RESEARCH ARTICLE Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates Rahul Bale1, Izaak D. Neveln2, Amneet Pal Singh Bhalla1, Malcolm A. MacIver1,2,3☯*, Neelesh A. Patankar1☯* 1 Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America, 2 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America, 3 Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America ☯ These authors contributed equally to this work. *
[email protected] (NAP);
[email protected] (MAM) Abstract OPEN ACCESS Examples of animals evolving similar traits despite the absence of that trait in the last com- Citation: Bale R, Neveln ID, Bhalla APS, MacIver MA, Patankar NA (2015) Convergent Evolution of mon ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, Mechanically Optimal Locomotion in Aquatic are called cases of convergent evolution. Instances of convergent evolution of locomotory Invertebrates and Vertebrates. PLoS Biol 13(4): patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, e1002123. doi:10.1371/journal.pbio.1002123 we show that, with respect to a very diverse group of aquatic animals, a mechanically opti- Academic Editor: Anders Hedenström, Lund mal method of swimming with elongated fins has evolved independently at least eight times University, SWEDEN in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we Received: September 29, 2014 take the length of an undulation along an animal’s fin during swimming and divide it by the Accepted: March 6, 2015 mean amplitude of undulations along the fin length, the result is consistently around twenty.