Portable Through Bottle SORS for the Authentication of Extra Virgin Olive Oil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
November 2016 NEMSN Newsletter
Vol. Vol. 26 No.No. 1 1 The National Eosinophilia-Myalgia Syndrome Network, Inc. November Page 2016 1 Friends Supporting Friends National EMS Network NEMSN National Eosinophilia-Myalgia Syndrome Network, Inc. http:www.nemsn.org Newsletter Points of interest ………………..……………... NEMSN is extremely pleased to announce that Stephen Naylor, • Your continued do- Ph.D. has joined our Medical Advisory Panel as NEMSN's nations have kept Science Advisor. Welcome, Dr. Naylor. this Newsletter and NEMSN alive. Dr. Stephen Naylor is one of only a handful of distin- Please keep those guished scientists who have devoted years of research in donations coming an attempt to achieve a complete explanation of EMS. no matter how Known as a chemist, biochemist, toxicologist and business large or small. Our originator, he has co-authored hundreds of scientific re- thanks. search papers and book chapters while delivering un- ………………………………….. counted presentations at universities and medical centers • We are interested worldwide. In the 1990s he and NEMSN advisor Gerald J. in your story. Please Gleich, M.D. partnered at the Mayo Clinic in Rochester, take the time to MN to undertake definitive EMS and L-tryptophan re- write it and send to search. Naylor and Gleich received NIH and WHO grants us for our newslet- and co-authored a number of scholarly papers during that period. ter. …………………………………... Stephen Naylor received his Ph.D. from the University of Cambridge (UK) in Biochem- • If you have not seen istry. He completed postdoctoral work at the Massachusetts Institute of Technology our web site yet, it where he later became a visiting faculty member in the Division of Biological Engineer- is very informative. -
Are Omics the Death of Good Sampling Practice?
VOL. 31 NO. 3 (2019) TONY DAVIES COLUMN Are omics the death of Good Sampling Practice? Antony N. Daviesa,b and Roy Goodacrec aExpert Capability Group – Measurement and Analytical Science, Nouryon, Deventer, the Netherlands bSERC, Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, UK. 0000-0002-3119-4202 cDepartment of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK. E-mail: [email protected], 0000-0003-2230-645X During the recent Royal Society of apparently promising dead-ends. We are in most case-control studies the cases Chemistry, Faraday discussion meeting in reminded by George Poste in his edito- (those with some form of disease) are Edinburgh on Challenges in Analysis of rial “Bring on the Biomarkers” in 20112 usually already on medication (or self Complex Natural Mixtures I found myself that, at that time, of the 150,000 clini- medicating), so this strong confounding wondering if the power that our modern cal biomarkers described in the literature factor also needs to be considered. spectrometers bring to the study of highly a mere 100 were routinely used in the There is an enormous gap between complex systems can sometimes over- clinic. delivering theoretical correlations with whelm our natural scepticism around Omics experiments in themselves the hope of finding causation from stud- poor sampling practices.1 Some targeted present an enormous issue for classical ies of cell cultures in Petri dishes to questions put by Roy Goodacre in this statisticians just by their huge dimension- catching the developing lung cancer in a direction to several speakers seemed to ality. -
Rothamsted Repository Download
Patron: Her Majesty The Queen Rothamsted Research Harpenden, Herts, AL5 2JQ Telephone: +44 (0)1582 763133 WeB: http://www.rothamsted.ac.uk/ Rothamsted Repository Download A - Papers appearing in refereed journals Ward, J. L., Moing, A., Allwood, J. W., Aharoni, A., Baker, J., Beale, M. H., Ben-Dor, S., Biais, B., Brigante, F., Burger, Y., Deborde, C., Erban, A., Faigenboim, A., Gur, A., Goodacre, R., Hansen, T. H., Jacob, D., Katzir, N., Kopka, J., Lewinsohn, E., Maucourt, M., Meir, S., Miller, S., Mumm, R., Oren, E., Paris, H. S., Rogachev, I., Rolin, D., Saar, U., Schjoerring, J. K., Tadmor, Y., Tzuri, G., Vos, R. C. D., Ward, J. L., Yeselson, E., Hall, R. D. and Schaffer, A. A. 2020. Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites. 10 (3), pp. 121-147. The publisher's version can be accessed at: • https://dx.doi.org/10.3390/metabo10030121 • https://www.mdpi.com/2218-1989/10/3/121 The output can be accessed at: https://repository.rothamsted.ac.uk/item/9783y/comparative-metabolomics-and- molecular-phylogenetics-of-melon-cucumis-melo-cucurbitaceae-biodiversity. © 20 March 2020, Please contact [email protected] for copyright queries. 28/05/2020 09:19 repository.rothamsted.ac.uk [email protected] Rothamsted Research is a Company Limited by Guarantee Registered Office: as above. Registered in England No. 2393175. Registered Charity No. 802038. VAT No. 197 4201 51. Founded in 1843 by John Bennet Lawes. H OH metabolites OH Article Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity Annick Moing 1 , J. -
Neuropathology Category Code List
Neuropathology Page 1 of 27 Neuropathology Major Category Code Headings Revised 10/2018 1 General neuroanatomy, pathology, and staining 65000 2 Developmental neuropathology, NOS 65400 3 Epilepsy 66230 4 Vascular disorders 66300 5 Trauma 66600 6 Infectious/inflammatory disease 66750 7 Demyelinating diseases 67200 8 Complications of systemic disorders 67300 9 Aging and neurodegenerative diseases 68000 10 Prion diseases 68400 11 Neoplasms 68500 12 Skeletal Muscle 69500 13 Peripheral Nerve 69800 14 Ophthalmic pathology 69910 Neuropathology Page 2 of 27 Neuropathology 1 General neuroanatomy, pathology, and staining 65000 A Neuroanatomy, NOS 65010 1 Neocortex 65011 2 White matter 65012 3 Entorhinal cortex/hippocampus 65013 4 Deep (basal) nuclei 65014 5 Brain stem 65015 6 Cerebellum 65016 7 Spinal cord 65017 8 Pituitary 65018 9 Pineal 65019 10 Tracts 65020 11 Vascular supply 65021 12 Notochord 65022 B Cell types 65030 1 Neurons 65031 2 Astrocytes 65032 3 Oligodendroglia 65033 4 Ependyma 65034 5 Microglia and mononuclear cells 65035 6 Choroid plexus 65036 7 Meninges 65037 8 Blood vessels 65038 C Cerebrospinal fluid 65045 D Pathologic responses in neurons and axons 65050 1 Axonal degeneration/spheroid/reaction 65051 2 Central chromatolysis 65052 3 Tract degeneration 65053 4 Swollen/ballooned neurons 65054 5 Trans-synaptic neuronal degeneration 65055 6 Olivary hypertrophy 65056 7 Acute ischemic (hypoxic) cell change 65057 8 Apoptosis 65058 9 Protein aggregation 65059 10 Protein degradation/ubiquitin pathway 65060 E Neuronal nuclear inclusions 65100 -
The Development of Enhanced Raman Scattering for the Trace Analysis of Biomolecules
The Development of Enhanced Raman Scattering for the Trace Analysis of Biomolecules A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2013 David Paul Cowcher Supervised by Professor Royston Goodacre School of Chemistry Contents Contents CONTENTS ....................................................................................................................................... 2 LIST OF FIGURES .......................................................................................................................... 7 LIST OF TABLES .......................................................................................................................... 14 LIST OF EQUATIONS .................................................................................................................. 15 LIST OF SCHEMES ...................................................................................................................... 15 LIST OF ABBREVIATIONS ........................................................................................................ 16 ABSTRACT ..................................................................................................................................... 18 ACKNOWLEDGEMENTS ............................................................................................................ 19 DECLARATION ............................................................................................................................ -
Since January 2020 Elsevier Has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID- 19
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Centers for Disease Control Stephen B Thackery, David J Sencery, and Harold W Jaffe, Centers for Disease Control and Prevention, Atlanta, GA, USA Ó 2017 Elsevier Inc. All rights reserved. This article is an updated version of the previous edition article by Stephen B. Thacker, David J. Sencer, volume 1, pp. 549–555, Ó 2008, Elsevier Inc. Early History of the Centers for Disease Control Health Officials and the American Public Health Association and Prevention agreed that CDC take the lead in defining what diseases were of highest priority and should be reportable. The key The history of the Centers for Disease Control and Prevention figure in this expansion of the CDC role was Alexander D. (CDC) began in 1942 with the establishment of the Malaria Langmuir, MD (1910–93), who was brought to the CDC in Control in War Areas (MCWA), under the U.S. -
Surface-Enhanced Raman Scattering (SERS)
Focal Point Review Applied Spectroscopy 2018, Vol. 72(7) 987–1000 ! The Author(s) 2018 Surface-Enhanced Raman Scattering Reprints and permissions: sagepub.co.uk/journalsPermissions.nav (SERS) in Microbiology: Illumination and DOI: 10.1177/0003702818764672 journals.sagepub.com/home/asp Enhancement of the Microbial World Malama Chisanga, Howbeer Muhamadali, David I. Ellis, and Royston Goodacre Abstract The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characteriza- tion and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals. -
Toxic Oil Syndrome
The WHO Regional OILSYNDROME TOXIC Offi ce for Europe The World Health Organization (WHO) is a specialized agency of the United Nations This is the third book published by WHO on the outbreak created in 1948 with the of the condition that came to be called the toxic oil primary responsibility for international syndrome (TOS), which struck Spain in 1981. It killed health matters and public health. The several hundred people and affected more than 20 000, WHO Regional Offi ce many of whom remain ill today. The two previous books for Europe is one of six regional offi ces described, respectively, early observations and scientifi c throughout the world, each with its own fi ndings gathered throughout the 1980s. programme geared to the particular health conditions of the This volume refl ects the progress made in the last ten countries it serves. years under a carefully planned strategy undertaken on Member States Albania | four main fronts by the WHO/CISAT Scientifi c Committee TENYEARS OF PROGRESS Andorra for the Toxic Oil Syndrome. First, various projects were Armenia supported aiming at the full chemical characterization Austria Azerbaijan of the oil matrix. Second, attempts were made to Belarus reproduce, on both a laboratory and an industrial scale, Belgium Bosnia and Herzegovina the refi ning process to which the suspect oil had been Bulgaria subjected in an attempt to establish the conditions Croatia Cyprus under which the toxin(s) were generated and to provide Czech Republic Denmark suffi cient amounts of reconstituted oils for toxicological Estonia studies. Third, a search was undertaken for an animal Finland France model in which to study the disease. -
Chapter 4 Prevention of Trichinella Infection in the Domestic
FAO/WHO/OIE Guidelines for the surveillance, management, prevention and control of trichinellosis Editors J. Dupouy-Camet & K.D. Murrell Published by: Food and Agriculture Organization of the United Nations (FAO) World Health Organization (WHO) World Organisation for Animal Health (OIE) The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations, of the World Health Organization and of the World Organisation for Animal Health concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations 'developed' and 'developing' economies are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country, territory or area in the development process. The views expressed herein are those of the authors and do not necessarily represent those of the Food and Agriculture Organization of the United Nations, of the World Health Organization and of the World Organisation for Animal Health. All the publications of the World Organisation for Animal Health (OIE) are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE. The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, WHO or OIE in preference to others of a similar nature that are not mentioned. -
Spectral Artefacts Induced by Moving Targets in Live Hyperspectral Stimulated Raman Spectroscopy: the Case of Lipid Droplets in Yeast Cells
Clinical Spectroscopy 3 (2021) 100014 Contents lists available at ScienceDirect Clinical Spectroscopy journal homepage: www.sciencedirect.com/journal/clinical-spectroscopy Spectral artefacts induced by moving targets in live hyperspectral stimulated Raman spectroscopy: The case of lipid droplets in yeast cells Cassio Lima a, Chrispian W. Theron a, Howbeer Muhamadali a, Douglas B. Kell a,b, Royston Goodacre a,* a Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom b Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs Lyngby, Denmark ARTICLE INFO ABSTRACT Keywords: In this study, we used stimulated Raman spectroscopy (SRS) microscopy to collect Raman signatures from live Yeast Saccharomyces cerevisiae cells in the spectral range 2804 3060 cm 1 and 830 2000 cm 1 with a spectral res Hyperspectral SRS olution of 8 cm 1. To effect this, we tuned the pump beam to several distinct wavelengths and thus acquired a Fixatives series of chemical maps in order to reconstruct SRS spectra based on the intensity of the pixels, an approach also Live cell imaging referred as hyperspectral SRS (hsSRS). One of the advantages of hsSRS over spontaneous Raman is that it is not Raman overtly plagued by fluorescence and so fluorescent samples like yeast can be analysed. We show however that Raman signatures acquired by this approach may be subject to spectral artefacts that manifest as drops in in tensity of Raman signal due to the movement of lipid droplets (LDs) within the yeast cells. -
Non-Targeted Authentication Approach for Extra Virgin Olive Oil
foods Article Non-Targeted Authentication Approach for Extra Virgin Olive Oil Didem Peren Aykas 1,2, Ayse Demet Karaman 3, Burcu Keser 4 and Luis Rodriguez-Saona 1,* 1 Department of Food Science and Technology, The Ohio State University, 100 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA; [email protected] 2 Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey 3 Department of Dairy Technology, Faculty of Agricultural Engineering, Adnan Menderes University, Aydin 09100, Turkey; [email protected] 4 Kocarli Vocational School, Adnan Menderes University, Aydin 09100, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +1-614-292-3339 Received: 28 January 2020; Accepted: 14 February 2020; Published: 20 February 2020 Abstract: The aim of this study is to develop a non-targeted approach for the authentication of extra virgin olive oil (EVOO) using vibrational spectroscopy signatures combined with pattern recognition analysis. Olive oil samples (n = 151) were grouped as EVOO, virgin olive oil (VOO)/olive oil (OO), and EVOO adulterated with vegetable oils. Spectral data was collected using a compact benchtop Raman (1064 nm) and a portable ATR-IR (5-reflections) units. Oils were characterized by their fatty acid profile, free fatty acids (FFA), peroxide value (PV), pyropheophytins (PPP), and total polar compounds (TPC) through the official methods. The soft independent model of class analogy analysis using ATR-IR spectra showed excellent sensitivity (100%) and specificity (89%) for detection of EVOO. Both techniques identified EVOO adulteration with vegetable oils, but Raman showed limited resolution detecting VOO/OO tampering. -
Policy Responses to Reduce the Opportunity for Horsemeat Adulteration Fraud: the Case of the European Union
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by K-State Research Exchange POLICY RESPONSES TO REDUCE THE OPPORTUNITY FOR HORSEMEAT ADULTERATION FRAUD: THE CASE OF THE EUROPEAN UNION by MEGAN KULAS B.S., Kansas State University 2011 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2014 Approved by: Major Professor Justin Kastner Copyright MEGAN KULAS 2014 Abstract Food production is changing in response to an expanding global population. The ability to distribute and process ingredients amongst many individuals and countries has brought economic benefits while also creating new problems. By increasing the complexity of the supply chain, the food industry has birthed new dynamics, thus creating new opportunities for contamination, fraud, and other threats. One threat dynamic is the varying levels of food safety and quality control at different nodes along a supply chain. Contaminations pinpoint weaknesses of a supply chain, and such weaknesses could be exploited for harm. One way foods are intentionally contaminated is through food fraud. Food fraud involves substitution, mislabeling, dilution, and other means of criminal deception. Routine testing by an independent science- based group led to the discovery of one the largest scales of substitution and mislabeling in history—the 2013 adulteration of beef products with horsemeat. Commonly referred to as the horsemeat scandal of 2013, this important event in the history of the global food system affected several regions, hundreds of products, and thousands of retailers and consumers.