-Chang Xiong3, Wen-Jun Xin1 and Dai Li3* Abstract Background: The major dose-limiting toxicity of paclitaxel, one of the most commonly used drugs to treat solid tumor, is painful neuropathy. However, the molecular mechanisms underlying paclitaxel-induced painful neuropathy are largely unclarified. Methods: Paw withdrawal threshold was measured in the rats following intraperitoneal injection of paclitaxel. The qPCR, western blotting, protein or chromatin immunoprecipitation, ChIP-seq identification of NFATc2 binding sites, and microarray analysis were performed to explore the molecular mechanism. Results: We found that paclitaxel treatment increased the nuclear expression of NFATc2 in the spinal dorsal horn, and knockdown of NFATc2 with NFATc2 siRNA significantly attenuated the mechanical allodynia induced by paclitaxel. Further binding site analysis utilizing ChIP-seq assay combining with gene expression profile revealed a shift of NFATc2 binding site closer to TTS of target genes in dorsal horn after paclitaxel treatment. We further found that NFATc2 occupancy may directly upregulate the chemokine CXCL14 expression in dorsal horn, which was mediated by enhanced interaction between NFATc2 and p300 and consequently increased acetylation of histone H4 in CXCL14 promoter region. Also, knockdown of CXCL14 in dorsal horn significantly attenuated mechanical allodynia induced by paclitaxel.
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • In Vitro Profiling of Orphan G Protein Coupled Receptor (GPCR)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434788; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 In vitro profiling of orphan G protein coupled receptor (GPCR) 3 constitutive activity 4 5 Lyndsay R. Watkins and Cesare Orlandi * 6 Department of Pharmacology and Physiology, University of Rochester Medical Center, 7 Rochester, NY 14642, USA 8 * Correspondence: [email protected] 9 10 11 12 13 14 15 16 17 18 19 20 Running title: 21 Orphan GPCR constitutive activity 22 23 Keywords: 24 G protein‐coupled receptor (GPCR); constitutive activity; cell signaling; molecular pharmacology. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434788; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 Background and Purpose 27 Members of the G protein coupled receptor (GPCR) family are targeted by a significant fraction 28 of the available FDA-approved drugs. However, the physiological role and pharmacological 29 properties of many GPCRs remain unknown, representing untapped potential in drug design. Of 30 particular interest are ~100 less-studied GPCRs known as orphans because their endogenous 31 ligands are unknown. Intriguingly, disease-causing mutations identified in patients, together with 32 animal studies, have demonstrated that many orphan receptors play crucial physiological roles, 33 and thus, represent attractive drug targets.
    [Show full text]
  • G Protein-Coupled Receptors
    Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Marrion, N. V., Peters, J. A., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A. (2017). THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. British Journal of Pharmacology, 174, S17-S129. https://doi.org/10.1111/bph.13878 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.13878 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://doi.org/10.1111/bph.13878 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2017/18: G protein-coupled receptors. British Journal of Pharmacology (2017) 174, S17–S129 THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors Stephen PH Alexander1, Arthur Christopoulos2, Anthony P Davenport3, Eamonn Kelly4, Neil V Marrion4, John A Peters5, Elena Faccenda6, Simon D Harding6,AdamJPawson6, Joanna L Sharman6, Christopher Southan6, Jamie A Davies6 and CGTP Collaborators 1 School of Life Sciences,
    [Show full text]